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Abstract

Accurate layout estimation is crucial for planning and
navigation in robotics applications, such as self-driving. In
this paper, we introduce the Stereo Bird’s Eye View Network
(SBEVNet) 1, a novel supervised end-to-end framework for
estimation of bird’s eye view layout from a pair of stereo
images. Although our network reuses some of the building
blocks from the state-of-the-art deep learning networks for
disparity estimation, we show that explicit depth estimation
is neither sufficient nor necessary. Instead, the learning of a
good internal bird’s eye view feature representation is effec-
tive for layout estimation. Specifically, we first generate a
disparity feature volume using the features of the stereo im-
ages and then project it to the bird’s eye view coordinates.
This gives us coarse-grained information about the scene
structure. We also apply inverse perspective mapping (IPM)
to map the input images and their features to the bird’s eye
view. This gives us fine-grained texture information. Con-
catenating IPM features with the projected feature volume
creates a rich bird’s eye view representation which is useful
for spatial reasoning. We use this representation to estimate
the BEV semantic map. Additionally, we show that using the
IPM features as a supervisory signal for stereo features can
give an improvement in performance. We demonstrate our
approach on two datasets: the KITTI [5] dataset and a syn-
thetically generated dataset from the CARLA [4] simulator.
For both of these datasets, we establish state-of-the-art per-
formance compared to baseline techniques.

1. Introduction
Layout estimation is an extremely important task for

navigation and planning in numerous robotics applications
such as autonomous driving cars. The bird’s eye view

1The code is available at https://github.com/divamgupta/
sbevnet-stereo-layout-estimation
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Figure 1. SBEVNet estimates a semantic layout in the bird’s eye
view space from a stereo image pair. The semantic map contains
regions of the scene such as vegetation, cars, road, sidewalk, etc.
SBEVNet first creates a BEV representation by leveraging the rules
camera geometry. This BEV representation is then used to esti-
mate the BEV semantic map via a U-Net model.

(BEV) layout is a 2D semantic occupancy map containing
per pixel class information, e.g. road, sidewalk, cars, veg-
etation, etc. The BEV semantic map is important for plan-
ning the path of the robot in order to prevent it from hitting
objects and going to impassable locations.

In order to generate a BEV layout, we need 3D informa-
tion about the scene. Sensors such as LiDAR (Light Detec-
tion And Ranging) can provide accurate point clouds. The
biggest limitations of LiDAR are high cost, sparse resolu-
tion, and low scan-rates. Also, as an active sensor LiDAR is
more power hungry, more susceptible to interference from
other radiation sources, and can affect the scene. Cameras
on the other hand, are much cheaper, passive, and capture
much more information at a higher frame-rate. However, it
is both hard and computationally expensive to get accurate
depth and point clouds from cameras.

The classic approach for stereo layout estimation con-
tains two steps. The first step is to generate a BEV feature
map by an orthographic projection of the point cloud gener-
ated using stereo images. The second step is bird’s eye view
semantic segmentation using the projected point cloud from
the first step. This approach is limited by the estimated point
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cloud accuracy because the error in it will propagate to the
layout estimation step. In this paper, we show that explicit
depth estimation is actually neither sufficient nor necessary
for good layout estimation. Estimating accurate depth is
not sufficient because many areas in the 3D space can be
occluded partially, e.g. behind a tree trunk. However, these
areas can be estimated by combining spatial reasoning and
geometric knowledge in bird’s eye view representation. Ex-
plicitly estimating accurate depth is also not necessary be-
cause layout estimation can be done without estimating the
point cloud. Point cloud coordinate accuracy is limited by
the 3D to 2D BEV projection and rasterization. For these
reasons, having an effective bird’s eye view representation
is very important.

SBEVNet is built upon recent deep stereo matching
paradigm. These deep learning based methods have shown
tremendous success in stereo disparity/depth estimation.
Most of these models [11, 9, 21, 19, 6, 26, 2, 8] generate a 3-
dimensional disparity feature volume by concatenating the
left and right images shifted at different disparities, which
is used to make a cost volume containing stereo matching
costs for each disparity value. Given a location in the image
and the disparity, we can get the position of the correspond-
ing 3D point in the world space. Hence, every point in the
feature volume and cost volume corresponds to a 3D loca-
tion in the world space. The innovation in our approach
comes from the observation: it is possible to directly use
the feature volume for layout estimation, rather than a two
step process, which uses the point cloud generated by the
network. We propose SBEVNet, an end-to-end neural ar-
chitecture that takes a pair of stereo images and outputs the
bird’s eye view scene layout. We first project the disparity
feature volume to the BEV view, creating a 2D represen-
tation from the 3D volume. We then warp it by mapping
different disparities and the image coordinates to the bird’s
eye view space. In order to overcome the loss of fine grained
information imposed by our choice of the stereo BEV fea-
ture map, we concatenate a projection of the original images
and deep features to this feature map. We generate these
projected features by applying inverse perspective mapping
(IPM) [13] to the input image and its features, choosing the
ground as the target plane. We feed this representation to
a U-Net in order to estimate the BEV semantic map of the
scene.

In order to perform inverse perspective mapping, we re-
quire information about the ground in the 3D world space.
Hence we also consider the scenario where we perform IPM
during the training time and not the inference time. Here,
during the training time, we use cross modal distillation to
transfer knowledge from IPM features to the stereo features.

SBEVNet is the first approach to use an end-to-end neu-
ral architecture for stereo layout estimation. We show
that SBEVNet achieves better performance than existing ap-

proaches. SBEVNet outperforms all the baseline algorithms
on KITTI [5] dataset and a synthetically generated dataset
extracted from the CARLA simulator [4]. In summary, our
contributions are the following:

1. We propose SBEVNet, an end-to-end neural architec-
ture for layout estimation from a stereo pair of images.

2. We learn a novel representation for BEV layout esti-
mation by fusing projected stereo feature volume and
fine grained inverse perspective mapping features.

3. We evaluate SBEVNet and demonstrate state-of-the-
art performance over other methods by a large margin
on two datasets – KITTI dataset and our synthetically
generated dataset using the CARLA simulator.

2. Related Work
To the best of our knowledge, there is no published work

for estimating layout given a pair of stereo images. How-
ever, there are several works tackling layout estimation us-
ing a single image or doing object detection using stereo
images. In this section, we review the most closely related
approaches.

Monocular Layout Estimation MonoLayout [14] uses
an encoder-decoder model to estimate the bird’s eye view
layout using a monocular input image. They also leverage
adversarial training to produce sharper estimates. MonoOc-
cupancy [12] uses a variational encoder-decoder network
to estimate the layout. Both MonoLayout and MonoOc-
cupancy do not use any camera geometry priors to perform
the task. Schulter et al. [16] uses depth estimation to project
the image semantics to bird’s eye view. They also use Open
Street Maps data to refine the BEV images via adversar-
ial learning. Wang et al. [22] uses Schulter et al. [16]
to estimate the parameters of the road such as lanes, side-
walks, etc. Monocular methods learn strong prior, which
does not generalize well when there is a significant domain
shift. Stereo methods learn weak-prior plus geometric rela-
tionship, which can generalize better.

Deep Stereo Matching Several methods like [11, 9, 21,
19, 6, 26, 2, 8] extract the features of the stereo images and
generate a 3D disparity feature volume for disparity/depth
estimation. They use a 3D CNN on the feature volume to
get cost volume to perform stereo matching. PSMNet [2]
uses a spatial pyramid pooling module and a stacked hour-
glass network to further improve the performance. High-
res-stereo [24] uses a hierarchical model, creating cost vol-
umes at multiple resolutions, performing the matching in-
crementally from over a coarse to fine hierarchy.

Bird’s Eye View Object Detection Several approaches
[23, 17] use LiDAR to perform 3D object detection.
Pseudo-lidar [20] and pseudo-LiDAR++ [25] use stereo in-
put to first generate a 3D point cloud and then use a 3D ob-
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ject detection network [10, 23, 17] on top. BirdGAN [18]
maps the input image to bird’s eye view using adversarial
learning. The closest work to our approach is DSGN [3]
which constructs a depth feature volume and map it to the
3D space which is then projected to bird’s eye view to per-
form object detection. The task of object detection is of
sparse prediction, whereas layout estimation is of dense fine
granularity prediction. Hence we introduced IPM to fuse
low level detail with the stereo information to improve the
performance of layout estimation.

3. Our Method
This section describes the detailed architecture of our

proposed framework. SBEVNet is built upon recent deep
stereo matching paradigms and follows the rules of multi-
view camera geometry. An overview of the SBEVNet is
summarized in Figure 2.

3.1. Problem Formulation

In this paper, we address the problem of layout estima-
tion from a pair of stereo images. Formally, given a refer-
ence camera image IR and a target camera image IT both
of size H ×W × 3, the camera intrinsics K, and the base-
line length Tb, we aim to estimate the bird’s eye view layout
of the scene. In particular, we estimate the BEV semantic
map of size Nx × Ny × NC within the rectangular range
of interest area (xmin, xmax, ymin, ymax) in front of the
camera. Here H is image height, W is image width, and
3 indicates RGB channels. Nx and Ny are the number of
horizontal cells and vertical cells respectively in bird’s eye
view. NC is the number of semantic classes. This BEV se-
mantic map contains the probability distribution among all
semantic classes at each cell of the layout. We assume that
the input images are rectified.

3.2. Feature extraction

The first step for SBEVNet is to extract features FR and
FT of size H ′ ×W ′ × C for the reference image and the
target image respectively. This is done by passing IR and IT
through a convolutional encoder with shared weights. This
produces multi-channel down-sized feature representations
which are next used for building disparity feature volumes.

3.3. Disparity Feature Volume Generation

Similar to [11, 9, 21, 19, 6, 26, 2, 8] we form a dispar-
ity feature volume V by concatenating the features FR and
F d
T , where F d

T is FT shifted horizontally by a disparity of d
pixel, resulting in a 3D volume of size H ′×W ′×D× 2C.
We then pass the feature volume through a series of 3D con-
volution layers with skip connections to learn higher level
features. This feature volume at each d ∈ {0, 1, · · · , D−1}
contains a representation of the 3D world at the depth cor-
responding to the disparity d. Rather than using this feature

volume to do disparity estimation, we project and warp it to
form a bird’s eye view representation in the next step.

3.4. Bird’s Eye View Representation

The bird’s eye view representation is composed of two
parts – 1) The stereo BEV representation which is derived
from the disparity feature volume, 2) The IPM BEV repre-
sentation which is the result of applying inverse perspective
mapping on the reference image and the features of the ref-
erence image. These two parts are concatenated to form the
final bird’s eye view representation.

3.4.1 Stereo BEV Representation

The disparity feature volume generated is widely used to
estimate depth/disparity in the stereo image pairs. But this
feature volume contains a lot of information about the 3D
scene which can be used for other tasks as well. Each point
in the disparity feature volume corresponds to a point in
the 3D world space. We first need to map the 3D feature
volume to a 2D feature map containing information of the
bird’s eye view. If we do max/average pooling along height
dimension, a certain degree of the height information is lost
quickly before being extracted for our task, which is not
desirable. Considering height information a good prior for
layout estimation but we don’t need to recover it explicitly,
we concatenate the feature volume along the height, creat-
ing a 2D image of size W ′ × D × 2CH ′. We then use
2D convolutions to generate the reduced feature volume of
size W ′′ ×D′′ ×C ′. This reduced feature volume does not
spatially match with the bird’s eye view layout. Hence, we
warp the reduced feature volume, transforming it to a fea-
ture map of size Nx×Ny×C ′ in the bird’s eye view space.
Given the disparity d, position in the image along width u,
camera parameters f , cx, cy , and stereo baseline length Tx,
we can find the coordinates in the bird’s eye space x′ and y′

as follows:

x′ =
(u− cx) · Tx

d
(1)

y′ =
f · Tx

d
(2)

The 2D origin of the bird’s eye view is co-located with the
reference camera. An example visualization of the layout
in the disparity volume space is shown in Figure 3. After
mapping the coordinates to the BEV space, we map them to
a grid of size Nx ×Ny giving us the stereo BEV represen-
tation Rstereo.

3.4.2 IPM BEV Representation

The stereo BEV representation contains structural informa-
tion for the bird’s eye view space. Due to the refinement and
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Figure 2. SBEVNet overview. We first extract the image features given the target and reference image. Using the pair of features, we
create a disparity feature volume. We then reduce the disparity feature volume along with the height and warp it in the bird’s eye view
layout space. On a parallel branch of the network, we apply inverse perspective mapping (IPM) on the reference image and its features.
We concatenate the IPM RGB, IPM feature, and the stereo BEV features. The BEV representation is then used to estimate the semantic
map through a U-Net. Visibility mask is used to apply the supervised loss only at the locations in the BEV which are in the view of the
front camera.

reduction of the feature volume, the fine grained details are
excluded by design. To circumvent that, we need to fuse the
low level features to the stereo BEV features, while main-
taining geometric consistency.

In order to fuse the image features to the stereo BEV
features at the correct locations, we need to warp the image
features to the BEV space. We apply inverse perspective
mapping on the reference image and the features of the ref-
erence image to do that.

A point in the image IR can correspond to multiple
points in the 3D world space due to perspective projection,
but there is a single point which also intersects with the
ground plane. Let z = ax + by + c be the equation of
the ground plane in the world space. Given the input im-
age coordinates (u, v) and camera parameters f ,cx, cy , we
can find the coordinates in the bird’s eye space x′ and y′ as
follows:

x′ =
cu− ccx

acx − au− bf − cy + v
(3)

y′ =
cf

acx − au− bf − cy + v
(4)

This can be easily derived by combining the camera pro-
jection equation with the equation of the ground plane. For
many applications, the ground is either planar or can be ap-
proximated by a plane. This is also equivalent to computing
a homography H between the ground plane and the image
plane of the layout and then applying the transformation.

We can have the parameters of the plane a, b, and c pre-
determined if the placement of the camera with respect to
the ground is known, which is the case for many robotics
applications. We can also determine a, b and c by using
stereo depth and a semantic segmentation network for the
road/ground class.

Examples of IPM on the input images is shown in Fig-
ure 3. We apply the inverse perspective transform on both
the input image and the features of the input image to trans-
form them to the bird’s eye view space:

RIPM feat = IPM(FR) (5)

RIPM img = IPM(IR) (6)

They are then concatenated with the stereo BEV represen-
tation to form the combined BEV representation:

RBEV = [RIPM feat;RIPM img;Rstereo] (7)

3.4.3 IPM for cross modal distillation

There can be use-cases where we cannot do inverse per-
spective mapping during inference time, due to the unavail-
ability of the ground information. Hence, we consider the
case where IPM is only available during the training time.
We can think of the IPM features and the stereo features
as different modalities and apply cross modal distillation
[7] across them, and transfer knowledge from IPM features
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to the stereo features. Hence, we use the IPM BEV rep-
resentation as a supervisory signal for the stereo BEV fea-
tures. This forces the stereo branch of the model to implic-
itly learn the fine grained information learned by the IPM
features. Rather than concatenating the IPM BEV features
with the stereo features, we minimize the distance between
them. We call this variant of SBEVNet as SBEVNet-CMD
(SBEVNet cross modal distillation). During the training
time, the IPM BEV features and the stereo features are used
to generate the BEV semantic maps.

C IPM = U-Net(RIPM feat) (8)

Cstereo = U-Net(Rstereo) (9)

This ensures both IPM BEV features and stereo BEV fea-
tures learn meaningful information. We jointly minimise
the L1 distance between first K channels of the features.

LKT = ‖RIPM feat[: K]−Rstereo[: K]‖L1
(10)

By this, we ensure that the stereo model can learn informa-
tion that is not in the IPM features. In our experiments, we
found this to yield better results compared to the approach
of minimizing the L1 distance between all the channels of
the features. During test time, we only use the stereo fea-
tures to get the BEV layout. Our experiments show that the
stereo model with cross modal distillation performs better
than the stereo model without cross modal distillation.

3.4.4 Layout Generation

We can generate the semantic map by inputting the BEV
features to a semantic segmentation network. We pass the
concatenated stereo BEV feature map and IPM BEV feature
map to a U-Net [15] network to generate the semantic map
C.

C = U-Net(RBEV) (11)

Some areas in the layout may not be in the view of the front
camera, e.g. things behind a wall. That is why it is not a
good idea to penalize the model for the wrong prediction
for those areas. Hence, we use a visibility mask to mask the
pixel-wise loss, applying it only on the pixels which are in
the field of view. This mask is generated during the ground
truth generation process by using ray-tracing on the point
cloud to determine which are in the field of view. For a
visibility mask V , Vi is 1 if the pixel i is in the view of the
input image, and 0 otherwise. For the loss, we use a pixel-
wise categorical cross entropy loss as follows:

Lr =
∑
i∈P

Vi · CE(Ci, C
h
i ) (12)

where Ch
i is ground truth. The total loss for SBEVNet-CMD

is the sum of supervision loss from the two feature maps and
the L1 distance minimization.

Lc =
∑
i∈P

Vi · CE(C IPM
i , Ch

i ) +
∑
i∈P

Vi · CE(Cstereo
i , Ch

i ) + LKT

(13)

4. Experiments
4.1. Datasets

CARLA dataset: We use the CARLA [4] simulator to
generate a synthetic dataset, containing 4,000 and 925 train-
ing and testing data points respectively. The bounds of the
layout with respect to the camera are -19 to 19 meters in x
direction and 1 to 39 meters in the y direction.

KITTI dataset: We also evaluate SBEVNet on the
odometery subset of the KITTI [5] dataset. We use the Se-
manticKITTI [1] dataset for labeled ground truth.

4.2. Evaluation Metrics

As not all the regions of the ground truth layout are vis-
ible from the camera, we only consider pixels of the layout
which are in the field of view. For evaluating the semantic
map, we use macro averaged intersection over union (IoU)
scores for the layout pixels which are in the visibility mask.
We report the IoU scores for each semantic class separately.

4.3. Compared Methods

There are no previously reported quantitative results for
the task of stereo layout estimation in our setting. Thus,
we evaluate appropriate baselines which are prior works ex-
tended to our task.

1. Pseudo-LiDAR [20] + segmentation: Uses Pseudo-
lidar with PSMNet to generate a 3D point cloud from
the input stereo images which is used to project the
semantic segmentation of the front view to the bird’s
eye view. The PSMNet is trained separately on the
respective datasets for better performance.

2. Pseudo-LiDAR [20] + BEV U-Net: The RGB 3D
point projected in the BEV aligned with the ground
truth layout is used to train a U-Net segmentation net-
work.

3. IPM + BEV U-Net: Inverse perspective mapping is
applied to the input image to project it to the BEV
space which is used to train a U-Net segmentation net-
work.

4. MonoLayout [14]: This baseline uses MonoLayout
to generate BEV semantic map from a single image.
Rather than using OpenStreetMap data for adversarial
training, we used random samples from the training set
itself.
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Figure 3. Illustration of mapping the disparity space to bird’s eye view space and inverse perspective mapping. (a) The operation maps
different disparities and x to the BEV space in order to match the ground truth. We also show an example layout warped to the disparity
space. (b) The inverse perspective mapping operation maps pixels of the reference image to the BEV space in order to match the ground
truth. The same mapping can be applied to the image features as well.

Method mIoU Road Vegetation Cars Sidewalk Building
Pseudo-LiDAR + segmentation 25.63 37.64 16.40 35.15 25.44 13.50
Pseudo-LiDAR + BEV U-Net 36.61 63.55 31.87 45.64 29.97 12.01

IPM + BEV U-Net 32.30 66.36 15.24 41.37 32.77 5.78
MonoLayout 22.16 52.88 9.00 16.36 23.17 9.41

MonoLayout + depth 21.85 52.94 9.95 14.07 23.02 9.31
MonoOccupancy + depth 29.49 67.96 16.56 7.66 36.35 18.91

SBEVNet only stereo 36.10 64.74 31.85 39.76 30.01 14.14
SBEVNet stereo + RGB IPM 39.77 65.01 33.20 47.88 33.24 19.53

SBEVNet stereo + features IPM 42.29 71.29 29.79 51.97 38.46 19.95
SBEVNet-CMD 40.10 69.07 32.71 45.45 35.16 18.08

SBEVNet 44.36 72.82 32.07 55.32 40.69 20.78
SBEVNet Ensemble 47.92 75.36 35.33 60.17 44.25 24.47

Table 1. Quantitative results of semantic layout estimation on the CARLA dataset.

5. MonoLayout [14] + depth: The input RGB image
concatenated with the depth is used as an input to the
MonoLayout Model.

6. MonoOccupancy [12] + depth: The input RGB im-
age concatenated with the depth is used as an input to
the MonoOccupancy Model.

We also evaluate some variations of our model to per-
form ablation studies. In SBEVNet only stereo we exclude
the IPM features and only use features derived from the fea-
ture volume. To gauge the importance of IPM on RGB im-
ages and features, we also try applying IPM only on RGB
images (SBEVNet stereo + RGB IPM) and IPM only on
the features of the input image (SBEVNet stereo + features
IPM). We also evaluate the cross modal distillation model

SBEVNet-CMD. Finally, we evaluate our complete model
(SBEVNet ) where we use stereo features and IPM on both
RGB image and its features. We also evaluate SBEVNet
Ensemble where we take an ensemble of SBEVNet with the
same architecture but different initialization seeds.

4.4. Implementation Details

We implemented SBEVNet using Pytorch. We use Adam
optimizer with the initial learning rate of 0.001 and betas
(0.9, 0.999) for training. We use a batch-size of 3 on a Titan
X Pascal GPU. We use the same base network which is used
in the basic model of PSMNet. The input image size for the
CARLA dataset is 512×288 and the input image size for the
KITTI dataset is 640×256. We report the average scores ac-
cording to 8 runs to account for the stochasticity due to ran-
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Figure 4. Qualitative results on the test set of the CARLA and the KITTI dataset. The major mistakes in the predictions are annotated by
a blue rectangle.

Method mIoU Road Sidewalk Cars Building Vegetation
Pseudo-LiDAR + segmentation 18.69 35.51 14.56 13.50 12.64 17.26
Pseudo-LiDAR + BEV U-Net 28.97 61.83 21.36 5.55 12.74 43.38

IPM + BEV U-Net 34.93 68.40 26.65 28.49 4.53 46.57
MonoLayout 25.19 64.36 20.53 2.43 2.59 36.05

MonoLayout + depth 21.48 55.80 16.19 1.91 3.03 30.46
MonoOccupancy + depth 29.16 70.52 22.17 7.11 5.25 40.77

SBEVNet only stereo 50.01 78.41 40.16 41.96 30.45 59.05
SBEVNet stereo + RGB IPM 49.56 78.37 39.83 42.47 28.34 58.80

SBEVNet stereo + features IPM 50.60 80.16 41.08 43.64 29.19 58.92
SBEVNet-CMD 50.73 80.59 41.67 43.16 29.13 59.37

SBEVNet 51.36 80.23 41.86 42.81 31.35 59.43
SBEVNet Ensemble 53.85 82.22 45.70 44.97 34.54 61.83

Table 2. Quantitative results of semantic layout estimation on the KITTI dataset.

dom initialization and other non-deterministic operations in
the network.

4.5. Experimental results

We report the IoU scores of all the methods on the
CARLA and KITTI [5] dataset in Table 1 and Table 2
respectively. As we can see from the tables, SBEVNet
achieves superior performance on both the datasets. We

also observe the increase in performance if we use both
stereo information and inverse perspective mapping. IPM
yields a greater increase in performance in the CARLA [4]
dataset because the ground is perfectly flat. If we use only
RGB IPM along with stereo, the results are slightly worse
on the KITTI dataset because the ground is not perfectly
planar. We see that degradation does not persist if we also
use IPM on the image features. For the KITTI dataset, we
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see a sharp improvement over pseudo-LiDAR approaches
because of inaccurate depth estimation. On the other hand,
our model does not depend on explicit depth data/model.
The results of MonoLayout [14] and MonoOccupancy [12]
are inferior due to lack of any camera geometry priors in the
network. We also show the qualitative results on the test set
of CARLA [4] and KITTI [5] dataset in Figure 4. We see
that in certain regions SBEVNet gives outputs closer to the
ground truth. For example, Psuedo-lidar fails to segment
cars in the KITTI dataset. We also observe a drop in quality
in the estimated layout as we move further from the camera.

4.5.1 Ablation Study

IPM on RGB image For the CARLA dataset, we observe
an increase of 3.67 in the mIoU score, on concatenating
IPM RGB with the stereo features. We observe an increase
in IoU scores for all the classes, with the biggest increase
of 8.12 in the cars class. For the KITTI dataset, there is a
small decrease of 0.45 in the mIoU score. This is because,
the ground is not perfectly planar, hence the IPM RGB im-
ages do not exactly align with the ground truth layout.

IPM on image features If we apply IPM on the fea-
tures of the input image and concatenate it with the features
from the stereo branch, we see an improvement in both the
datasets. The improvements in mIoU scores are 6.19 and
0.59 for the CARLA and KITTI dataset. The improvement
is higher compared to the RGB IPM because image features
contain higher level information which is transformed to the
BEV space.

IPM on both RGB image and image features We see
the greatest improvement if we apply IPM on both the RBG
image and the features of the RGB image. The improve-
ments in mIoU scores are 8.26 and 1.35 for the CARLA
and KITTI dataset respectively. This is because the model is
able to exploit the different information present in RIPM feat
and Rstereo.

Cross modal distillation The performance of SBEVNet-
CDM is in between of stereo only SBEVNet and full
SBEVNet. We see an improvement of 4.00 and 0.72 in the
mIoU scores on the CARLA and KITTI dataset, if we train
the stereo model using cross modal distillation via IPM fea-
tures. During inference, the architecture of SBEVNet-CMD
is the same as the stereo only SBEVNet. This shows that
CMD is able to transfer most of the IPM knowledge to the
stereo branch.

Minimizing distance between first K features We also
evaluate the approach, where we try minimizing the L1
distance between all the channels of the IPM features and
stereo features. We observe mIoU scores of 32.27 and 50.03
for the CARLA and KITTI dataset respectively. This is
worse than the mIoU scores achieved by minimizing the
distance between first K channels. This is because, if we

enforce all stereo branch channels to be the same as IPM
branch channel, the stereo branch is unable to learn infor-
mation that is not present in the IPM features.

4.6. Discussions

4.6.1 Distance from camera

We wish to quantify how our system performs as we move
away from the camera. Hence, we see the IoU scores for
the pixels in the BEV layout which are more than a given
distance from the camera and for the pixels which are less
than a given distance from the camera. For both the KITTI
and the CARLA dataset, we observe that there is a drop
in performance as the distance from the camera increases.
We also observe that SBEVNet outperforms the stereo only
SBEVNet at all distances from the camera.

4.6.2 3D feature volume analysis

One claim of our approach is that our model learns 3D in-
formation without any explicit depth/disparity supervision.
To validate this claim, we use the learned 3D feature volume
to perform disparity estimation. We freeze all the weights
and add a small 3D convolution layer to perform disparity
regression on the learned feature volume. We also observe
that the feature volume which is trained with cross modal
distillation via IPM performs better at the task of dispar-
ity estimation. For the CARLA dataset, we find that the
SBEVNet only stereo model has a 3-pixel error of 7.92 and
with cross model distillation the 3-pixel error goes down to
6.84.

4.6.3 Ensemble

We observe some variance in the performance of the models
on training with different random seeds. For SBEVNet we
observe a standard deviation of 2.16 and 2.46 in the mIoU
scores for the KITTI and CARLA dataset respectively. Due
to the diversity in outputs of the individual models ([27]),
we see an improvement in the performance, if we take an
ensemble of individual models. We observe an absolute
improvement of 2.49 and 3.56 in the mIoU scores for the
KITTI and CARLA dataset respectively.

5. Conclusion
In this paper we proposed SBEVNet, an end-to-end net-

work to estimate the bird’s eye view layout using a pair of
stereo images. We observe improvement in the IoU scores
compared with approaches that are not end-to-end or do not
use geometry. We also showed that combining inverse per-
spective mapping with the projected disparity feature vol-
ume gives better performance.
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