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Abstract
Accurate classification and localization of abnormalities

in chest X-rays play an important role in clinical diagnosis
and treatment planning. Building a highly accurate pre-
dictive model for these tasks usually requires a large num-
ber of manually annotated labels and pixel regions (bound-
ing boxes) of abnormalities. However, it is expensive to
acquire such annotations, especially the bounding boxes.
Recently, contrastive learning has shown strong promise in
leveraging unlabeled natural images to produce highly gen-
eralizable and discriminative features. However, extending
its power to the medical image domain is under-explored
and highly non-trivial, since medical images are much less
amendable to data augmentations. In contrast, their prior
knowledge, as well as radiomic features, is often crucial. To
bridge this gap, we propose an end-to-end semi-supervised
knowledge-augmented contrastive learning framework, that
simultaneously performs disease classification and local-
ization tasks. The key knob of our framework is a unique
positive sampling approach tailored for the medical images,
by seamlessly integrating radiomic features as a knowledge
augmentation. Specifically, we first apply an image encoder
to classify the chest X-rays and to generate the image fea-
tures. We next leverage Grad-CAM to highlight the crucial
(abnormal) regions for chest X-rays (even when unanno-
tated), from which we extract radiomic features. The ra-
diomic features are then passed through another dedicated
encoder to act as the positive sample for the image fea-
tures generated from the same chest X-ray. In this way, our
framework constitutes a feedback loop for image and ra-
diomic features to mutually reinforce each other. Their con-
trasting yields knowledge-augmented representations that
are both robust and interpretable. Extensive experiments
on the NIH Chest X-ray dataset demonstrate that our ap-
proach outperforms existing baselines in both classification
and localization tasks.

1. Introduction

The chest X-ray is one of the most common radiological
examinations for detecting cardiothoracic and pulmonary
abnormalities. Due to the demand for accelerating chest
X-ray analysis and interpretation along with the overall
shortage of radiologists, there has been a surging inter-
est in building automated systems of chest X-ray abnor-
mality classification and localization [28]. While the class
(i.e., outcomes) labels are important, the localization anno-
tations, or the tightly-bound local regions of images that are
most indicative of the pathology, often provide richer in-
formation for clinical decision making (either automated or
human-based).

Automatic robust image analysis of chest X-rays cur-
rently faces many challenges. First, recognizing abnormal-
ities in chest X-rays often requires expert radiologists. This
process is therefore time-consuming and expensive to gen-
erate annotations for chest X-ray data, in particular the lo-
calized bounding box region labeling. Second, unlike natu-
ral images, chest X-rays have very subtle and similar image
features. The most indicative features are also very local-
ized. Therefore, chest X-rays are sensitive to distortion and
not amendable to typical image data augmentations such as
random cropping or color jittering. Moreover, in addition
to high inter-class variance of abnormalities seen in chest
X-rays (i.e., feature differences between different diseases),
chest X-rays also have large intra-class variance (i.e., dif-
ferences in presentation among individuals of the same dis-
eases). The appearance of certain diseases in X-rays are of-
ten vague, can overlap with other diagnoses, and can mimic
many other benign abnormalities. Last but not least, the
class distribution of chest X-rays is also highly imbalanced
for available datasets.

Recently, contrastive learning has emerged as the front-
runner for self-supervised learning, demonstrating superior
ability to handle unlabelled data. Popular frameworks in-
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clude MoCo [14, 6], SimCLR [4, 5], PIRL [22] and BYOL
[12]. They all have achieved prevailing success in natural
image machine learning tasks, such as image classification
and object detection. Further, contrastive learning appears
to be robust for semi-supervised learning when only few la-
beled data are available [5]. Recent works also found con-
trastive learning to be robust to data imbalance [37, 17].

Contrastive learning may offer a promising avenue for
learning from the mostly unlabeled chest X-rays, but lever-
aging it for this task is not straightforward. One most im-
portant technical barrier is that most contrastive learning
frameworks [14, 6, 4, 5, 12] critically depend on maxi-
mizing the similarity between two “views”, i.e., an anchor
and its positive sample, often being generated by apply-
ing random data augmentations to the same image. This
data augmentation strategy, however, does not easily trans-
late to chest X-rays. In addition, the simultaneous demand
for both classification and localization-aware features fur-
ther complicates the issue. Fortunately, classical chest X-
ray analysis has introduced radiomic features [7] as an
auxiliary knowledge augmentation. The radiomic features
can be considered as a strong prior, and therefore can po-
tentially be utilized to guide learning of deep feature extrac-
tors. However, the extraction of reliable radiomic features
via Pyradiomic1 tool [34] heavily depends on the pathology
localization – hence we will run into an intriguing “chicken-
and-egg” problem, when trying to incorporate radiomic fea-
tures into contrastive learning, whose goal includes learning
the localization from unlabeled data.

This paper presents an innovative holistic framework
of Knowledge-Augmented Contrastive Learning, which
seamlessly integrates radiomic features as the other con-
trastive knowledge-augmentation for the chest X-ray image.
As the main difference from existing frameworks, the two
“views” that we contrast now are from two different domain
knowledge characterizing the same patient: the chest X-ray
image and the radiomic features. Notably, the radiomic fea-
tures have to be extracted from the learned pathology lo-
calizations, which are not readily available. As these fea-
tures will be dynamically updated, forming a “feedback
loop” during training in which both modalities’ learning
mutually reinforce each other. The key enabling technique
to link this feedback loop is a novel module we designed,
called Bootstrap Your Own Positive Samples (BYOP). For
an unannotated X-ray image, we utilize Grad-CAM [30] to
generate the input heatmap from the image modality back-
bone, which yields the estimated bounding box after thresh-
olding; and we then extract the radiomic features within
this estimated bounding box, which becomes the alterna-
tive view to contrast with the image view. The usage of ra-
diomic features also adds to the model interpretability. Our
contributions are outlined as follows:

1https://pyradiomic.readthedocs.io/

Figure 1. Visualization of heatmaps of chest X-rays with ground-
truth bounding box annotations (yellow) and its prediction (red)
for localize Cardiomegaly in one test chest X-ray image. The
visualization is generated by rendering the final output tensor as
heatmaps and overlaying it on the original images. The left image
is the original chest X-ray image, the middle is the visualization
result by CheXNet [28] and the right is our model’s attempt. Best
viewed in color.

• A brand-new framework dedicated to improving abnor-
mality identification and localization in (mostly unanno-
tated) chest X-rays by knowledge-augmented contrastive
learning, which highlights exploiting radiomic features
as the auxiliary knowledge augmentation to contrast with
the images, given the inability to perform classical image
data augmentation.

• An innovative technique called BYOP to enable the ef-
fective generation of radiomic features, which is neces-
sary as the true bounding boxes are often absent. BYOP
leverages an interpretable learning technique to supply
estimated bounding boxes dynamically during training.

• Excellent experimental results achieved on the NIH
Chest X-ray benchmark [35], using very few annotations.
Besides improving the disease classification AUC from
82.8% to 83.8%, our framework significantly boosts the
localization results, by an average of 2% over different
IoU thresholds, compared to reported baselines. Figure
1 provides a visualization example showing our localiza-
tion results to be more robust and accurate than the pre-
vious results from CheXNet [28],

2. Related Work
Self-supervised Learning and Contrastive Learning:

Self-supervision uses pre-formulated (or “pretext”) tasks to
train with unlabeled data. Popular handcrafted pretext tasks
include solving jigsaw puzzles [24], relative patch predic-
tion [8] and colorization [41]. However, many of these tasks
rely on ad-hoc heuristics that could limit the generaliza-
tion and transferability of learned representations. Conse-
quently, contrastive learning of visual representations has
emerged as the front-runner for self-supervision and has
demonstrated superior performance on downstream tasks
[14, 6, 4, 5, 22, 12]. Most of those successes take place
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in the natural image domain due to the ease of creating con-
trastive views by applying data augmentations.

There have been a few recent attempts towards con-
trastive learning in multi-domain knowledge tasks. [33]
studied knowledge transfer via contrastive learning, includ-
ing from one sensory domain knowledge to another (e.g.,
RGB to Depth). [27] contrasted bright-field and second-
harmonic generation microscopy images for their registra-
tion: two image domain knowledge captured for biomed-
ical applications, with large appearance discrepancy be-
tween them. [40] aimed to learn text-to-image synthe-
sis by maximizing the mutual information between image
and text, through multiple contrastive losses which capture
inter-domain and intra-domain correspondences. The com-
modity among those existing works is that their two do-
mains (e.g., image and text, RGB and depth, or two types
of microscopy images) are both readily available for train-
ing. In contrast to our task, the other radiomic features
domain knowledge is not available ahead of training and
needs to be adaptively bootstrapped from the image domain
during training.

Contrastive Learning for Medical Image Analysis:
Self-supervised learning using pre-text tasks has been re-
cently popular in medical image analysis [32, 1, 45, 46,
15]. When it comes to contrastive learning, [3] proposed
a domain-specific pretraining strategy, by extracting con-
trastive pairs from MRI and CT datasets using a combina-
tion of localized and global loss functions, which relies on
the availability of both MRI and CT scans. [43] leveraged
contrastive learning to infer transferable medical visual rep-
resentations from paired images and text modalities.

Prior work adopting contrastive learning on chest X-
rays remains scarce, due to the roadblock of creating two
contrastive views. [20] explicitly contrasted X-rays with
pathologies against healthy ones using attention networks,
in a fully supervised setting. The closest recent work to
our knowledge [13] also applied radiomic features to guide
contrastive learning for detecting pneumonia in chest X-
rays. However, their method needs to apply a pre-trained
ResNet on the images to generate attention for radiomic fea-
tures extraction and therefore relied on a multi-stage train-
ing heuristic. Their method hence produced no joint opti-
mization of two domain knowledge, and lacked the local-
ization capability.

Radiomics in Medical Diagnosis: Radiomics studies
have demonstrated their power in image-based biomarkers
for cancer staging and prognostication [23]. Radiomics ex-
tracts quantitative data from medical images to represent tu-
mor phenotypes, such as spatial heterogeneity of a tumor
and spatial response variations. [9] demonstrated that ra-
diomic of CT texture features are associated with the overall
survivalrate of pancreatic cancer. [7] revealed that the first-
order radiomic features (e.g., mean, skewness, and kurtosis)

are correlated with pathological responses to cancer treat-
ment. [16] showed that radiomics could increase the pos-
itive predictive value and reduce the false-positive rate in
lung cancer screening for small nodules compared with hu-
man reading by thoracic radiologists. [42] found that multi-
parametric MRI-based radiomics nomograms provided im-
proved prognostic ability in advanced nasopharyngeal car-
cinoma (NPC). In comparison, deep learning algorithms are
often criticized for being “black box” and lack interpretabil-
ity despite high predictive accuracy. That limitation has
motivated many interpretable learning techniques includ-
ing activation maximization [10], network inversion [21],
GradCAM [30], and network dissection [2]. We believe that
the joint utilization of radiomics and interpretable learning
techniques in our framework can further advance accurate
yet interpretable learning in the medical image domain.

3. Method
The Framework. Our goal is to learn an image rep-

resentation yi which can then be used for disease classi-
fication and localization. Our framework uses two neural
networks to learn: the image and radiomics networks. The
image network consists of an encoder fi (ResNet-18) and
a projector gi (two-layer MLPs with ReLU). The radiomics
network has a similar architecture as the image network, but
uses another three-layer MLPs for radiomic encoder fr and
a different set of weights for the projector gr. The proposed
architecture is summarized in Figure 2.

The primary innovation of our method lies in how we se-
lect positive and negative examples, which will be expanded
below in Section 3.1 and Section 3.2. We also formulate the
semi-supervised loss for our problem when a small amount
of annotated data is available in Section 3.3. The entire
framework can be trained from end to end, and the represen-
tation yi will be used for downstream disease classification
and localization tasks.

3.1. Finding Positive and Negative Samples: Data-
Driven Learning Meets Domain Expertise

The reasons to use contrastive learning as our framework
are three-fold. First, contrastive learning leverages unla-
beled data and we have few disease localization (bounding
boxes) annotations available. Second, empirical findings
[37, 17] prove that contrastive learning is robust in classifi-
cation tasks with class-imbalanced datasets. In clinical set-
tings, most medical image datasets suffer an extreme class-
imbalance problem [11]. Third, contrastive learning natu-
rally fits “multi-view” concepts. In our case, we are still
comparing two different views of the same subject, but un-
like classic contrastive learning where two views are from
the same domain space, our views for positive sampling are
from different domain knowledge ([39] proved that views
from multi-domain knowledge should also align), while our
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Figure 2. Overview of our proposed framework. During training, given a set of images, very few images have annotations, our framework
provides two views: the image and the radiomic features (generated by the BYOP module, the detail view is shown in Figure 3). From the
image view v, we output a representation yi = fi(v) and a projection zi = gi(yi) via an image encoder fi and image projection head gi,
respectively. Similarly, from the radiomic view v′, we output yr = fr(v

′) and the radiomic projection zr = gr(yr) via a radiomic encoder
fr and radiomic projection head gr , respectively. We maximize agreement between zi and zr via a contrastive loss (NT-Xnet). In addition,
we minimize the classification errors from representation yi via a focal loss. During testing, only the image encoder is kept and applied to
the new X-rays.

negative sampling is from the same domain knowledge. In
the subsequent section, we will describe our unique positive
and negative sampling methodologies in more detail.

Positive Sampling. To obtain a positive pair of views, we
randomly select an image labeled with a given disease and
generate two views for it. The first view will be its im-
age features and another view will be its radiomic features.
We decided to leverage radiomic features for the second
view as traditional image augmentation strategies cannot be
leveraged here. Furthermore, radiomic features have labels,
are naturally more interpretable than the image features ex-
tracted from deep learning-based image encoders.

Obtaining the radiomic features for our dataset is
a “chicken-and-egg” problem. Radiomic features are
highly sensitive and dependent on local regions for which
we do not have local bounding box annotations. Mean-
while, we need to make the image features similar to the
radiomic features to learn from radiomic features to bet-
ter learn localization of the abnormalities. This process
means that bounding boxes generation is dependent on
radiomic features which forms a loop cycle. To address
this issue, we design the Bootstrap Your Own Positive Sam-
ples (BYOP) method using such a feedback module. For
more details, see Section 3.2.

Negative Sampling. The original images are used for views
of the negative samples because the same domain is sup-
posed to be more similar and thus harder for the model to
distinguish between the positive and negative samples, lead-

ing to a more robust model [29]. Besides, the image features
focuses on local regions highlighted by the attention map
rather than the whole image. To identify harder negative
samples, we go one step further, by not only selecting any
random image, but “hard similar” images. Here, we first
get prior knowledge from the pre-constructed disease hier-
archy relationship for image negative sampling, shown in
Figure 4, defined by [44]. The pre-constructed disease hier-
archy relationship is initialed with 21 nodes. In this hierar-
chy, each disease (green) belongs to a body part (grey). We
therefore only treat normal chest X-rays or images within
the same body part but with a different disease as negative
examples. We call these negative examples “hard similar”
images in this study. As an example, if our “anchor” image
is labeled as “Pneumonia/Lung” , our “hard similar” im-
ages should include “Atelectasis/Lung”, “Edema/Lung”, or
“Normal” but not “Bone Fractures”.

3.2. Bootstrap Your Own Positive Samples (BYOP)
with Radiomics in the Feedback Loop

The core component of our cross-modal contrastive
learning is the Bootstrap Your Own Positive Samples
(BYOP) module. BYOP leverages a feedback loop to learn
region localization from generated radiomic features as the
positive sample for the image features. The architecture of
BYOP is shown in Figure 3. The BYOP contains two com-
ponents, bounding box generation and radiomic features ex-
traction.
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Figure 3. Overview of our BYOP module. For the unannotated
images, we leverage Grad-CAM to generate heatmaps and ap-
ply an ad-hoc threshold to generate the bounding boxes. For
the annotated images, we directly use the ground-truth bounding
boxes. Then with the combination of generated bounding boxes
and ground-truth bounding boxes, we use the Pyradiomic tool as
the radiomic extractor to extract the radiomic features. Note that
the generated radiomic features are the combination of the accu-
rate and ‘pseudo’ radiomic features for annotated and unannotated
images, respectively.

Bounding Boxes Generation. We feed the fourth layer
of the image encoder fi (i.e., ResNet-18) to the Gradient-
weighted Class Activate Mapping (Grad-CAM) [30] to ex-
tract attention maps and apply an ad-hoc threshold to gen-
erate bounding boxes from the attention maps.

Radiomic Features Extraction. The radiomic features are
composed of the following categories:
• First-Order statistics features measure the distribution of

voxel intensities within the bounding boxes. The features
include energy (the measurement of the magnitude of
voxel values), entropy (the measurement of uncertainty
in the image values), and max/mean/median gray level
intensity within the region of interest (ROI), etc.

• Shape-based features include features like Mesh Surface,
Pixel Surface, Perimeter, and etc.

• Gray-level features include a gray-level features include
a Gray Level Co-occurance Matrix (GLCM) features, a
Gray Level Size Zone (GLSZM) features, a Gray Level
Run Length Matrix (GLRLM) features, a Neighboring
Gray Tone Difference Matrix (NGTDM) features, and a
Gray Level Dependence Matrix (GLDM) features.

Given the original images and generated bounding boxes,
we used the Pyradiomic tool to extract radiomic features
[34].

3.3. Semi-Supervised Loss Function

Our framework is mixed with supervised classification
and unsupervised contrastive learning. For the localiza-
tion task, we use the knowledge-augmented contrastive loss
for unsupervised contrastive learning. For the classification
task, we could have used standard cross-entropy loss, but
considering that the chest X-ray dataset is highly imbal-
anced, we instead find focal loss more helpful [25]. We
briefly review the two loss functions below.
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Figure 4. Disease hierarchy relationship predefined based on do-
main expertise, reprinted from [44].

Unsupervised Knowledge-Augmented Contrastive Loss.
Our cross-modal contrastive loss function extends the nor-
malized temperature-scaled cross-entropy loss (NT-Xent).
We randomly sample a minibatch of N examples and de-
fine the contrastive prediction task on pairs of augmented
examples derived from the minibatch. Let vbd be the im-
age in the minibatch with disease d and body part b, and
sim(u, v) be the cosine similarity. The loss function ℓvbd
for a positive pair of example (vbd, v

′
bd) is defined as

ℓvbd = − log
exp (sim (zi(vbd), zr(v

′
bd)) /τ)∑

1[k=b,l ̸=d] exp (sim (zi(vbd), zi(vkd)) /τ)

where 1[k=b,l ̸=d] ∈ {0, 1} is an indicator function evaluat-
ing to 1 iff k = b and l ̸= d. τ is the temperature parame-
ter. The final unsupervised contrastive loss Lcl is computed
across all disease-positive images in the minibatch.

Supervised Focal Loss. We feed the output of the image
encoder fi to a simple linear classifier. The supervised clas-
sification focal loss is defined as

Lfl =

{
−α (1− y′)

γ
log y′, y = 1

−(1− α)y′γ log (1− y′) , y = 0

α allows us to give different importance to positive and neg-
ative examples. γ is used to distinguish easy and hard sam-
ples and force the model to learn more from difficult exam-
ples.

Eventually, we treat it as multi-task learning (one task
is supervised disease classification and one is unsupervised
contrastive learning) and the total loss is defined as

L = λ× Lcl + (1− λ)× Lfl

4. Experiments
Dataset and Protocol Setting. We evaluated our frame-

work using the NIH Chest X-ray dataset [35]. It contains
112,120 X-ray images collected from 30,805 patients. As
other large chest X-ray datasets, this dataset is also ex-
tremely class imbalanced: the healthy cases (84,321 front-
view images) are far more than cases with diseases (24,624
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Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

Wang et. al.[35] 0.72 0.81 0.78 0.61 0.71 0.67 0.63 0.81 0.718
Wang et. al.[36] 0.73 0.84 0.79 0.67 0.73 0.69 0.72 0.85 0.753
Yao et. al.[38] 0.77 0.90 0.86 0.70 0.79 0.72 0.71 0.84 0.786
Rajpurkar et. al.[28] 0.82 0.91 0.88 0.72 0.86 0.78 0.76 0.89 0.828
Kumar et. al.[18] 0.76 0.91 0.86 0.69 0.75 0.67 0.72 0.86 0.778
Liu et. al.[20] 0.79 0.87 0.88 0.69 0.81 0.73 0.75 0.89 0.801
Seyyed et. al.[31] 0.81 0.92 0.87 0.72 0.83 0.78 0.76 0.88 0.821

Our model 0.84 0.93 0.88 0.72 0.87 0.79 0.77 0.90 0.838
Table 1. Comparison with the baseline models for AUC of each class and average AUC. For each column, red values denote the best results.

front-view images), and different disease occurrence fre-
quencies vary dramatically. The disease labels were ex-
tracted from radiology reports with a rule-based tool [26].
There are 9 classes, specifically one for “No findings” and
8 for diseases (Atelectasis, Cardiomegaly, Effusion, Infiltra-
tion, Mass, Nodule, Pneumonia, and Pneumothorax). The
disease labels are expected to have above 90% accuracy.
In addition, the dataset includes 984 bounding boxes for 8
types of chest diseases annotated for 880 images by radi-
ologists. We separate the images with provided bounding
boxes from the entire dataset. Hence, we have two sets of
images called “annotated” (880 images) and “unannotated”
(111,240 images).

In our experiment, we follow the same protocol of [35],
to shuffle the unannotated dataset into three subsets: 70%
for training, 10% for validation, and 20% for testing. For
the annotated dataset, we randomly split the dataset into two
subsets: 20% for training and 80% for testing. Note that
there is no patient overlap between all the sets.

Evaluation Metrics. For the disease classification task,
we use Area under the Receiver Operating Characteristic
curve (AUC) to measure the performance of our model. For
the disease localization task, we evaluate the detected re-
gions against annotated ground truth bounding boxes, using
intersection over union ratio (IoU). The localization results
are only calculated on the test set of the annotated dataset.
The localization is defined as correct only if IoU > T(IoU),
where T(*) is the threshold.

Implementation Details. We use the ResNet-18 model
as the image encoder. We initialize the image encoder with
the weights from the pre-trained ImageNet model except
for the last fully-connected layer. We set the batch size
as 64 and train the model for 30 epochs. We optimize the
model by the Adam method and decay the learning rate by
0.1 from 0.001 every 5 epochs. Furthermore, we use linear
warmup for the first 10 epochs only for the disease classifi-
cation task, which helps the model converge faster to gen-
erate stable heatmaps. We train our model on AWS with
one Nvidia Tesla V100 GPU. The model is implemented in
PyTorch.

4.1. Disease Classification

Table 1 shows the AUC of each class and a mean AUC
across the 8 chest diseases. Compared to a series of rele-
vant baseline models, our proposed model achieves better
AUC scores for the majority of diseases. The overall im-
provement in performance is remarkable when compared to
other models except CheXNet [28]. One possible reason
for our lack of improvement can be that [28]’s backbone
is DenseNet-121, which is much deeper than the ResNet-
18 in our model. It thus, able to capture much more dis-
criminative features than our ResNet-18. Despite the fact,
our model still achieves better or comparable results than
CheXNet, which demonstrates that the cross-modal con-
trastive learning branch boosts the robustness of the im-
age features without the need to increase the complexity of
the backbone. Specifically, the performance of our model
demonstrates significant improvements for disease abnor-
malities with larger associated regions on the image, such as
“Ateclectasis”, “Cardiomegaly”, and “Pneumothorax”. In
addition, small objects features like “Mass” and “Nodule”,
are recognized as well as in CheXNet. In summary, these
experimental results show the superiority of our proposed
model over relevant other methodologies.

4.2. Disease Localization

We compare our disease localization accuracy to other
state-of-the-art models under different IoU thresholds (Ta-
ble 2). Since disease localization is not an easy task in chest
X-ray images, we did not find as many other methods as
for disease classification task. To our knowledge, we only
have two baseline methods from [35] and [19]. From these
comparisons, we find our model significantly outperforms
baselines by an average of 2% over different IoU thresh-
olds. Importantly, our model is able to perform well not
only on the easier tasks, but also for more difficult ones like
localizing “Mass” and “Nodule”, where the disease local-
ization is within a small area. When the IoU threshold is
set to 0.1, our model outperforms others on all diseases ex-
cept for “Cardiomegaly”. As the IoU threshold increases,
our framework is superior to other models in terms of bet-
ter accuracy and maintains this superior performance. For
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T(IoU) Model Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

0.1 Wang et. al.[35] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.569
Li et. al.[19] 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.728
Our model 0.72 0.96 0.88 0.93 0.74 0.45 0.65 0.64 0.746

0.2 Wang et. al.[35] 0.47 0.68 0.45 0.48 0.26 0.05 0.35 0.23 0.371
Li et. al.[19] 0.53 0.97 0.76 0.83 0.59 0.29 0.50 0.51 0.622
Our model 0.55 0.89 0.78 0.85 0.62 0.31 0.52 0.54 0.633

0.3 Wang et. al.[35] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.221
Li et. al.[19] 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.496
Our model 0.39 0.85 0.60 0.67 0.43 0.21 0.40 0.45 0.500

0.4 Wang et. al.[35] 0.09 0.28 0.20 0.12 0.07 0.01 0.08 0.07 0.115
Li et. al.[19] 0.25 0.88 0.37 0.50 0.33 0.11 0.26 0.29 0.374
Our model 0.24 0.81 0.42 0.54 0.34 0.13 0.28 0.32 0.385

0.5 Wang et. al.[35] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.061
Li et. al.[19] 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.269
Our model 0.16 0.77 0.29 0.35 0.24 0.09 0.15 0.22 0.284

0.6 Wang et. al.[35] 0.02 0.08 0.05 0.02 0.00 0.01 0.02 0.03 0.029
Li et. al.[19] 0.07 0.73 0.15 0.18 0.16 0.03 0.10 0.12 0.193
Our model 0.09 0.74 0.19 0.16 0.18 0.04 0.11 0.14 0.206

0.7 Wang et. al.[35] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.011
Li et. al.[19] 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.118
Our model 0.05 0.54 0.09 0.11 0.12 0.02 0.07 0.06 0.133

Table 2. Disease localization accuracy comparison under different IoU thresholds. Red numbers denote the best result for each column.

Method Atelectasis Cardiomegaly Effusion Infiltration Mass Nodule Pneumonia Pneumothorax Mean

Base 0.75 0.85 0.83 0.67 0.69 0.64 0.70 0.79 0.740
w. FL 0.78 0.84 0.80 0.68 0.76 0.72 0.72 0.82 0.765
w. BYOP 0.82 0.90 0.85 0.71 0.82 0.75 0.74 0.86 0.806
Full model 0.84 0.93 0.88 0.72 0.87 0.79 0.77 0.90 0.838

Table 3. Ablation studies on focal loss and BYOP module for disease classification. Red numbers denote the best result for each column.

instance, when the threshold increases, the IoUs of “Car-
diomegaly” decrease less than the baselines and even out-
perform the baselines when IoU threshold is above 0.5.

We prefer a higher IoU threshold, specifically, IoU = 0.7,
for disease localization because we expect high-accuracy
disease localization application is necessary for clinical ap-
plications. To this end, the method we propose is superior
to the baseline by a slight margin.

It is also worth nothing that, for some diseases, such as
Pneumonia and Infiltration, the localization of disease can
appear in multiple places while only one bounding box is
provided for each image. Hence, it is reasonable that our
model does not align well with the ground truth when the
threshold is as small as 0.1, especially for Pneumonia and
Infiltration. Overall, our model outperforms the reference
models for almost all IoU thresholds.

4.3. Ablation Discussion

In this section, we study the contribution of our BYOP
module on both disease classification and localization tasks.

Disease Classification. For this task, note that the use

of focal loss should also boost the model with the class-
imbalanced chest X-ray dataset. Thus, we compare the
performance of our base model with only focal loss (la-
beled “w. FL”) or with only the BYOP module (labeled
“w. BYOP”), respectively. As shown in Table 3, although
both focal loss and BYOP improve the model performance,
BYOP contributed more strongly. This stronger contribu-
tion is expected since BYOP tends to generate more robust
radiomic features, which further reinforces the image en-
coder to focus on the image region that contains the targeted
disease.

Disease Localization. Note that our base model is a
ResNet-18 image encoder, which is not as powerful as
CheXNet [28] with DenseNet-121. Thus we compare the
performance of our model with CheXNet. As shown in Fig-
ure 5, our localization result is superior to the CheXNet.
For the example of ‘Atelectasis’, ‘Cardiomegaly’, ‘Effu-
sion’, ‘Nodule’, ‘Pneumonia’ and ‘Pneumothorax’, while
the baseline model tends to focus on a large area of the im-
age, our model precisely captures the correct disease loca-
tion. For harder localization cases like ‘Mass’ and ‘Nodule’,
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Figure 5. Examples of visualization of localization on the test images. We plot the results of diseases near thoracic. The attention maps are
generated from the fourth layer of ResNet-18. The ground-truth bounding boxes and the predicted bounding boxes are shown in yellow
and red, respectively. The left image in each pair is the original chest X-ray image, the middle one is the localization result of CheXNet
[28] and the right one is our localization result. All examples are positive for corresponding disease labels. Best viewed in color.

the baseline model’s focus is incorrect and does not have
any overlap with the ground-truth areas while our model
still predicts perfectly. The results demonstrate that the
BYOP module significantly boosts the model performance.

5. Conclusion
In this work, we propose a semi-supervised, end-to-end

knowledge-augmented contrastive learning model that can
jointly model disease classification and localization with
limited localization annotation data. Our approach differs
from previous studies in the choice of data augmentation,
the use of radiomic features as prior knowledge, and a feed-
back loop for image and radiomic features to mutually rein-
force each other. Additionally, the project aims to address
current gaps in radiology by making prior knowledge more

accessible to image data analytic and diagnostic assisting
tools, with the hope that this will increase the model’s in-
terpretability. Experimental results demonstrate that our
method outperforms the state-of-the-art algorithms, espe-
cially for the disease localization task, where our method
can generate more accurate bounding boxes. Importantly,
we hope the method developed here is inspiring for the
future research on incorporating different kinds of prior
knowledge of medical images with contrastive learning.
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