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Abstract

The analysis of deforming 3D surface meshes is accel-
erated by autoencoders since the low-dimensional embed-
dings can be used to visualize underlying dynamics. But,
state-of-the-art mesh convolutional autoencoders require a
fixed connectivity of all input meshes handled by the au-
toencoder. This is due to either the use of spectral convolu-
tional layers or mesh dependent pooling operations. There-
fore, the types of datasets that one can study are limited
and the learned knowledge cannot be transferred to other
datasets that exhibit similar behavior. To address this, we
transform the discretization of the surfaces to semi-regular
meshes that have a locally regular connectivity and whose
meshing is hierarchical. This allows us to apply the same
spatial convolutional filters to the local neighborhoods and
to define a pooling operator that can be applied to every
semi-regular mesh. We apply the same mesh autoencoder
to different datasets and our reconstruction error is more
than 50% lower than the error from state-of-the-art models,
which have to be trained for every mesh separately. Ad-
ditionally, we visualize the underlying dynamics of unseen
mesh sequences with an autoencoder trained on different
classes of meshes.

1. Introduction
We study three-dimensional data that is discretized by

a triangular surface mesh. In particular, we study the de-
formation of surfaces, which discretize human bodies, ani-
mals, or work pieces from computer aided engineering. Sur-
face deformation is locally described by the same physi-
cal rules, which motivates the application of convolution to
learn translation-invariant localized features.

Convolutional neural networks (CNN) are successful in
the analysis and generation of data, especially images, be-
cause of their efficient calculation of translation-invariant
localized features by sliding filters over the images [26].
Regular pixel grids describe the 2D images. This global
grid structure, determined by the two axes of the two-

Figure 1. MNIST dataset sample [25] with a visualization of the
underlying grid defined by the pixels aligned along the two axes.

dimensional space (see Figure 1), is essential for CNNs, be-
cause it implies properties such as a common system of co-
ordinates, shift invariance, and a fixed neighborhood struc-
ture [7]. These characteristics allow for an efficient applica-
tion of the local kernels, the sliding of the kernels along the
two axes, and a constant definition of the pooling operator.

While two-dimensional surfaces embedded in R3 are lo-
cally homeomorphic to the two-dimensional space, the sur-
faces are of non-Euclidean nature. Therefore, they gener-
ally lack the global grid structure, which is so essential for
the efficient application of CNNs. Furthermore, the meshes
are usually heterogeneous in the number of vertices, faces,
their connectivity, and size, which hinders the direct appli-
cation of 2D-convolution.

In our novel approach, we calculate an alternative dis-
crete approximation of the surface data based on semi-
regular meshes. Semi-regular meshes have regular regional
patches, which means that every vertex inside the patch has
exactly six neighbors. Also semi-regular meshes have by
definition a multi-scale structure that allows us to look at
the meshes in different resolutions [34].

To this semi-regular approximation of our data, we ap-
ply spatial convolution, which follows the idea of 2D-
convolution and defines kernels on local neighborhoods of
the vertices [7]. Since the neighborhoods of most of the
vertices of the semi-regular mesh are regular, we use convo-
lutional kernels that can be straightforwardly implemented
and preserve the orientation of the neighborhood as well
as the permutation of neighbors. Additionally, the multi-
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scale structure of the semi-regular mesh allows us to define
a general pooling operation that works on all semi-regular
meshes. Since the CNNs learn local features, we feed the
regional patches separately to the network. This allows us
to apply the network to meshes of different sizes and topol-
ogy. The global context is not lost, but fed to the network
via padding.

The research objectives can be summarized as a) a
remeshing approach to preprocess surface meshes into a
representation by semi-regular meshes, which turns out to
be more beneficial for CNNs, b) the definition of an au-
toencoder that handles semi-regular meshes of different size
and topology, and by this means c) creating a possibility to
transfer and apply trained models to different classes of sur-
face data1.

Further on in section 2, we discuss related work. In sec-
tion 3, we present some theoretical background of surface
meshes and relevant characteristics for CNNs, followed by
the definition of our convolution and pooling for semi-
regular meshes in section 4. In section 5, we introduce our
mesh convolutional autoencoder for semi-regular meshes.
Results for different datasets are presented in section 6.

2. Related Work

Semi-Regular Meshes

To the best of our knowledge, triangular semi-regular
meshes have not been used in the context of convolutional
neural networks for graph data of different shape. Their
piecewise regular structure has been in focus for multi-
resolution analysis, because the iterative refinement allows
analysis at different levels of resolution, which is espe-
cially interesting to adapt wavelets to surfaces and geom-
etry compression [22, 28, 34]. They are generally obtained
by remeshing of irregular meshes. In [21, 34] an overview
of semi-regular triangle remeshing algorithms is given.

The authors of [2] train a neural network on a quadri-
lateral surface mesh that is mapped to a box. The box’s
sides coincide with a general grid-based mesh as for im-
ages in 2D allowing the application of 2D convolution. Al-
though called semi-regular quadrilateral meshes by the au-
thors, their definition of semi-regular is different than ours,
since the regular sides of the boxes are not created by it-
erative subdivision, which allows us to define the pooling
operator. This remeshing approach can only be applied to
shapes without boundaries, that can be mapped to a box.
In [20] a semi-regular mesh structure is used for efficient
pooling and unpooling, but the network is not independent
of the mesh size and limited to meshes without boundaries.

1Source code available at: https://github.com/
Fraunhofer-SCAI/conv_sr_mesh_autoencoder

Convolutional Networks for Graphs and Surfaces

Generally, there are spectral and spatial convolutional
networks for graphs, of which [7, 45] give an overview.

At first, [9] exploited the connection of the graph Lapla-
cian and the Fourier basis and they project vertex features
to the Laplacian eigenvector basis. Instead of explicitly
computing Laplacian eigenvectors, the authors of [12] use
truncated Chebyshev polynomials and in [24] they use only
first-order Chebyshev polynomials. These spectral methods
require a fixed connectivity of the graph. If not, the basis
functions change and the features that the network learns
are not guaranteed to be meaningful.

Spatial methods for convolution on graphs aggregate fea-
tures from the neighbors of the vertices. At first, this idea
was presented under the name Neural Network for Graphs
[30]. Spatial methods allow generalization across differ-
ent domains and because of their flexibility and efficiency
these methods are very popular [45]. Since surface meshes
lack a general underlying grid, the orientation of kernels has
to be defined with respect to their neighborhood. To avoid
this difficulty, kernels often calculate rotation invariant fea-
tures, which are sometimes referred to as orientation invari-
ant. The authors of [29, 31] calculate rotation invariant fea-
tures by averaging the result of different anisotropic ker-
nels that are sensitive to orientation. In [5] the kernels are
aligned with the principal curvature direction and [10, 11]
introduce anisotropic gauge equivariant kernels that encode
orientation information in the features, but are computation-
ally expensive. The authors of [10] demonstrate that for
special meshes (in their case the icosahedron having areas
with regular connectivity) the anisotropic gauge equivariant
convolution can be implemented efficiently.

The work of [14] sums up many spatial approaches by
their Message Passing Neural Network. It interprets graph
convolutions as a message passing process, in which infor-
mation is passed from one node to another along the edges.
We want to point out that usually the topology and the num-
ber of vertices is fixed, because the pooling [6, 36, 46] or
the spectral convolutional layers require a fixed connectiv-
ity [12, 24, 36].

It is possible to consider the vertices of meshes describ-
ing surfaces as point clouds, which would allow the appli-
cation of convolutional architectures for 3D point clouds as
[38, 42, 44] handling pointwise inputs that consider neigh-
borhoods via kernels. Albeit being the more flexible repre-
sentation, it lacks an underlying structure that describe the
surface, whose deformation we want to analyze [6]. Also,
the mesh provides native connectivity information [18].

Mesh Convolutional Autoencoders

The authors of [41] present a variational autoencoder for
deforming 3D meshes that does not handle meshes but fea-
ture representations of the deforming meshes.
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In [36] a first convolutional mesh autoencoder (CoMA)
has been introduced that handles surface meshes directly.
The authors introduced mesh downsampling and mesh up-
sampling layers, which have a similar effect as pooling and
unpooling. They are combined with spectral convolutional
filters using truncated Chebyshev polynomials as in [12].
The Neural 3D Morphable Models (Neural3DMM) network
presented in [6] improves those results using the same down
and upsampling layers in combination with spiral convolu-
tional layers that break the permutation invariance. The au-
thors of [46] apply the CoMA [36] to different datasets and
improve the down and upsampling layers slightly.

The presented mesh convolutional autoencoders work
only for meshes of the same size and connectivity, since
the downsampling and upsampling layers as well as spec-
tral convolutional layers depend on the adjacency matrix.

The authors of [18] present the MeshCNN architecture
that allows an implementation of an encoder and decoder.
The edge collapsing based pooling is feature dependent and
therefore the low-dimensional mesh embeddings of the de-
forming meshes can be of different significance.

3. Surface Meshes and Their Characteristics
Surfaces in R3 are generally discretized by triangular

polygonal surface meshes.

Definition 1 (Triangular Polygonal Mesh) A triangular
polygonal mesh M is defined by a set of vertices V ⊂ Rd

and a set of triangular faces F ⊂ V×V×V , which describe
the shape and point to the vertices they use. The edges
E = {{v1, v2} ∈ V × V |∃f ∈ F s.t. v1 ∈ f and v2 ∈ f}
are undirected, i.e. if (v, w) ∈ E, (w, v) is also in E.

If the mesh is a surface or manifold mesh, it holds that
every edge e ∈ E is adjacent to at most two faces in F . A
boundary edge e ∈ E is adjacent to exactly one face in F .
The vertices v ∈ V of a mesh M store information which
is defined by a function f : V → Rm. For each vertex
v ∈ V , we define the r-ring neighborhood Nr(v) as all the
vertices w ∈ V that are connected to v by at most r edges in
E. The degree of a vertex v ∈ V is the size of its one-ring
neighborhood N1(v).

We refer to a triangular surface mesh as regular, if the de-
gree of all vertices in V is 6 [34]. Note, that a regular mesh
has limited representation power and not every mesh can be
remeshed into a regular one because they cannot approxi-
mate all types of curvature (see hedgehog theorem [8]).

Images represented in pixels can also be interpreted as
two-dimensional surface meshes of rectangular shape in R2

[7]. Every pixel is a vertex, the feature function f outputs
the pixels’ color values and every vertex is connected by
an edge to the eight neighboring pixels (horizontal, vertical,
and diagonal).

2D Image Surface Semi-Regular
Mesh Surface Mesh

data information saved on vertices
grid global locally locally

structure structure Euclidean Euclidean
connectivity fixed - semi-regular
distance to fixed - -neighbors

size of
instances similar

highly
different

highly different
with similar
local patches

Table 1. Characteristics of images and surface meshes in R3 rele-
vant for CNNs

Convolution for Images and Surface Meshes

Although surface meshes in R3 and images in R2 both fulfill
the definition of polygonal meshes, the overall structure and
regularity of the data is highly different, which complicates
the application of convolution to surface meshes in R3 [7].

CNNs in 2D [16, 26] apply the same local filters to local
neighborhoods of selected pixels of the image. Because of
the global grid structure of the image, the filters can be hori-
zontally and vertically shifted. The filters can be of constant
shape and the networks apply them to every local neigh-
borhood. As [10] pointed out, the shifting of the filters is
not well-defined for surface meshes because of the lack of
a global grid. Also, the local neighborhoods of a surface
mesh can have any size and arrangement as long as they are
locally Euclidean.

For images, the size of each instance is usually constant.
Since the samples are of rectangular shape, they can easily
be resized or padded into the desired size. The constant size
allows one neural network to handle all the data and allows
the use of existing networks as pretrained prototypes for dif-
ferent applications. However, the size of surface meshes
varies strongly in general. Table 1 gives on overview of
the mentioned mesh characteristics of images and surface
meshes. The authors of [7] summarize that both the similar
structure for local neighborhoods and the underlying global
grid are reasons why CNNs work so efficiently for images.

As mentioned, one cannot enforce a regular mesh dis-
cretization for every surface in R3, which would lead to
an underlying global grid [8]. We aim to enforce a similar
structure in the local neighborhoods by choosing a different
approximation of the surface. In this way, an efficient appli-
cation of convolution on surface meshes becomes possible.
Note, that remeshing the polygonal mesh only changes the
representation of the objects. The considered surface em-
bedded in R3 is the same, but now represented by a different
discrete approximation.
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Semi-Regular Meshes

Semi-regular meshes are a flexible representation of sur-
faces in R3, that have a regular local structure and allow
irregularities at selected vertices, whose positions we can
control [34]. The overview in Table 1 shows that the mesh
characteristics of semi-regular meshes are closer to the ones
of 2D images than compared to general surface meshes.

We follow the definition of semi-regular meshes from
[34], which gives one condition on the specific structure:
iteratively merging four triangular faces of a semi-regular
mesh into one leads to a low-resolution mesh. This means
that all vertices are regular (i.e. have six neighbors) be-
sides the vertices of the low-resolution mesh (see Figure
2). Therefore, a semi-regular mesh is obtained by regular
subdivision of a low resolution mesh that can be irregular.
We refer to the faces of the low-resolution mesh that are
iteratively subdivided as regional patches.

Note that the iterative subdivision of the low-resolution
mesh automatically defines a multi-scale structure. This
is why semi-regular meshes are well suited for multi-
resolution analysis [27, 34]. Later on, this structure allows
us to define a local pooling operator on the semi-regular
meshes.

Remeshing

At first, a coarse approximation of the input mesh is built.
To coarsen the surface meshes we employ a slightly adapted
Garland-Heckbert-algorithm for surface simplification us-
ing quadric error metrics [13]. Afterwards, every face of
the coarse base mesh is iteratively subdivided into four new
faces for a given number of times. All newly created ver-
tices have six neighbors. When the desired level of refine-
ment is reached, the resulting semi-regular mesh geome-
try has to be fit to the original irregular mesh in order to
describe the surface well. If for one deforming shape the
mesh topology is constant over time, it is enough to remesh
a template mesh. The semi-regular remeshing result can be
transferred to meshes of the same topology.

We provide more details to the remeshing algorithm in
the supplementary material.

4. Convolution and Pooling for Semi-Regular
Meshes

Convolutional kernels consider local features in the
neighborhood of the vertices. The size of the considered
neighborhood Nr(v) is given by the kernel size r. In a con-
volutional layer, a set of kernels is applied to every vertex of
the input. Generally, the number of vertices and the mesh’s
connectivity have to be constant. Only the vertex features
change.

Since the convolutional networks learn local features, we
propose to input every regional patch of the semi-regular

mesh separately. This allows us to handle meshes of dif-
ferent size. To the best of our knowledge, we thereby
present the first mesh convolutional autoencoder that han-
dles meshes of different size. In order to not lose the embed-
ding of the regional patch in the whole mesh, we consider
the environment of the patches via padding.

Hexagonal Convolution

The regional patches are of the same regular structure. All
vertices have exactly six neighbors, only the three corners
can be irregular, but we project their neighborhood to a reg-
ular one. Additionally, the patches are intrinsically two-
dimensional and represent a surface. Therefore, the appli-
cation of a 2D-convolutional kernel is possible. Since the
regional patches are represented in hexagonal grids, the ap-
plication of hexagonal 2D-convolutional kernels has shown
to give better results [19, 39]. Similarly to [2], the consis-
tent degree of the vertices results in better runtimes since
similar calculations at these vertices can be moved to GPU.

On the local regular structure, the translation of the
convolutional kernels is well-defined. Therefore the ker-
nels preserve the orientation of the neighborhood and are
anisotropic. The padded patch based approach assures
gauge equivariance of the network. The authors of [10, 11]
show how anisotropic kernels that preserve orientation sig-
nificantly improve the expressivity of models.

Note that the network does not correct differences in the
distances to neighbors or angles between neighbors. The
edge lengths of the semi-regular meshes are stable, because
of the edge length regularization during the remeshing.

Pooling

The piecewise regular form of the semi-regular meshes has
a multi-scale structure, which is created by the iterative sub-
division of the faces of the low-resolution mesh. We take
advantage of this structure that all semi-regular meshes have
in common, and define an average pooling operator, that
undoes the subdivision of one into four faces. Herewith,
we reduce the dimensions of the features and the number
of network parameters, as pooling layers for 2D convolu-
tion do as well [16]. Since we apply average pooling, the
vertices that are kept during the pooling take the average of
their own value and the values of the neighboring vertices
in the one-ring neighborhood that are removed.

To increase the resolution of the mesh patches in the
decoder, the unpooling operator recreates the multi-scale
structure of the semi-regular mesh. Every face is subdi-
vided into four faces. The newly created vertices are as-
signed the average value of neighboring vertices from the
lower-resolution mesh patch. Figure 3 illustrates how the
pooling and unpooling layers undo the subdivision of the
regular patch or increase its resolution respectively.

888



⇒ ⇒

Irregular surface mesh Low resolution base mesh Semi-regular mesh

Figure 2. Remeshing of the horse template mesh. After coarsening the original mesh to a low resolution base mesh, the faces are subdivided
three times. In the semi-regular mesh the faces adjacent to an irregular vertex are highlighted in red.
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Input patch Padded Input patch Pooling Embed-
ding

Unpooling Output Patch

Figure 3. The pooling layers change the resolution of the semi-regular meshes. We input the padded regular patch and apply pooling twice,
which undoes the subdivision of the faces. In the decoder the unpooling increases the resolution again by subdividing the faces.

Padding

The padding is crucial for the network to consider the re-
gional patches in a larger context. Since the network han-
dles the patches separately, we consider the features of the
neighboring patches in the padding.

We apply a padding of the size of the first layer’s kernel
size. The padding considers the vertices of the neighbor-
ing patches. If the number of neighbors is lower than six,
we interpolate the values for empty vertices. If the num-
ber is higher than six, we take the closest vertices in both
cyclic rotations. If the vertices are boundary vertices of the
whole mesh, we decide to pad the patch with the boundary
vertices’ features. Figure 3 shows a padded regular patch.

5. Autoencoder for Semi-Regular Meshes of
Different Size

The network handles the regional patches separately,
which allows us to handle meshes of different sizes. The
information of the neighboring patches is not lost but in-
cluded in the padding.

The mesh autoencoder consists of an encoder and a de-
coder. The encoder consists of 2 hexagonal convolutional
layers (implementation of [39]) of kernel sizes 2 and 1.
Each of the convolutions is followed by a biased ReLU [15].
The average pooling layers (see section 4) are interleaved

between convolutional layers. The encoder transforms ev-
ery padded patch, which corresponds to one face of the low-
resolution mesh, from R111×3 to an 8-dimensional latent
vector using a fully connected layer at the end. Following
the decoder’s fully connected layer, 2 hexagonal convolu-
tional layers (followed by a biased ReLU) with interleaved
average unpooling layers reconstruct the patches. Each un-
pooling layer subdivides every face into 4 faces, following
the subdivision process of the remeshing. The last layer is
a hexagonal convolutional layer without activation function
that reduces the number of features to three dimensions. A
detailed structure of the network is supplied as additional
material together with the distribution of the 18184 train-
able weights.

Note that we are able to handle non-manifold edges of
the coarse base mesh because the patches, whose interi-
ors by construction have only manifold-edges, are fed sepa-
rately. Figure 3 illustrates the patch sizes inside the autoen-
coder.

6. Experiments

We test our convolutional autoencoder for semi-regular
meshes on four different datasets and compare the achieved
reconstruction errors to state-of-the-art models.
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Datasets

GALLOP: The authors of [40] present a dataset contain-
ing triangular meshes representing a motion sequence from
a galloping horse, elephant, and camel. Each sequence has
48 timesteps. The three animals move in a similar way but
the meshes that represent the surfaces of the three animals
are highly different in connectivity and in the number of ver-
tices (horse: 8,431, camel: 21,887, elephant: 42,321). This
is why the authors of [46] trained three different mesh au-
toencoders as presented in [36].The surface approximations
are remeshed to semi-regular meshes for each animal. The
coarse base meshes of approximately 110 faces are subdi-
vided 3 times. The new meshes are still of different connec-
tivity, but all are made up of regional regular patches. The
resulting numbers of vertices are listed in Table 2.

We normalize the 3D coordinates to [−1, 1] relative to
the coordinates’ ratio and translate every patch to zero
mean. For the training of CoMA [36] and Neural3DMM
[6] every vertex was normalized to zero mean and a standard
deviation of one. The patch based approach does not allow a
vertex wise normalization if we want to learn and transform
the local deformation. This is why for the baseline train-
ing of the CoMA and Neural3DMM on the remeshed data,
we normalize the whole mesh to zero mean and standard
deviation of one.

We use the first 75% of the galloping sequence of the
horse and camel for training of the network. The architec-
ture is tested on the remaining 25% and the whole sequence
of the elephant, which is never seen during the training.

FAUST: We select 100 meshes from the FAUST dataset
[3], which are in correspondence to each other, to be able
to compare to the other architectures. The dataset consists
of 10 different bodies in 10 different poses. The irregular
surface meshes have 6890 vertices. We conduct two differ-
ent experiments: at first we consider known poses of two
unseen bodies in the testing set. Then we consider two un-
known poses of all bodies in the testing set. In both cases,
20% of the data is included in the testing set.

The meshes are remeshed to a semi-regular mesh repre-
sentation. The data and the mesh patches are normalized in
the same way as for the GALLOP dataset.

TRUCK and YARIS: In a car crash simulation the car
components, which are generally represented by surface
meshes, often deform in different patterns. Every compo-
nent is discretized by a surface mesh, while the local defor-
mation is described by the same physical rules.

The dataset TRUCK consists of 32 completed frontal
crash simulations of a Chevrolet C2500 pick-up truck (from
NCAC [32]), using the same truck, but with different mate-
rial characteristics, which is a similar setup to [4]. For this
setup the authors of [17] detect patterns in the deformation
of the components using a general representation by ori-
ented bounding boxes, which allowed them to train one au-

plots_paper/hexconv1_ch5.eps plots_paper/hexconv1_ch4.eps
plots_paper/hexconv2_ch5.eps plots_paper/hexconv2_ch4.eps

Figure 4. Anisotropic filters from the first and second convolu-
tional layers of the encoder trained on the GALLOP dataset.

toencoder for the whole car model. For our analysis, we se-
lect 6 components (the front and side beams), whose meshes
are remeshed to semi-regular meshes, and 30 equally dis-
tributed time steps. The model is trained on 30 simulations
and 70% of the timesteps. The trained architecture is tested
on 2 complete simulations and on the remaining timesteps
for the other 30 simulations.

To study the transfer learning capacities of our architec-
ture, we test the architecture that is trained on the TRUCK
dataset on a different dataset, which also contains deform-
ing components from a different car crash simulation. The
YARIS dataset consists of 10 completed frontal crash simu-
lations of a detailed model of the Toyota Yaris (from NCAC
[32]) with different material characteristics. For our analy-
sis, we select 10 components (the front and side beams plus
the crashbox), whose meshes are remeshed to semi-regular
meshes, and 26 equally distributed time steps.

We normalize the meshes that discretize car components
to zero mean and range [−1, 1] relative to the coordinates’
ratio. Every patch is translated to zero mean.

Training Details

We train the network (implemented in Pytorch [33]) with
the adaptive learning rate optimization algorithm [23] using
a learning rate of 0.001. For the GALLOP and the FAUST
dataset we train for 500 epochs using a batch size of 100.
For the TRUCK data we chose 250 epochs and a batch size
of 50, since the variation inside the dataset is higher. We
minimize the mean squared error between original and re-
constructed regional patches of the surface mesh without
considering the padding. To augment the data in the case of
the GALLOP and the FAUST dataset we rotate the regional
patches by 0◦, 120◦ and 240◦.

Figure 4 shows trained hexagonal anisotropic kernels,
which implies sensitivity to orientation.

Reconstructions of the Meshes

In Table 2 we compare our hexagonal mesh autoencoder
to the CoMA [36] and the Neural3DMM [6] network for the
GALLOP and FAUST dataset in terms of the mean squared
errors of reconstructed unseen shapes, whose 3D coordi-
nates lie in range [−1, 1]. Albeit training the autoencoder
for two different animal meshes of the GALLOP dataset,
our network reduces the reconstruction error of unseen data
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Original Mesh CoMA [36] Neural3DMM [6] Our Reconstruction

Camel
t = 39

time 39 part camel true

time 39 part camel predicted time 39 part camel predicted time 39 part camel predicted

FAUST
unknown
pose

pose 9 body faust1 true

time 19 part faust4 predicted
predicted: pose 9 body faust1 faust_dim01

pose 9 body faust1 predicted

0.00 0.005 >0.01

Figure 5. Reconstructed GALLOP and FAUST test samples by CoMA [36], Neural3DMM [6], and our network. The mean squared error
of the reconstructed faces is highlighted. More reconstruction examples are given in the supplementary material.

Mesh Class # Vertices CoMA [36] per mesh Neural3DMM [6] per mesh Ours
FAUST 3501

known poses 0.0033 + 0.0058 0.00190 + 0.0037 0.00032 +0.0007
unknown poses 0.1963 + 0.3253 0.04233 + 0.0707 0.00054 + 00011

Horse 3601 0.00044 + 0.0015 0.00072 + 0.0023 0.00020 + 0.0003
Camel 3467 0.00051 + 0.0018 0.00186 + 0.0116 0.00020 + 0.0003
Elephant 3781 0.00088 + 0.0055 0.00321 + 0.0267 0.00081 + 0.0160 †

0.00155 + 0.0163∗

Table 2. Mean squared errors of reconstructed unseen meshes and their standard deviations for two different training runs. We train one
autoencoder for all three animals in the GALLOP dataset and one autoencoder for each experiment on the FAUST dataset.
∗: the elephant has not been seen by the network during training. †: include elephant in training set.

Mesh Class CoMA [36] Neural3DMM [6] Ours
FAUST 26795 276275 18184
Horse 27339 280499
Camel 26795 292659 18184
Elephant 27339 296883

Table 3. Comparison of number of parameters. Our network re-
quires at least 30% fewer parameters.

by more than 50%, if the animal is presented to the autoen-
coder during the training. We are also able to reconstruct
a galloping sequence of an unseen elephant, although the
reconstruction error is higher than with a baseline network
trained only for this animal. If we include the elephant in
the training set, the reconstruction errors are slightly lower
compared to CoMA. Especially the reconstruction of the
legs is superior with our method in comparison to CoMA
and Neural3DMM, as Figure 5 illustrates. Note that the
mesh reconstruction is smooth at the patches’ boundaries.
This indicates that the padding enforces the incorporation
of information from the neighboring patches.

Our network reconstructs known and unknown poses of

Dataset Train MSE Test MSE Eucl. E.
TRUCK 0.0026 + 0.004 0.0027 + 0.004 5.49 | 3.76
YARIS – 0.0147 + 0.023 2.23 | 1.92

Table 4. Mean squared errors of reconstructed unseen meshes and
their standard deviations for two different training runs on the
TRUCK and YARIS dataset. Additionally, the average Euclidean
vertex wise error and its median (in cm) are given.

FAUST with a more than 80% lower error, see Table 2
and Figure 5. Limbs are reconstructed inaccurately by the
CoMA and Neural3DMM architectures. Especially if the
pose is unknown and not similar to training poses, their re-
construction fails.

In all cases, our architecture requires fewer parameters
than the CoMA and Neural3DMM networks (Table 3).

Since the TRUCK and YARIS datasets contain 16 dif-
ferent meshes, we would have to train the baseline archi-
tectures 16 times. To validate the reconstruction results, we
here calculate the error in cm and have a closer look at the
embeddings. In Table 4 we present the mean squared er-
rors and average Euclidean vertex wise error and median
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Original Mesh Our Method’s
Reconstruction

time 24 part part_000 true time 24 part part_000 predicted

time 24 part part_000 true time 24 part part_000 predicted

0 cm 4.5 cm 9 cm

Figure 6. Reconstructed left front beam from the TRUCK (length
of 150 cm) at time t = 24 (test sample) from two different crash
simulations. The average Euclidean distance (in cm) of the faces
is highlighted. In the majority of faces the error is below 4.5 cm
and only in highly deformed areas higher.

for the TRUCK dataset, for which the autoencoder has been
trained, and for the YARIS dataset that has not been pre-
sented to the network during training. The TRUCK com-
ponents measure between 135 and 370 cm in length, the
YARIS components between 21 and 91 cm. If we put the
error in relation to the part length, the average Euclidean er-
ror on the unseen YARIS dataset is less than 3 times higher
in comparison to the testing error on the TRUCK, for which
selected reconstruction results are presented in Figure 6.

Low-dimensional Embedding

For the three different animals from the GALLOP
dataset we can visualize the low-dimensional embeddings
of the galloping sequences of the three animals. We con-
catenate the patch wise embeddings for each timestep and
project the resulting vectors to the two-dimensional space
using Principal Component Analysis (PCA) [35]. The time
dependent embeddings for all three animals, whether in-
cluded in the training or only in the testing set, exhibit a
periodic galloping sequence in the two-dimensional space,
as seen in Figure 7 for the elephant’s embedding. The em-
beddings of the cyclic sequences are similar to the ones
from [46], who trained one autoencoder for each animal and
showed that the direct application of PCA or t-SNE cannot
reveal the intrinsic information of the data.

For each car component we create a 2D-visualization of
the low-dimensional representation using t-SNE [43] to de-
tect patterns in the deformation, that separates the simula-
tions into clusters. This speeds up the analysis of car crash
simulations, since relations between model parameters and
the deformation behavior are discovered faster [4, 17]. For
the TRUCK we observe that the selected components de-
form in two different branches for the 32 simulations (see
supplementary material). This behavior manifests after ap-
proximately half of the time similar to [4, 17]. For the
YARIS, which has never been seen by the network during

Figure 7. Embedded cyclic sequence of the galloping elephant,
whose mesh has not been seen during training.

Figure 8. Embedded low-dimensional representation of the front
beam of the YARIS. For the timesteps t = 7, . . . , 26 we observe
two patterns in the deformation behavior. The mesh has not been
presented to the autoencoder during training.

training, we visualize the low-dimensional representation in
2D using t-SNE [43]. We detect a deformation pattern in the
front beam that splits up the simulation set into two clusters,
see Figure 8.

7. Conclusion
We have introduced a novel approach for the analysis

of deforming 3D surface meshes with a mesh autoencoder
for semi-regular meshes. To the best of our knowledge, the
remeshing of the triangular meshes into semi-regular ones
allows for the first time an analysis of shapes of different
size and geometry. The regular local structure makes a re-
utilization of the learned convolutional filters and an effi-
cient mesh-independent pooling operation possible.

We evaluate our network successfully on three datasets
from different domains and reconstruct the meshes in signif-
icantly better quality than the baseline mesh autoencoders.
Additionally, we apply our trained autoencoder to unseen
meshes of different shape and connectivity and successfully
detect the underlying dynamics of unseen time sequences.
In future work we plan to apply the architecture to other
tasks such as shape matching and segmentation.
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