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Abstract

Fully Convolutional Neural Networks (FCNNs) with con-

tracting and expanding paths have shown prominence for the

majority of medical image segmentation applications since

the past decade. In FCNNs, the encoder plays an integral

role by learning both global and local features and contextual

representations which can be utilized for semantic output

prediction by the decoder. Despite their success, the locality

of convolutional layers in FCNNs, limits the capability of

learning long-range spatial dependencies. Inspired by the

recent success of transformers for Natural Language Process-

ing (NLP) in long-range sequence learning, we reformulate

the task of volumetric (3D) medical image segmentation as

a sequence-to-sequence prediction problem. We introduce a

novel architecture, dubbed as UNEt TRansformers (UNETR),

that utilizes a transformer as the encoder to learn sequence

representations of the input volume and effectively capture

the global multi-scale information, while also following the

successful “U-shaped” network design for the encoder and

decoder. The transformer encoder is directly connected to

a decoder via skip connections at different resolutions to

compute the final semantic segmentation output. We have

validated the performance of our method on the Multi Atlas

Labeling Beyond The Cranial Vault (BTCV) dataset for multi-

organ segmentation and the Medical Segmentation Decathlon

(MSD) dataset for brain tumor and spleen segmentation tasks.

Our benchmarks demonstrate new state-of-the-art perfor-

mance on the BTCV leaderboard.

Code: https://monai.io/research/unetr

1. Introduction

Image segmentation plays an integral role in quantitative

medical image analysis as it is often the first step for analysis

of anatomical structures [33]. Since the advent of deep learn-

ing, FCNNs and in particular “U-shaped“ encoder-decoder ar-
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Figure 1. Overview of UNETR. Our proposed model consists

of a transformer encoder that directly utilizes 3D patches and is

connected to a CNN-based decoder via skip connection.

chitectures [22, 23, 21] have achieved state-of-the-art results

in various medical semantic segmentation tasks [2, 38, 19]. In

a typical U-Net [36] architecture, the encoder is responsible

for learning global contextual representations by gradually

downsampling the extracted features, while the decoder up-

samples the extracted representations to the input resolution

for pixel/voxel-wise semantic prediction. In addition, skip

connections merge the output of the encoder with decoder

at different resolutions, hence allowing for recovering spatial

information that is lost during downsampling.

Although such FCNN-based approaches have powerful

representation learning capabilities, their performance in

learning long-range dependencies is limited to their localized

receptive fields [20, 35]. As a result, such a deficiency

in capturing multi-scale information leads to sub-optimal

segmentation of structures with variable shapes and scales

(e.g. brain lesions with different sizes). Several efforts have

used atrous convolutional layers [9, 27, 18] to enlarge the

574

https://monai.io/research/unetr


receptive fields. However, locality of the receptive fields in

convolutional layers still limits their learning capabilities to

relatively small regions. Combining self-attention modules

with convolutional layers [45, 50, 16] has been proposed to

improve the non-local modeling capability.

In Natural Language Processing (NLP), transformer-based

models [42, 13] achieve state-of-the-art benchmarks in

various tasks. The self-attention mechanism of transformers

allows to dynamically highlight the important features of

word sequences. Additionally, in computer vision, using

transformers as a backbone encoder is beneficial due to their

great capability of modeling long-range dependencies and

capturing global context [14, 4]. Specifically, unlike the local

formulation of convolutions, transformers encode images as

a sequence of 1D patch embeddings and utilize self-attention

modules to learn a weighted sum of values that are calculated

from hidden layers. As a result, this flexible formulation

allows to effectively learn the long-range information.

Furthermore, Vision Transformer (ViT) [14] and its variants

have shown excellent capabilities in learning pre-text tasks

that can be transferred to down-stream applications [40, 6, 3].

In this work, we propose to leverage the power of

transformers for volumetric medical image segmentation and

introduce a novel architecture dubbed as UNEt TRansformers

(UNETR). In particular, we reformulate the task of 3D seg-

mentation as a 1D sequence-to-sequence prediction problem

and use a transformer as the encoder to learn contextual

information from the embedded input patches. The extracted

representations from the transformer encoder are merged

with the CNN-based decoder via skip connections at multiple

resolutions to predict the segmentation outputs. Instead of

using transformers in the decoder, our proposed framework

uses a CNN-based decoder. This is due to the fact that trans-

formers are unable to properly capture localized information,

despite their great capability of learning global information.

We validate the effectiveness of our method on 3D CT

and MRI segmentation tasks using Beyond the Cranial

Vault (BTCV) [26] and Medical Segmentation Decathlon

(MSD) [38] datasets. In BTCV dataset, UNETR achieves

new state-of-the-art performance on both Standard and

Free Competition sections on its leaderboard. UNETR

outperforms the state-of-the-art methodologies on both brain

tumor and spleen segmentation tasks in MSD dataset.

our main contributions of this work are as follows::

• We propose a novel transformer-based model for

volumetric medical image segmentation.

• To this end, we propose a novel architecture in which (1)

a transformer encoder directly utilizes the embedded 3D

volumes to effectively capture long-range dependencies;

(2) a skip-connected decoder combines the extracted

representations at different resolutions and predicts the

segmentation output.

• We validate the effectiveness of our proposed model for

different volumetric segmentation tasks on two public

datasets: BTCV [26] and MSD [38]. UNETR achieves

new state-of-the-art performance on leaderboard of

BTCV dataset and outperforms competing approaches

on the MSD dataset.

2. Related Work

CNN-based Segmentation Networks : Since the intro-

duction of the seminal U-Net [36], CNN-based networks

have achieved state-of-the-art results on various 2D and 3D

various medical image segmentation tasks [15, 54, 49, 17, 28].

For volume-wise segmentation, tri-planar architectures

are sometimes used to combine three-view slices for each

voxel, also known for 2.5D methods [28, 29, 46]. In

contrast, 3D approaches directly utilize the full volumetric

image represented by a sequence of 2D slices or modalities.

The intuition of employing varying sizes was followed

by multi-scan, multi-path models [24, 25, 8] to capture

downsampled features of the image. In addition, to exploit

3D context and to cope with limitation of computational

resource, researchers investigated hierarchical frameworks.

Some efforts proposed to extract features at multiple scales

or assembled frameworks [21]. Roth et al. [37] proposed

a multi-scale framework to obtain varying resolution

information in pancreas segmentation. These methods

provide pioneer studies of 3D medical image segmentation

at multiple levels, which reduces problems in spatial context

and low-resolution condition. Despite their success, a

limitation of these networks is their poor performance in

learning global context and long-range spatial dependencies,

which can severely impact the segmentation performance for

challenging tasks.

Vision Transformers : Vision transformers have recently

gained traction for computer vision tasks. Dosovitskiy

et al. [14] demonstrated state-of-the-art performance on

image classification datasets by large-scale pre-training and

fine-tuning of a pure transformer. In object detection, end-

to-end transformer-based models have shown prominence

on several benchmarks [5, 55]. Recently, hierarchical vision

transformers with varying resolutions and spatial embed-

dings [30, 44, 12, 48] have been proposed. These method-

ologies gradually decrease the resolution of features in the

transformer layers and utilize sub-sampled attention modules.

Unlike these approaches, the size of representation in UNETR

encoder remains fixed in all transformer layers. However, as

described in Sec. 3, deconvolutional and convolutional oper-

ations are used to change the resolution of extracted features.

Recently, multiple methods were proposed that explore the

possibility of using transformer-based models for the task of

2D image segmentation [52, 7, 41, 51]. Zheng et al. [52] in-

troduced the SETR model in which a pre-trained transformer
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encoder with different variations of CNN-based decoders

were proposed for the task of semantic segmentation. Chen et

al. [7] proposed a methodology for multi-organ segmentation

by employing a transformer as an additional layer in the bottle-

neck of a U-Net architecture. Zhang et al. [51] proposed to use

CNNs and transformers in separate streams and fuse their out-

puts. Valanarasu et al. [41] proposed a transformer-based ax-

ial attention mechanism for 2D medical image segmentation.

There are key differences between our model and these efforts:

(1) UNETR is tailored for 3D segmentation and directly uti-

lizes volumetric data; (2) UNETR employs the transformer as

the main encoder of a segmentation network and directly con-

nects it to the decoder via skip connections, as opposed to us-

ing it as an attention layer within the segmentation network (3)

UNETR does not rely on a backbone CNN for generating the

input sequences and directly utilizes the tokenized patches.

For 3D medical image segmentation, Xie et al. [47]

proposed a framework that utilizes a backbone CNN for

feature extraction, a transformer to process the encoded

representation and a CNN decoder for predicting the

segmentation outputs. Similarly, Wang et al. [43] proposed to

use a transformer in the bottleneck of a 3D encoder-decoder

CNN for the task of semantic brain tumor segmentation. In

contrast to these approaches, our method directly connects

the encoded representation from the transformer to decoder

by using skip connections.

3. Methodology

3.1. Architecture

We have presented an overview of the proposed model

in Fig. 2. UNETR utilizes a contracting-expanding pat-

tern consisting of a stack of transformers as the encoder

which is connected to a decoder via skip connections. As

commonly used in NLP, the transformers operate on 1D

sequence of input embeddings. Similarly, we create a 1D

sequence of a 3D input volume x ∈ R
H×W×D×C with

resolution (H,W,D) and C input channels by dividing it into

flattened uniform non-overlapping patches xv∈R
N×(P 3.C)

where (P,P,P ) denotes the resolution of each patch and

N=(H×W×D)/P 3 is the length of the sequence.

Subsequently, we use a linear layer to project the patches

into a K dimensional embedding space, which remains

constant throughout the transformer layers. In order to

preserve the spatial information of the extracted patches, we

add a 1D learnable positional embedding Epos ∈R
N×K to

the projected patch embedding E∈R
(P 3.C)×K according to

z0=[x1
vE;x2

vE;...;xN
v E]+Epos, (1)

Note that the learnable [class] token is not added to

the sequence of embeddings since our transformer backbone

is designed for semantic segmentation. After the embedding

layer, we utilize a stack of transformer blocks [42, 14] com-

prising of multi-head self-attention (MSA) and multilayer

perceptron (MLP) sublayers according to

z′i=MSA(Norm(zi−1))+zi−1, i=1...L, (2)

zi=MLP(Norm(z′i))+z′i, i=1...L, (3)

where Norm() denotes layer normalization [1], MLP com-

prises of two linear layers with GELU activation functions,

i is the intermediate block identifier, and L is the number of

transformer layers.

A MSA sublayer comprises of n parallel self-attention

(SA) heads. Specifically, the SA block, is a parameterized

function that learns the mapping between a query (q) and

the corresponding key (k) and value (v) representations

in a sequence z ∈ R
N×K . The attention weights (A) are

computed by measuring the similarity between two elements

in z and their key-value pairs according to

A=Softmax(
qk⊤

√
Kh

), (4)

where Kh = K/n is a scaling factor for maintaining the

number of parameters to a constant value with different

values of the key k. Using the computed attention weights,

the output of SA for valuesv in the sequence z is computed as

SA(z)=Av, (5)

Here, v denotes the values in the input sequence and

Kh = K/n is a scaling factor. Furthermore, the output of

MSA is defined as

MSA(z)=[SA1(z);SA2(z);...;SAn(z)]Wmsa, (6)

where Wmsa ∈ R
n.Kh×K represents the multi-headed

trainable parameter weights.

Inspired by architectures that are similar to U-Net [36],

where features from multiple resolutions of the encoder are

merged with the decoder, we extract a sequence representa-

tion zi (i ∈ {3,6,9,12}), with size H×W×D
P 3 ×K, from the

transformer and reshape them into a H
P
×W

P
×D

P
×K tensor.

A representation in our definition is in the embedding space

after it has been reshaped as an output of the transformer

with feature size of K (i.e. transformer’s embedding size).

Furthermore, as shown in Fig. 2, at each resolution we project

the reshaped tensors from the embedding space into the input

space by utilizing consecutive 3×3×3 convolutional layers

that are followed by normalization layers.

At the bottleneck of our encoder (i.e. output of trans-

former’s last layer), we apply a deconvolutional layer to the

transformed feature map to increase its resolution by a factor

of 2. We then concatenate the resized feature map with the
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Figure 2. Overview of UNETR architecture. A 3D input volume (e.g. C=4 channels for MRI images), is divided into a sequence of uniform

non-overlapping patches and projected into an embedding space using a linear layer. The sequence is added with a position embedding and

used as an input to a transformer model. The encoded representations of different layers in the transformer are extracted and merged with a

decoder via skip connections to predict the final segmentation. Output sizes are given for patch resolution P =16 and embedding size K=768.

feature map of the previous transformer output (e.g. z9), and

feed them into consecutive 3× 3× 3 convolutional layers

and upsample the output using a deconvolutional layer. This

process is repeated for all the other subsequent layers up

to the original input resolution where the final output is fed

into a 1×1×1 convolutional layer with a softmax activation

function to generate voxel-wise semantic predictions.

3.2. Loss Function

Our loss function is a combination of soft dice loss [32]

and cross-entropy loss, and it can be computed in a voxel-wise

manner according to

L(G,Y )=1− 2

J

J∑

j=1

∑I

i=1Gi,jYi,j∑I

i=1G
2
i,j+

∑I

i=1Y
2
i,j

−

− 1

I

I∑

i=1

J∑

j=1

Gi,j logYi,j .

(7)

where I is the number of voxels; J is the number of classes;

Yi,j and Gi,j denote the probability output and one-hot

encoded ground truth for class j at voxel i, respectively.

4. Experiments

4.1. Datasets

To validate the effectiveness of our method, we utilize

BTCV [26] and MSD [38] datasets for three different

segmentation tasks in CT and MRI imaging modalities.

BTCV (CT): The BTCV dataset [26] consists of 30 sub-

jects with abdominal CT scans where 13 organs were anno-

tated by interpreters under supervision of clinical radiologists

at Vanderbilt University Medical Center. Each CT scan was

acquired with contrast enhancement in portal venous phase

and consists of 80 to 225 slices with 512×512 pixels and slice

thickness ranging from 1 to 6mm. Each volume has been

pre-processed independently by normalizing the intensities

in the range of [-1000,1000] HU to [0,1]. All images are

resampled into the isotropic voxel spacing of 1.0 mm during

pre-processing. The multi-organ segmentation problem is for-

mulated as a 13 class segmentation task with 1-channel input.

MSD (MRI/CT): For the brain tumor segmentation task,

the entire training set of 484 multi-modal multi-site MRI

data (FLAIR, T1w, T1gd, T2w) with ground truth labels

of gliomas segmentation necrotic/active tumor and oedema

is utilized for model training. The voxel spacing of MRI

images in this tasks is 1.0 × 1.0 × 1.0 mm3. The voxel

intensities are pre-processed with z-score normalization. The
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Methods Spl RKid LKid Gall Eso Liv Sto Aor IVC Veins Pan AG Avg.

SETR NUP [52] 0.931 0.890 0.897 0.652 0.760 0.952 0.809 0.867 0.745 0.717 0.719 0.620 0.796

SETR PUP [52] 0.929 0.893 0.892 0.649 0.764 0.954 0.822 0.869 0.742 0.715 0.714 0.618 0.797

SETR MLA [52] 0.930 0.889 0.894 0.650 0.762 0.953 0.819 0.872 0.739 0.720 0.716 0.614 0.796

nnUNet [21] 0.942 0.894 0.910 0.704 0.723 0.948 0.824 0.877 0.782 0.720 0.680 0.616 0.802

ASPP [10] 0.935 0.892 0.914 0.689 0.760 0.953 0.812 0.918 0.807 0.695 0.720 0.629 0.811

TransUNet [7] 0.952 0.927 0.929 0.662 0.757 0.969 0.889 0.920 0.833 0.791 0.775 0.637 0.838

CoTr w/o CNN encoder [47] 0.941 0.894 0.909 0.705 0.723 0.948 0.815 0.876 0.784 0.723 0.671 0.623 0.801

CoTr* [47] 0.943 0.924 0.929 0.687 0.762 0.962 0.894 0.914 0.838 0.796 0.783 0.647 0.841

CoTr [47] 0.958 0.921 0.936 0.700 0.764 0.963 0.854 0.920 0.838 0.787 0.775 0.694 0.844

UNETR 0.968 0.924 0.941 0.750 0.766 0.971 0.913 0.890 0.847 0.788 0.767 0.741 0.856

RandomPatch [39] 0.963 0.912 0.921 0.749 0.760 0.962 0.870 0.889 0.846 0.786 0.762 0.712 0.844

PaNN [53] 0.966 0.927 0.952 0.732 0.791 0.973 0.891 0.914 0.850 0.805 0.802 0.652 0.854

nnUNet-v2 [21] 0.972 0.924 0.958 0.780 0.841 0.976 0.922 0.921 0.872 0.831 0.842 0.775 0.884

nnUNet-dys3 [21] 0.967 0.924 0.957 0.814 0.832 0.975 0.925 0.928 0.870 0.832 0.849 0.784 0.888

UNETR 0.972 0.942 0.954 0.825 0.864 0.983 0.945 0.948 0.890 0.858 0.799 0.812 0.891

Table 1. Quantitative comparisons of segmentation performance in BTCV test set. Top and bottom sections represent the benchmarks of

Standard and Free Competitions respectively. Our method is compared against current state-of-the-art models. All SETR [52] baselines use ViT-

B-16 [14] backbone. Note: Spl: spleen, RKid: right kidney, LKid: left kidney, Gall: gallbladder, Eso: esophagus, Liv: liver, Sto: stomach, Aor:

aorta IVC: inferior vena cava, Veins: portal and splenic veins, Pan: pancreas, AG: adrenal gland. All results obtained from BTCV leaderboard.

Task/Modality Spleen Segmentation (CT) Brain tumor Segmentation (MRI)

Anatomy Spleen WT ET TC All

Metrics Dice HD95 Dice HD95 Dice HD95 Dice HD95 Dice HD95

UNet [36] 0.953 4.087 0.766 9.205 0.561 11.122 0.665 10.243 0.664 10.190

AttUNet [34] 0.951 4.091 0.767 9.004 0.543 10.447 0.683 10.463 0.665 9.971

SETR NUP [52] 0.947 4.124 0.697 14.419 0.544 11.723 0.669 15.192 0.637 13.778

SETR PUP [52] 0.949 4.107 0.696 15.245 0.549 11.759 0.670 15.023 0.638 14.009

SETR MLA [52] 0.950 4.091 0.698 15.503 0.554 10.237 0.665 14.716 0.639 13.485

TransUNet [7] 0.950 4.031 0.706 14.027 0.542 10.421 0.684 14.501 0.644 12.983

TransBTS [43] - - 0.779 10.030 0.574 9.969 0.735 8.950 0.696 9.650

CoTr w/o CNN encoder [47] 0.946 4.748 0.712 11.492 0.523 9.592 0.698 12.581 0.6444 11.221

CoTr [47] 0.954 3.860 0.746 9.198 0.557 9.447 0.748 10.445 0.683 9.697

UNETR 0.964 1.333 0.789 8.266 0.585 9.354 0.761 8.845 0.711 8.822

Table 2. Quantitative comparisons of the segmentation performance in brain tumor and spleen segmentation tasks of the MSD dataset. WT,

ET and TC denote Whole Tumor, Enhancing tumor and Tumor Core sub-regions respectively.

problem of brain tumor segmentation is formulated as a 3

class segmentation task with 4-channel input.

For the spleen segmentation task, 41 CT volumes with

spleen body annotation are used. The resolution/spacing of

volumes in task 9 ranges from 0.613×0.613×1.50mm3 to

0.977×0.977×8.0mm3. All volumes are re-sampled into

the isotropic voxel spacing of 1.0 mm during pre-processing.

The voxel intensities of the images are normalized to the

range [0,1] according to 5th and 95th percentile of overall fore-

ground intensities. Spleen segmentation is formulated as a bi-

nary segmentation task with 1-channel input. For multi-organ

and spleen segmentation tasks, we randomly sample the input

images with volume sizes of [96,96,96]. For brain segmenta-

tion task, we randomly sample the input images with volume

sizes of [128, 128, 128]. For all experiments, the random

patches of foreground/background are sampled at ratio 1:1.

4.2. Evaluation Metrics

We use Dice score and 95% Hausdorff Distance (HD) to

evaluate the accuracy of segmentation in our experiments.

For a given semantic class, let Gi and Pi denote the ground

truth and prediction values for voxel i and G′ and P ′ denote

ground truth and prediction surface point sets respectively.

The Dice score and HD metrics are defined as

Dice(G,P )=
2
∑I

i=1GiPi∑I

i=1Gi+
∑I

i=1Pi

, (8)

HD(G′,P ′)=max{max
g′∈G′

min
p′∈P ′

‖g′−p′‖,

max
p′∈P ′

min
g′∈G′

‖p′−g′‖}.
(9)

The 95% HD uses the 95th percentile of the distances

between ground truth and prediction surface point sets. As

a result, the impact of a very small subset of outliers is

minimized when calculating HD.

4.3. Implementation Details

We implement UNETR in PyTorch1 and MONAI2. The

model was trained using a NVIDIA DGX-1 server. All models

were trained with the batch size of 6, using the AdamW opti-

mizer [31] with initial learning rate of 0.0001 for 20,000 iter-

ations. For the specified batch size, the average training time

1http://pytorch.org/
2https://monai.io/
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Figure 3. Qualitative comparison of different baselines in BTCV cross-validation. The first row shows a complete representative CT slice.

We exhibit four zoomed-in subjects (row 2 to 5), where our method shows visual improvement on segmentation of kidney and spleen (row 2),

pancreas and adrenal gland (row 3), gallbladder (row 4) and portal vein (row 5). The subject-wise average Dice score is shown on each sample.

was 10 hours for 20,000 iterations. Our transformer-based

encoder follows the ViT-B16 [14] architecture with L=12
layers, an embedding size ofK=768. We used a patch resolu-

tion of 16×16×16. For inference, we used a sliding window

approach with an overlap portion of 0.5 between the neighbor-

ing patches and the same resolution as specified in Sec. 4.1.

We did not use any pre-trained weights for our transformer

backbone (e.g. ViT on ImageNet) since it did not demonstrate

any performance improvements. For BTCV dataset, we have

evaluated our model and other baselines in the Standard and

Free Competitions of its leaderboard. Additional data from

the same cohort was used for the Free Competition increasing

the number of training cases to 80 volumes. For all experi-

ments, we employed five-fold cross validation with a ratio of

95:5. In addition, we used data augmentation strategies such

as random rotation of 90, 180 and 270 degrees, random flip in

axial, sagittal and coronal views and random scale and shift

intensity. We used ensembling to fuse the outputs of models

from four different five-fold cross-validations. For brain and

spleen segmentation tasks in MSD dataset, we split the data

into training, validation and test with a ratio of 80:15:5.

4.4. Quantitative Evaluations

UNETR outperforms the state-of-the-art methods

for both Standard and Free Competitions on the BTCV

leaderboard. As shown in Table 1, in the Free Competition,

UNETR achieves an overall average Dice score of 0.899
and outperforms the second, third and fourth top-ranked

methodologies by 1.238%, 1.696% and 5.269% respectively.

In the Standard Competition, we compared the perfor-

mance of UNETR against CNN and transformer-based

baselines. UNETR achieves a new state-of-the-art perfor-

mance with an average Dice score of 85.3% on all organs.

Specifically, on large organs, such as spleen, liver and

stomach, our method outperforms the second best baselines

by 1.043%, 0.830% and 2.125% respectively,in terms of

Dice score. Furthermore, in segmentation of small organs,

our method significantly outperforms the second best
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Figure 4. UNETR effectively captures the fine-grained details in segmentation outputs. The Whole Tumor (WT) encompasses a union of red, blue

and green regions. The Tumor Core (TC) includes the union of red and blue regions. The Enhancing Tumor core (ET) denotes the green regions.

baselines by 6.382% and 6.772% on gallbladder and adrenal

glands respectively, in terms of Dice score.

In Table 2, we compare the performance of UNETR

against CNN and transformer-based methodologies for brain

tumor and spleen segmentation tasks on MSD dataset. For

brain segmentation, UNETR outperforms the closest baseline

by 1.5% on average over all semantic classes. In particular,

UNETR performs considerably better in segmenting tumor

core (TC) subregion. Similarly for spleen segmentation,

UNETR outperforms the best competing methodology by

least 1.0% in terms of Dice score.

4.5. Qualitative Results

Qualitative multi-organ segmentation comparisons are pre-

sented in Fig. 3. UNETR shows improved segmentation per-

formance for abdomen organs. Our model’s capability of

learning long-range dependencies is evident in row 3 (from

the top), in which nnUNet confuses liver with stomach tissues,

while UNETR successfully delineates the boundaries of these

organs. In Fig. 3, rows 2 and 4 demonstrate a clear detection of

kidney and adrenal glands against surrounding tissues, which

indicate that UNETR captures better spatial context. In com-

parison to 2D transformer-based models, UNETR exhibits

higher boundary segmentation accuracy as it accurately identi-

fies the boundaries between kidney and spleen. This is evident

for gallbladder in row 2, liver and stomach in row 3, and portal

vein against liver in row 5. In Fig. 4, we present qualitative

segmentation comparisons for brain tumor segmentation on

the MSD dataset. Specifically, our model demonstrates better

performance in capturing the fine-grained details of tumors.

5. Discussion

Our experiments in all datasets demonstrate superior per-

formance of UNETR over both CNN and transformer-based

segmentation models. Specifically, UNETR achieves better

segmentation accuracy by capturing both global and local

dependencies. In qualitative comparisons, this is illustrated

in various cases in which UNETR effectively captures

long-range dependencies (e.g. accurate segmentation of the

pancreas tail in Fig. 3).

Moreover, the segmentation performance of UNETR on

the BTCV leaderboard demonstrates new state-of-the-art

benchmarks and validates its effectiveness. Specifically

for small anatomies, UNETR outperforms both CNN and

transformer-based models. Although 3D models already

demonstrate high segmentation accuracy for small organs

such as gallbladder, adrenal glands, UNETR can still

outperform the best competing model by a significant margin

(See Table 1). This is also observed in Fig. 3, in which
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Organ Spleen Brain

Decoder Spleen WT ET TC All

NUP 0.932 0.721 0.527 0.660 0.636

PUP 0.941 0.749 0.558 0.698 0.668

MLA 0.950 0.757 0.563 0.732 0.684

UNETR 0.964 0.789 0.585 0.761 0.711

Table 3. Effect of the decoder architecture on segmentation

performance. NUP, PUP and MLA denote Naive UpSampling,

Progressive UpSampling and Multi-scale Aggregation.

UNETR has a significantly better segmentation accuracy for

left and right adrenal glands, and UNETR is the only model

to correctly detect branches of the adrenal glands. For more

challenging tissues, such as gallbladder in row 4 and portal

vein in row 5, which have low contrast with the surrounding

liver tissue, UNETR is still capable of segmenting clear

connected boundaries.

6. Ablation

Decoder Choice In Table 3, we evaluate the effectiveness

of our decoder by comparing the performance of UNETR

with other decoder architectures on two representative

segmentation tasks from MRI and CT modalities. In these ex-

periments, we employ the encoder of UNETR but replaced the

decoder with 3D counterparts of Naive UPsampling (NUP),

Progressive UPsampling (PUP) and MuLti-scale Aggregation

(MLA) [52]. We observe that these decoder architectures

yield sub-optimal performance, despite MLA marginally

outperforming both NUP and PUP. For brain tumor segmen-

tation, UNETR outperforms its variants with MLA, PUP

and NUP decoders by 2.7%, 4.3% and 7.5% on average

Dice score. Similarly, for spleen segmentation, UNETR

outerforms MLA, PUP and NUP by 1.4%, 2.3% and 3.2%.

Patch Resolution A lower input patch resolution leads

to a higher sequence length, and therefore higher memory

consumption, since it is inversely correlated to the cube of the

resolution. As shown in Table 4, our experiments demonstrate

that decreasing the resolution leads to consistently improved

performance. Specifically, decreasing the patch resolution

from 32 to 16 improves the performance by 1.1% and

0.8% in terms of average Dice score in spleen and brain

segmentation tasks respectively. We did not experiment with

lower resolutions due to memory constraints.

Model and Computational Complexity In Table 5,

we present number of FLOPs, parameters and averaged

inference time of the models in BTCV benchmarks. Number

of FLOPs and inference time are calculated based on an input

size of 96× 96× 96 and using a sliding window approach.

According to our benchmarks, UNETR is a moderate-sized

Organ Spleen Brain

Resolution Spleen WT ET TC All

32 0.953 0.776 0.579 0.756 0.703

16 0.964 0.789 0.585 0.761 0.711

Table 4. Effect of patch resolution on segmentation performance.

Models #Params (M) FLOPs (G) Inference Time (s)

nnUNet [21] 19.07 412.65 10.28

CoTr [47] 46.51 399.21 19.21

TransUNet [7] 96.07 48.34 26.97

ASPP [11] 47.92 44.87 25.47

SETR [52] 86.03 43.49 24.86

UNETR 92.58 41.19 12.08

Table 5. Comparison of number of parameters, FLOPs and averaged

inference time for various models in BTCV experiments.

model with 92.58M parameters and 41.19G FLOPs. For com-

parison, other transformer-based methods such as CoTr [47],

TransUNet [7] and SETR [52] have 46.51M, 96.07M and

86.03M parameters and 399.21G, 48.24G and 43.49G FLOPs,

respectively. UNETR shows comparable model complexity

while outperforming these models by a large margin in

BTCV benchmarks. CNN-based segmentation models of

nnUNet [21] and ASPP [10] have 19.07M and 47.92M

parameters and 412.65G and 44.87G FLOPs, respectively.

Similarly, UNETR outperforms these CNN-based models

while having a moderate model complexity. In addition,

UNETR has the second lowest averaged inference time after

nnUNet [21] and is significantly faster than transformer-based

models such as SETR [52], TransUNet [7] and CoTr [47].

7. Conclusion

This paper introduces a novel transformer-based archi-

tecture, dubbed as UNETR, for semantic segmentation of

volumetric medical images by reformulating this task as a 1D

sequence-to-sequence prediction problem. We proposed to

use a transformer encoder to increase the model’s capability

for learning long-range dependencies and effectively

capturing global contextual representation at multiple scales.

We validated the effectiveness of UNETR on different
volumetric segmentation tasks in CT and MRI modalities.
UNETR achieves new state-of-the-art performance in both
Standard and Free Competitions on the BTCV leaderboard
for the multi-organ segmentation and outperforms competing
approaches for brain tumor and spleen segmentation on the
MSD dataset. In conclusion, UNETR has shown the potential
to effectively learn the critical anatomical relationships
represented in medical images. The proposed method could
be the foundation for a new class of transformer-based
segmentation models in medical images analysis.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-

ing properties in self-supervised vision transformers. arXiv

preprint arXiv:2104.14294, 2021.

[7] Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan

Adeli, Yan Wang, Le Lu, Alan L Yuille, and Yuyin Zhou.

Transunet: Transformers make strong encoders for medical

image segmentation. arXiv preprint arXiv:2102.04306, 2021.

[8] Jianxu Chen, Lin Yang, Yizhe Zhang, Mark Alber, and

Danny Z Chen. Combining fully convolutional and recurrent

neural networks for 3d biomedical image segmentation. In

Proceedings of the 30th International Conference on Neural

Information Processing Systems, pages 3044–3052, 2016.

[9] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolution,

and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017.

[10] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

Proceedings of the European conference on computer vision

(ECCV), pages 801–818, 2018.

[11] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation.

arXiv:1802.02611, 2018.

[12] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing

Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen. Twins:

Revisiting the design of spatial attention in vision transformers.

arXiv preprint arXiv:2104.13840, 1(2):3, 2021.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk

Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa

Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,

et al. An image is worth 16x16 words: Transformers for image

recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

[15] Qi Dou, Hao Chen, Yueming Jin, Lequan Yu, Jing Qin, and

Pheng-Ann Heng. 3d deeply supervised network for automatic

liver segmentation from ct volumes. In International con-

ference on medical image computing and computer-assisted

intervention, pages 149–157. Springer, 2016.

[16] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene

segmentation. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 3146–3154,

2019.

[17] Eli Gibson, Francesco Giganti, Yipeng Hu, Ester Bonmati,

Steve Bandula, Kurinchi Gurusamy, Brian Davidson,

Stephen P Pereira, Matthew J Clarkson, and Dean C Barratt.

Automatic multi-organ segmentation on abdominal ct with

dense v-networks. IEEE transactions on medical imaging,

37(8):1822–1834, 2018.

[18] Zaiwang Gu, Jun Cheng, Huazhu Fu, Kang Zhou, Huaying

Hao, Yitian Zhao, Tianyang Zhang, Shenghua Gao, and

Jiang Liu. Ce-net: Context encoder network for 2d medical

image segmentation. IEEE transactions on medical imaging,

38(10):2281–2292, 2019.

[19] Nicholas Heller, Niranjan Sathianathen, Arveen Kalapara,

Edward Walczak, Keenan Moore, Heather Kaluzniak, Joel

Rosenberg, Paul Blake, Zachary Rengel, Makinna Oestreich,

et al. The kits19 challenge data: 300 kidney tumor cases

with clinical context, ct semantic segmentations, and surgical

outcomes. arXiv preprint arXiv:1904.00445, 2019.

[20] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local

relation networks for image recognition. In Proceedings of

the IEEE/CVF International Conference on Computer Vision,

pages 3464–3473, 2019.

[21] Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens Petersen,

and Klaus H Maier-Hein. nnu-net: a self-configuring method

for deep learning-based biomedical image segmentation.

Nature Methods, 18(2):203–211, 2021.

[22] Fabian Isensee and Klaus H Maier-Hein. An attempt at beating

the 3d u-net. arXiv preprint arXiv:1908.02182, 2019.

[23] Qiangguo Jin, Zhaopeng Meng, Changming Sun, Hui Cui, and

Ran Su. Ra-unet: A hybrid deep attention-aware network to

extract liver and tumor in ct scans. Frontiers in Bioengineering

and Biotechnology, 8:1471, 2020.

[24] Konstantinos Kamnitsas, Liang Chen, Christian Ledig, Daniel

Rueckert, and Ben Glocker. Multi-scale 3d convolutional

neural networks for lesion segmentation in brain mri. Ischemic

stroke lesion segmentation, 13:46, 2015.

[25] Konstantinos Kamnitsas, Christian Ledig, Virginia FJ New-

combe, Joanna P Simpson, Andrew D Kane, David K Menon,

Daniel Rueckert, and Ben Glocker. Efficient multi-scale

3d cnn with fully connected crf for accurate brain lesion

segmentation. Medical image analysis, 36:61–78, 2017.

[26] B Landman, Z Xu, J Igelsias, M Styner, T Langerak, and

A Klein. Miccai multi-atlas labeling beyond the cranial

vault–workshop and challenge. In Proc. MICCAI Multi-Atlas

Labeling Beyond Cranial Vault—Workshop Challenge, 2015.

[27] Wenqi Li, Guotai Wang, Lucas Fidon, Sebastien Ourselin,

M Jorge Cardoso, and Tom Vercauteren. On the compactness,

efficiency, and representation of 3d convolutional networks:

582



brain parcellation as a pretext task. In International conference

on information processing in medical imaging, pages 348–360.

Springer, 2017.

[28] Xiaomeng Li, Hao Chen, Xiaojuan Qi, Qi Dou, Chi-Wing Fu,

and Pheng-Ann Heng. H-denseunet: hybrid densely connected

unet for liver and tumor segmentation from ct volumes. IEEE

transactions on medical imaging, 37(12):2663–2674, 2018.

[29] Siqi Liu, Daguang Xu, S Kevin Zhou, Olivier Pauly, Sasa

Grbic, Thomas Mertelmeier, Julia Wicklein, Anna Jerebko,

Weidong Cai, and Dorin Comaniciu. 3d anisotropic hybrid

network: Transferring convolutional features from 2d images

to 3d anisotropic volumes. In International Conference

on Medical Image Computing and Computer-Assisted

Intervention, pages 851–858. Springer, 2018.

[30] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng

Zhang, Stephen Lin, and Baining Guo. Swin transformer:

Hierarchical vision transformer using shifted windows. arXiv

preprint arXiv:2103.14030, 2021.

[31] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017.

[32] Fausto Milletari, Nassir Navab, and Seyed-Ahmad Ahmadi.

V-net: Fully convolutional neural networks for volumetric

medical image segmentation. In 2016 fourth international

conference on 3D vision (3DV), pages 565–571. IEEE, 2016.

[33] Miguel Monteiro, Virginia FJ Newcombe, Francois Mathieu,

Krishma Adatia, Konstantinos Kamnitsas, Enzo Ferrante,

Tilak Das, Daniel Whitehouse, Daniel Rueckert, David K

Menon, et al. Multiclass semantic segmentation and quantifi-

cation of traumatic brain injury lesions on head ct using deep

learning: an algorithm development and multicentre validation

study. The Lancet Digital Health, 2(6):e314–e322, 2020.

[34] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew

Lee, Mattias Heinrich, Kazunari Misawa, Kensaku Mori,

Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al.

Attention u-net: Learning where to look for the pancreas.

arXiv preprint arXiv:1804.03999, 2018.

[35] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan

Bello, Anselm Levskaya, and Jonathon Shlens. Stand-

alone self-attention in vision models. arXiv preprint

arXiv:1906.05909, 2019.

[36] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional

networks for biomedical image segmentation. In Proc.

MICCAI, volume 9351 of LNCS, pages 234–241, 2015.

[37] Holger R Roth, Hirohisa Oda, Yuichiro Hayashi, Masahiro

Oda, Natsuki Shimizu, Michitaka Fujiwara, Kazunari Misawa,

and Kensaku Mori. Hierarchical 3d fully convolutional

networks for multi-organ segmentation. arXiv preprint

arXiv:1704.06382, 2017.

[38] Amber L Simpson, Michela Antonelli, Spyridon Bakas,

Michel Bilello, Keyvan Farahani, Bram Van Ginneken,

Annette Kopp-Schneider, Bennett A Landman, Geert Litjens,

Bjoern Menze, et al. A large annotated medical image

dataset for the development and evaluation of segmentation

algorithms. arXiv preprint arXiv:1902.09063, 2019.

[39] Yucheng Tang, Riqiang Gao, Ho Hin Lee, Shizhong Han, Yun-

qiang Chen, Dashan Gao, Vishwesh Nath, Camilo Bermudez,

Michael R Savona, Richard G Abramson, et al. High-

resolution 3d abdominal segmentation with random patch

network fusion. Medical Image Analysis, 69:101894, 2021.

[40] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
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