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Abstract
Multi-object tracking is essential in biomedical image

analysis. Most methods follow a tracking-by-detection ap-
proach that involves using object detectors and learning the
appearance feature models of the detected regions for as-
sociation. Although these methods can learn the appear-
ance similarity features to identify the same objects among
frames, they have difficulties identifying the same cells be-
cause cells have a similar appearance and their shapes
change as they migrate. In addition, cells often partially
overlap for several frames. In this case, even an expert
biologist would require knowledge of the spatial-temporal
context in order to identify individual cells. To tackle such
difficult situations, we propose a cell-tracking method that
can effectively use the spatial-temporal context in multiple
frames by using long-term motion estimation and an object-
level warping loss. We conducted experiments showing that
the proposed method outperformed state-of-the-art methods
under various conditions on real biological images.

1. Introduction
Multi-object cell tracking is essential in biomedical im-

age analysis for time-lapse images, where hundreds of cells
in a population are individually tracked over thousands of
frames. Automatic cell tracking enables us to obtain cell-
behavior metrics including cell-migration speed and cell-
lineage information.

There are three issues with cell tracking (Fig. 1). First,
cells have a similar appearance and their shapes change as
they migrate. This makes it difficult to identify the same
cells at different times on the basis of shape similarity. Sec-
ond, cells often touch and have blurry intercellular bound-
aries (call a cell cluster), as shown in the 3rd and 4th frames
in Fig. 1. In such cases, even experts often fail to identify in-
dividual cells from one image. Third, a cell may divide into
two cells (cell mitosis); conventional general-object track-
ing methods have difficulty tracking such cells. To distin-
guish mitosis and separation from a cluster, it is required to
observe before and after the mitosis event.

Difficult

Figure 1. Example of difficult case. Top: original images, Bottom:
ground-truth of trajectories. In the 3rd frame, the blue and red cells
severely touch and form a cluster in several frames. It is difficult
to identify individual cells from only the 3rd and 4th frames. If we
observe the entire frame, we can identify the individual cells.

Tracking-by-detection is one of the most common ap-
proaches to multi-object tracking. A recent trend is to in-
corporate existing (bounding box) detectors into trackers
and simultaneously train a detector, which detects bound-
ing boxes, and an appearance model, which measures the
appearance similarity of detected bounding boxes [15, 18,
46, 4, 11, 39]. LSTM [22] has often been used to learn
for measuring the similarity among the time series of de-
tected bounding boxes [35, 12, 10, 14, 26]. However, these
approaches do not use the spatial context outside from the
bounding boxes (e.g., the positional relationship of nearby
objects), which is important information for cell tracking
since they have similar appearances and their shapes change
during the migration. To effectively use the spatial context,
point-based methods for detection and motion estimation
recently have attracted attention [21, 55, 59]; these methods
directly extract the common image features from the entire
image by using a single network to estimate the position and
motion map. However, they have two drawbacks; 1) they in-
dependently perform detection and association. Objects are
first detected, and the detected objects between successive
frames are then associated using one-by-one matching. This
means the detection errors directly propagate to the associ-
ation steps. 2) they use only the local temporal context in
two frames; i.e., they cannot extract the long-term spatial-
temporal context from multiple frames. Under high-density
conditions, cells often touch and have blurry intercellular
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boundaries (forming a cluster region) in several frames. For
example in Fig. 1, the red and blue cells move and form a
cluster region at the 3rd and 4th frames; we can not iden-
tify individual cells from only one image. Such conditions
make it difficult to detect cells and estimate cell motion by
using only two frames, and due to the assignment constraint
(one-to-one matching), the current methods often mistak-
enly associate a cluster consisting two cells as one cell. If
we can observe the cells in multiple frames, we can observe
the individual cells moving and forming the cluster , and
then separating. This indicates that the long-term spatial-
temporal context is important for multi-object tracking.

There are two challenges facing the extraction of
tracking information (position and motion) from multiple
frames. First, it is required to extract the information from
distant frames. For example in Fig. 1, to distinguish mitosis
from separation of a cell from a cluster, we need the infor-
mation when cells forming a cluster region. Second, the
consistency of the motions and positions must be preserved
among multiple frames. The estimated maps may have in-
consistencies, e.g., if a cell is detected at t−1 and its motion
is toward a specific position, no cell is detected at that posi-
tion at t. Such inconsistencies often affect tracking perfor-
mance. In simultaneous estimation in multiple frames, the
consistency of the motions and positions among the frames
is important for a stable estimation. Indeed, in our prelim-
inary study, when we simply inputted multiple frames to a
3D CNN and tries to simultaneously estimate the positions
and motions in every successive frame, it did not improve
the performance.

In this paper, we propose a cell-tracking method that
can effectively use the long-term spatial-temporal context
in multiple frames. To use the spatial-temporal context ef-
fectively, a 3D CNN simultaneously estimates multi-frame
motion and position maps all at once, given multiple frames
as inputs, as shown in Fig. 2(a). In this multi-frame estima-
tion, we estimate the motion in a long interval from t to T
(long-term motion) in addition to the motion between suc-
cessive frames (short-term motion), which is directly used
for tracking. The long-term motion information facilitates
not only training the network to use the spatial-temporal
context but also interpolating for false negatives.

In this estimation, it is a key of our research to preserve
consistency among estimation results. To preserve consis-
tency, we introduce a warping loss that penalizes any in-
consistency between the estimated positions and motions
in multiple frames, which enables the model to directly
learn the tracking operation. In addition, instead of one-by-
one matching, we introduce tracking-by-object-level warp-
ing that transforms the detected region of each cell at t− 1
into the corresponding region at t by using the estimated
motion, in which the object-level motion information is di-
rectly trained using the warping loss. We conducted ex-

periments to evaluate our method. The results indicate that
it outperformed the state-of-the-art methods under various
conditions on real biological images.

Our main contributions are summarized as follows:

• We propose a cell tracking method for simultaneously
estimating the trajectories of multiple objects in multi-
ple frames effectively using the spatial-temporal con-
text in multiple frames. We perform long-term motion
estimation from t to T to facilitates not only training
the network to use the spatial-temporal context but also
interpolating for false negatives.

• We propose an object-level warping loss that penal-
izes any inconsistency between the estimated position
and motion in multiple frames. The individual trajec-
tories in multiple frames can be directly obtained us-
ing this warping operation. In contrast to tracking-by-
detection, our tracking-by-warping method can sepa-
rate a cluster region into multiple cells even if a cluster
consisting of multiple cells was detected as one object.

• Experiments on real biological images demonstrated
the effectiveness of the proposed method under various
conditions. Our method outperformed the state-of-the-
art methods under all conditions.

2. Related work

Cell tracking: Many cell tracking methods have been pro-
posed; they use particle filters [36, 47], active contour [31,
51, 56, 61], and detection-and-association [57, 41, 1, 33, 2].
The most common approach is tracking-by-detection that
first detects all cells in individual frames [57, 41, 1, 33, 2]
and then performs tracking by solving a data-association
problem for finding the set of object pairs from many asso-
ciation hypotheses. The major difference from general ob-
ject tracking methods is the handling of cell mitosis events.
Many cell tracking methods address this problem by using
linear programming [23, 5, 6, 61, 53] and graph-based opti-
mization for global data association [7, 45, 48, 17]. In such
methods, the detection is separate from the tracking; that is,
they do not use the spatial-temporal context. Several meth-
ods have been proposed to use the spatial-temporal context.
Payer et al. [37] proposed ConvGRU, which not only ex-
tracts local features but also memorizes inter-frame infor-
mation by embedding cell IDs in each cell region. How-
ever, this method requires annotations for all cell regions
(as training data) and does not perform well when the cells
are densely distributed, because the embedded IDs are not
well learned for such cases. It does not expressly learn the
motion of each cell. Hayashida et al. [20, 21] proposed
tracking methods for jointly estimating the position and mo-
tion between two frames. These methods have been shown
to outperform those that use a detector separately from a
tracker. Unlike these methods, our cell tracking method si-
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(a) Long-term motion to obtain spatial-temporal context (b) Object-level warping loss 
for penalizing inconsistent estimation
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Figure 2. Overview of proposed method. (a) Given time-lapse images as inputs, a single network simultaneously estimates multi-frame
motion and position maps for every frame. To extract the long-term spatial-temporal context of multiple frames, we estimate long-term
motion addition to short-term motion. Here, for visualization purpose, we only show the long-term motion for the red cell but actually
these are estimated for every cell. (b) Example of our object-level warping loss from t − 1 to t, which penalize inconsistent estimation.
Left: source image Ŷt−1 and target image Ŷt. Right: warping image Ŵj

t−1,t was obtained by warping the masked estimated position
heat-map Bj

t−1 ⊙ Ŷt−1 using estimated motion F̂t,t−1 (Eq.10), for red and blue cells, respectively. Bj
t−1 is the mask image that has 1 on

the target cell (red/blue region). For the red cell, warping loss has a high value since the cell was detected at t−1 but not at t (inconsistent).
For the blue cell, warping loss has a low value since the cell was detected at both frames (consistent).

multaneously estimates the position and motion using the
spatial-temporal context in multiple frames.
Tracking-by-detection for general multi-object track-
ing: In general multi-object tracking (MOT), tracking-by-
detection is a standard approach [26, 15, 18, 46, 4, 11, 39].
Most MOT methods use bounding box detectors [32, 42, 40,
52], such as Faster R-CNN [42], and learn the appearance-
feature models of the bounding boxes for association. Per-
son re-identification [16, 44, 49] is often used to compute
the similarity in appearance of detected persons. LSTM
[22] is also often used for learning the long-term appear-
ance model in multiple frames [35, 12, 10, 14, 26]. Kim
et al. [26] uses a bilinear LSTM to learn long-term ap-
pearance models from the sequence of bounding boxes. A
recent trend in multi-object tracking is to incorporate ex-
isting detectors into trackers and simultaneously train the
appearance models and the association in multiple frames
[15, 18, 46, 4, 11, 39]. Feichtenhofer et al. [15] predicted
motions between bounding boxes in successive frames and
propagated the loss to the detectors. Sun et al. [46] pro-
posed the Deep Affinity Network (DAN) that jointly learns
a feature representation for identification and association.
Chu et al. [11] proposed FAMNet, which incorporates an
optimization function for the data-association problem into
a network and simultaneously learns the feature extraction
for object similarity and data association. These methods
use a bounding box detector, and the tracking part only
uses the detected bounding boxes. They learn the appear-
ance feature models and association using an end-to-end
manner. However, they do not exploit the spatial context
of the outer regions of the bounding boxes. We here note
that although some methods [19, 34] use multiple frames
for learning similarity measurements of detected bounding
boxes, they did not use the ‘long-term motion’ for ‘motion’

estimation. It is very different from our method. In addi-
tion, it is the first attempt to use the object-level warping
loss for motion estimation.
Point-based tracking using spatial context: Point-based
methods for jointly estimating the center positions of ob-
jects and their attributes as points have recently attracted
attention [20, 21, 60, 55, 59]. Given an input image,
CenterNet [60] simultaneously estimates the center-position
heatmap and the size map that stores the height and width
of the object’s bounding box. Similarly, given two succes-
sive frames, CenterTrack [59] also estimates the position
offset (motion) of objects between two successive frames.
These methods produce multiple maps for the center posi-
tion heat-map and other attributes. MPM [21] simultane-
ously represents detection and association in a single map.
The advantage of these methods is their effective use of the
spatial context, because they directly extract common im-
age features for the motion and position estimation by us-
ing a single network. However, cells often partially overlap,
and this situation typically continues for several frames, as
shown in Fig. 1. Even experts have difficulty identifying
each cell from only two frames. To tackle such difficult sit-
uations, we propose a cell-tracking method that can effec-
tively use the long-term spatial-temporal context in multiple
frames with preserving consistency.
Tracking using optical flow: Tracking methods using op-
tical flow have been proposed [58, 27, 29, 54, 38]. They
basically estimate the optical flow of an entire image be-
tween successive frames using conventional or deep-based
methods [13]; then, the optical flow was used to facilitate
tracking. In their methods, the flows are estimated from the
original images but not from object-level estimation results.
In contrast, we perform the object-level warping loss to train
a network so that produce consistent results.
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Figure 3. Each map can be converted into short-term motion-
vector field F̂t,t−1, long-term motion-vector field F̂t,T and cell-
position heat-map Ŷt.

3. Tracking using long-term spatial-temporal
context

As shown in Fig. 2 (a), our method simultaneously esti-
mates the short-term and long-term motion and position of
each cell in multi-frames using 3DCNN, in which long-term
motion facilitates extracting the long-term spatial-temporal
context and is used for interpolation of false negative. In the
training of the network, we perform an object-level warp-
ing loss to preserve the consistency among the estimated
motion and positions in multi-frames as shown in Fig. 2(b).
Our method performs tracking by object-level warping that
transfers a region of each cell from t − 1 to t by using the
estimated motions. The individual trajectories in multiple
frames can be directly obtained using this warping opera-
tion. The details are described as follows.

Encoding long-term motion in heat-map:
Given multiple time-lapse frames {It; t ∈ {T − 1, . . . , T +
N}}, a single network simultaneously estimates the two
types of motion (short and long) and the position maps at
t ∈ {T, ..., T + N} (Fig. 3). To represent this map, we
follow the recently proposed MPM [21], which simultane-
ously represents the position and moving direction between
successive frames. The motion vector of each object is en-
coded on the pixels of the object’s center position, and the
distribution of the magnitudes of the vector represents the
heat-map of the center positions, where the local-maxima
of the heat-map indicates the center position. In contrast to
MPM, we encode two motion vectors (short-term and long-
term motion) and the cell center position to a map.

In our problem setting, the trajectories of the cell-center
positions are annotated and used as the training data, where
we denote an annotated cell position for the i-th cell at t as
ai
t = (xi

t, y
i
t). The partial sequence {It; t ∈ {T −1, ..., T +

N}} is taken as the input images since we cannot input the
entire sequence due to the limitation of GPU memory. Note
that we treat motion as an inverse direction from t to t −
1 in order to naturally define cell mitosis when a mother
cell divides into two daughter cells in one motion from a
daughter cell.

・・・

・・・
・・・

・・・
・・・

・・・
・・・

・・・
・・・

・・・
・・・

・・・
・・・

・・・
・・・

・・・
・・・

・・・
・・・

・・・
・・・

・・・

3D feature map
32ch

64ch

128ch

256ch

Skip connection D
ow

n sam
pling

U
p sam

pling

Input

3ch

0ch

1ch

2ch

3D conv + ReLU +
3D conv + ReLU +
2D maxpool

2D upsample +
3D conv + ReLU +
3D conv + ReLU

3D conv + ReLU +
3D conv + ReLU

3D conv + ReLU +
3D conv

・
・
・

N+1

�𝑀𝑀𝑇𝑇

�𝑀𝑀𝑇𝑇+𝑁𝑁

Estimated maps

N+1 
frames

𝐼𝐼𝑇𝑇+𝑁𝑁−1
𝐼𝐼𝑇𝑇−1

N+1 
frames

𝐼𝐼𝑇𝑇+𝑁𝑁
𝐼𝐼𝑇𝑇

N+1 
frames

𝐼𝐼𝑇𝑇
𝐼𝐼𝑇𝑇

Figure 4. Network architecture.

For each annotated center ai
t, the short-term motion from

t to t − 1 is defined as (∆xi
s,∆yis) = (xi

t−1 − xi
t, y

i
t−1 −

yit). The long-term motion from t to T is defined as
(∆xi

l,∆yil) = (xi
T − xi

t, y
i
T − yit). The concatenation of

these two motion vectors vi
t = (∆xi

s,∆yis,∆xi
l,∆yil ,C)

is encoded on pixel p around the i-th center ai
t. We in-

troduce a constant value C on an additional dimension to
distinguish the following two cases; ‘no cells at p’ is rep-
resented as (0, 0, 0, 0, 0), and ‘no motion’ as (0, 0, 0, 0,C).
The encoded vector Mi

t(p) is represented as

Mi
t(pt) = w(pt)

vi
t

||vi
t||2

, (1)

w(pt) = exp

(
−||ai

t − pt||22
σ2

)
, (2)

where w(pt) is a Gaussian function with the annotation
coordinate ait (center point) as its peak, and σ is a hyper-
parameter that indicates the standard deviation of the distri-
bution and controls the spread of the peak.

The entire map Mt at t is defined as follows:

Mt(p) = Mi′

t (p), (3)
i′ = argmax

i
||Mi

t(p)||2. (4)

Since the motion vector vi
t/||vi

t||2 is a unit vector in Eq.(1),
w(·) is a function that represents the magnitude of each
vector in the map. The magnitude of Mt shows the cell-
position heat-map in which a local maximum indicates
the center position of an object. This simultaneous rep-
resentation guarantees coherence whereby if a cell is de-
tected, the corresponding two types of motions are al-
ways obtained. The set of ground-truth maps is defined as
{MT ,MT+1, ...,MT+N}.

Network model and MSE loss:

Fig. 4 shows an overview of our network trained to estimate
the set of maps given multiple frames {It ∈ RW×H ; t ∈
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{T−1, ..., T+N}}. The network has a U-Net-like architec-
ture [43] and 3D convolution layers. For the input, we create
3ch × 3D data ((N+1)×W×H), in which the 0ch consists
of the duplicate images of the initial frame {IT , ..., IT }, 1ch
consists of time-lapse images {IT , ..., IT+N}, and 2ch con-
sists of the shifted time-lapse images {IT−1, ..., IT+N−1}.
The pair (0ch and 1ch) at time t is {It, IT } and corresponds
to learning the long-term motion from t to T . The pair (1ch
and 2ch) at time t is {It, It−1} and corresponds to learning
the short-term motion from t to t− 1.

This network is trained using the sum of two types of
losses L = Lmse + Lw, where Lmse indicates the mean
squared error (MSE) between the estimated maps and their
ground-truth, and Lw indicates the warping loss to prevent
inconsistency among frames. Let us define the estimated
maps as {M̂T , M̂T+1, ..., M̂T+N}. The Lmse is defined as

Lmse =
1

N + 1

T+N∑
t=T

∑
p

(||Mt(p)− M̂t(p)||22

+(||Mt(p)||2 − ||M̂t(p)||2)2), (5)

where the first term ||Mt(p)−M̂t(p)||22 is the squared error
between the ground-truth map Mt and estimated map M̂t.
The second term (||Mt(p)||2−||M̂t(p)||2)2 is the squared
error between the magnitudes of Mt and M̂t; it directly
reflects the error of the position heat-map (i.e., detection),
making training stable.

Object-level warping loss:

The estimated maps may have inconsistencies, e.g., when
no cell is detected at that position at t even if a cell is de-
tected at t − 1 and its motion is toward a specific position.
To mitigate this problem, we introduce a warping loss that
penalizes such inconsistencies between the estimated posi-
tion and motion in multiple frames. To find inconsisten-
cies between the frames, we can not directly compare the
detection results because cells move and we do not know
the association between detected positions. Therefore, we
perform a warping operation to find the inconsistencies.
An image-level warping loss has often been used for the
optical-flow estimation problem to estimate the correspond-
ing pixels from a source image to a target image. How-
ever, in multi-object tracking, the image-level warping loss
does not penalize switching errors. Therefore, we perform
warping for each object (object-level warping) to penalize
switching cases. In addition, since cell regions are not pro-
vided as the training data, we perform the warping for the
estimated heat-map instead of the original images. The loss
is computed by the sum of the MSE between the target im-
age and warped image from the source image for each cell.
This loss maintains consistency among estimation results.

Fig. 2(b) illustrates our warping loss from t − 1 to t.
In this example, a cell is miss-detected at t, and this miss-
detection is inconsistent with the correct detection results at
t−1. The warping operation enables us to compare the MSE
of the heat-map between the different frames by warping the
estimated heat-map using the motion information. This loss
penalizes the inconsistency.

Let us define the estimated vector at pixel p as M̂t(p) =
(∆̂xs, ∆̂ys, ∆̂xl, ∆̂yl, ĉ). (∆̂xs, ∆̂ys) corresponds to the
weighted short-term motion vector from t to t − 1, and
(∆̂xl, ∆̂yl) corresponds to the weighted long-term motion
vector from t to T . The ĉ stores the weighting information,
and the motion vector can be restored by multiplying the
vectors by C/ĉ 1. The estimated center-position heat-map
Ŷt, and two types of motion vector fields F̂t,t−1, F̂t,T are
defined as follows:

Ŷt(p) = ||M̂t(p)||2, (6)

F̂t,t−1(p) =
C

ĉ

(
∆̂xs, ∆̂ys

)
, (7)

F̂t,T (p) =
C

ĉ

(
∆̂xl, ∆̂yl

)
, (8)

where positions around the cell centroid only have a non-
zero vector, and its magnitude value indicates the value of
the position heatmap at p as represented by Eq. 6. Fig. 3 il-
lustrates the transformation from M̂t into Ŷt, F̂t,t−1, F̂t,T

when a cell divides into two cells. In this case, the motion
vectors from the two daughter cells point to the same posi-
tion in the mother cell (the green and purple arrows).

The object-level warped image Ŵj
t−1,t for the j-th cell

from t−1 to t is defined as the image that the masked image
Bj

t−1 ⊙ Ŷt−1 is warped by the motion F̂t,t−1, in which Bj
t

indicates a binary mask that has 1 for the foreground region
Sj
t , and ⊙ is Hadamard product. The foreground region of

the j-th cell at frame t (Sj
t ) is a set of pixels that satisfies

||Mj
t (p)||2 > thm. It is defined as:

Ŵj
t−1,t(p) = {Bj

t−1 ⊙ Ŷt−1}(p+ F̂t,t−1(p)), (9)

where the warping direction is the inverse of the motion vec-
tor, similar to that of optical-flow estimation. Similarly, the
warped image Ŵj

T,t from T to t (long-term motion) is ob-
tained using F̂t,T :

Ŵj
T,t(p) = {Bj

T ⊙ ŶT }(p+ F̂t,T (p)). (10)

This warping operation is applied to estimation result from
T to T +N , and the set of warped images {Ŵ} and center
position heat-maps {Ŷ} are obtained.

If the heat-maps Ŷt and Ŷt−1 and motion field F̂t,t−1

are accurately estimated, the warped image Ŵt−1,t should

1To avoid dividing C by zero value, a very small value was added to ĉ
in the implementation
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Figure 5. Our tracking using warping recovers from miss-
detection. In 2nd frame, two cells were detected as single re-
gion. However, these two cells were correctly detected in previous
frame; thus, warped regions were separately distributed in region.

be the same as Ŷt. The warping loss Lw is defined as the
sum of the MSEs between Ŵ and Ŷ:

Lw =
1

N

T+N∑
t=T+1

Kt∑
j=1

(||Ŵt−1,t −Bj
t ⊙ Ŷt||22 (11)

+||ŴT,t −Bj
t ⊙ Ŷt||22), (12)

where Kt is the number of cells at t.

Tracking by object-level warping

We track cells by applying an object-level warping opera-
tion, which transforms the detected region of each cell at
t − 1 into the next frame by using the estimated short-term
motion F̂t,t−1. First, we initialize the regions around cell
centroids at the initial frame by using position heat-map Ŷ0;
then, we obtain the trajectory by simply warping the regions
of each cell into the next frame (Eq. 9). This operation is it-
erated for one frame to the next.

Our tracking-by-warping method has three advantages.
First, it can handle a mitosis event because F̂t,t−1 can rep-
resent the one-to-two matching of the regions. Second, it
can recover from a miss-detection. Let us consider a case in
which two cells are detected at t−1 but overlap at t in a way
that one of the cells is not detected at t, as shown in Fig. 5.
Here, the warped regions of the two cells are separated into
two regions in a single detected region at t. The proposed
method can recover from this miss-detection. Third, it can
recover from the case in which there are still false negatives
after applying our object-level warping operation by inter-
polating the miss-detection using long-term motion F̂t,T .
When a track termination and the beginnings of new tracks
are found, our network is applied to the sequence images
whose initial frame is the termination time of the track. Our
method determines the connection of the tracklets by using
the estimated long-term motion from the initial cell position
of the new track. The false-negative positions between the
tracklets can be simply interpolated. Since the long-term

Figure 6. Example images captured under four conditions. a)
BMP2, b)BMP2+FGF2, c) Control, d) FGF2, (e)-(h) Enlarged im-
ages of red box in (a)-(d). Cell appearance and image contrast
differ depending on conditions.

motions relative to the initial frame are estimated for ev-
ery frame, only hyper-parameter is the maximum number
of frames.

4. Experiments
Data set and experimental setup

For our experiments, we used an open dataset [25] contain-
ing time-lapse image sequences captured by phase-contrast
microscopy because these data were used in the study most
related to ours [21] and the data fit our target2; cells often
overlap; thus, it is difficult even for an expert to detect indi-
vidual cells from only one image, as shown in Fig. 1. The
data include image sequences captured under four different
conditions: (a) BMP2, (b) BMP2+FGF2, (c) Control, (d)
FGF2, in which each condition has four image sequences
(total: 16 sequences). As shown in Fig. 6, the cell ap-
pearance significantly differs depending on the conditions;
cells often shrink and partially overlap in FGF2, cell re-
gions tend to be expanded under BMP2, and there are both
expanded and shrunken cells under BMP2+FGF. Tracking
under FGF2 is particularly difficult.

In each image sequence, the images were captured every
5 minutes for 780 frames with a resolution of 1392×1040
pixels. For the training data, all cells were annotated in 200
frames of the BMP2, BMP2+FGF2. For the test data, all
cells were annotated in BMP2; three cells were randomly
selected at the beginning of the sequence. Then, the three
cell’s family trees throughout the entire sequence were an-
notated in all other 15 sequences, where the number of the
annotated cells increased with time due to cell division. The
total number of annotated cells was 202851. In the test,
Control and FGF2 conditions differed from the conditions
of the training data. To train our network, we used the Adam

2These data are more challenging compared with the data of the ISBI
Cell Tracking Challenge [40, 50], which focuses on segmentation tasks.
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Table 1. Cell-detection performance in terms of precision (Pre.),
recall (Rec.) and F1-score (F1). Met. denotes method.

Met.
Bensch

[3]
Bise

[7]
CMF

[20]
MPM

[21] Ours

Pre. 0.583 0.850 0.968 0.964 0.972
Rec. 0.623 0.811 0.902 0.932 0.940
F1 0.602 0.830 0.934 0.948 0.956

Figure 7. Examples of detection results under the Control. Left:
the entire image depicts our results; the total number of cells was
346; Right: enlarged images of detection results from CMF [20],
MPM [21], and ours. Green: true positive; Red: false negative.

[28] optimizer with a learning rate of 10−4, epoch= 300,
σ = 6, C = 5, thm = 0.03, n = 6 in all experiments.
The detection regions are obtained by the thresholding of
the heatmap (threshold = 0.3). Although a larger number
of input images n is the better, we set n to 6 due to the mem-
ory limitation of the GPU (NVIDIA TITAN RTX: 24GB).

We compared our method with six other methods: Ben-
sch [3], which uses an asymmetric graph-cut and frame-by-
frame association; Chalfoun [9], which first segments cell
regions [57] and then performs optimization for the frame-
by-frame association; Bise[7], which solves a global data
association problem using an entire sequence; CMF [20],
which uses a CNN to estimate motion flow; MPM [21],
which achieved state-of-the-art (SOTA) performance on this
data set); CenterTrack [59], which simultaneously estimates
a position map and motion map by using a single network.
(The method was developed for general multi-object track-
ing; thus, it cannot handle mitosis events and tracking un-
der dense conditions. We tested this method to show that
a state-of-the-art method for general multi-object tracking
does not work for cell tracking). We used the training data
for training and tuning the parameters of all the methods.

Cell detection performance
We evaluated the cell-detection performance by using pre-
cision, recall, and F1-score. Note that we could not ap-
ply learning-based segmentation because the data-set only
had point-level annotation. Table 1 lists the cell-detection
performances of the methods. The CNN-based methods
(CMF, MPM, and Ours) outperformed the other two meth-
ods. Our method slightly improved all the metrics com-
pared with MPM (SOTA). The framework using spatial-

Table 2. Target effectiveness

Method BMP2*
FGF2+
BMP2* Cont. FGF2 Ave.

Bensch [3] 0.543 0.448 0.621 0.465 0.519
Chalfoun [8] 0.691 0.587 0.683 0.604 0.641
†Li [30] 0.630 0.710 0.700 0.570 0.653
†Kanade [23] 0.800 0.790 0.830 0.640 0.765
Bise [7] 0.788 0.633 0.733 0.710 0.716
CenterTrack[59] 0.547 0.501 0.428 0.520 0.499
CMF [20] 0.939 0.841 0.756 0.761 0.822
MPM [21] 0.958 0.911 0.803 0.829 0.875
Ours 0.978 0.955 0.909 0.884 0.931

Table 3. Target effectiveness (TE) in ablation study. TE is the av-
erage of all conditions. ’multi’ is simultaneous estimation in mul-
tiple frames. ’wl’ is the object-level warping loss. ’lt’ is long-term
motion estimation. ’int.’ is interpolation.

method multi wl lt int. TE
w/o wl, lt, int, ✓ 0.862
w/o lt, int. ✓ ✓ 0.901
w/o int. ✓ ✓ ✓ 0.903
Ours ✓ ✓ ✓ ✓ 0.931

temporal context in multiple frames probably contributed to
this improvement. Fig. 7 shows examples of cell-detection
results by CMF [20], MPM [21], and our method. Our
method successfully detected cells that were in close con-
tact, while the other methods miss-detected them.

Cell tracking performance
We evaluated the tracking performance in terms of target
effectiveness [24, 21]. Target effectiveness indicates the
number of consecutive frames in which the tracking method
correctly tracked a cell continuously. To compute this met-
ric, we first assigned each ground-truth cell position an esti-
mated cell position for each frame and then found the most
often assigned estimated track. The target effectiveness is
the number of the assigned frames of the estimated track
divided by the total number of frames in the ground-truth.
This metric is very strict. Even if only one switching error
occurs in the middle of the trajectory, the target effective-
ness is 0.5.

Table 2 lists the target effectiveness 3. Note that BMP2
and FGF2+BMP2 (denoted with ’*’) were the same con-
ditions in the training but Cont. and FGF2 were differ-
ent conditions from the training conditions. The non-deep
learning methods (Bensch, Chalfoun, Li, Bise, and Kanade)
were sensitive to the culture conditions, and did not perform
well, in particular, under FGF2. We consider that these non-
deep learning methods could not capture image features for

3The target-effectiveness scores of †Li and †Kanade were evaluated
using the same data-set in their papers [30, 24].
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Image

GT

CMF

MPM

Ours

Figure 8. Example of tracking results under FGF2 (Same example
as shown in Fig. 1). GT indicates ground-truth. Although con-
ventional methods had miss-tracked significantly touching cells at
3rd and 4th frame, our method correctly tracked them by using
spatial-temporal context.

various conditions and that poor detection results affect the
tracking performance. The state-of-the-art general multi-
object tracking method (CenterTrack) performed the worst
since it cannot handle mitosis events and dense conditions.
CMF and MPM use the spatial context in two frames by
estimating position and motion maps. These methods out-
performed the other conventional methods. Compared with
(SOTA) MPM, our method reduced the error rate by 45%
on average (from 0.125 to 0.069).

Fig. 8 shows examples of tracking results of CMF, MPM,
and ours for the sequence, which is the same sequence as
shown in Fig. 1. In this example, the red and blue cells
moved and formed a cluster at the 3rd and 4th frames; then,
they separated into individual cells at the 5th frame. CMF
and MPM misidentified these two cells as a single cell and
the separation from the cluster at the 5th frame as a mitosis
event because they could not use multi-frame information.
In contrast, our method successfully tracked these cells
using the spatial-temporal context in multi-frame. Fig. 9
shows the tracking results from our method, in which it cor-
rectly tracked the various cells under each condition. In the
cell mitosis case (Fig. 9 (b)(c)), our method successfully
identified the mitosis and tracked the divided cells. Fig. 10
shows 3D view of estimated cell trajectories. This lineage
information enables us to automatically compute various
cell-behavior metrics.

Table 3 shows the average of target effectiveness for
all conditions in the ablation study. The first row indi-
cates the method that estimates the positions and motions
in multi-frame by 3D-Unet without using our main con-
tributions; long-term estimation, object-level warping loss,
and interpolation using long-term motion. This could not
improve the performance from that of MPM. In contrast,
each element of the proposed method improved the track-

(a)

(b)

(c)

(d)

Figure 9. Example of tracking results on various conditions. (a)
BMP2, (b) FGF2+BMP2, (c) Control, (d) FGF2. ♢: cell mitosis.

Figure 10. Examples of our tracking results under Control. (a)
Entire image. (b) 3D view of estimated cell trajectories. Z-axis
indicates time, and each color indicates trajectory of a single cell.

ing performance. In particular, the object-level warping
loss significantly improved the performance. These re-
sults demonstrate that our method addressed the two chal-
lenges to extract tracking information from multiple frames
as discussed in the introduction; extraction of the informa-
tion from distant frames, and preserving the consistencies
among motions and positions in multiple frames.

5. Conclusion
We proposed a cell tracking method that effectively uses

the long-term temporal context in multi-frames with pre-
serving consistency by introducing long-term motion esti-
mation, object-level warping loss. In our experiments, our
method outperformed the compared methods under various
conditions in real biological images. A limitation of our
method is that may not maintain consistency of results be-
tween the separated inputs for the network, in which the
maximum number of the input images is limited by GPU
memory. If the limitation of GPU memory is mitigated, our
method can be easily extended to end-to-end cell tracking
that involves inputting a sequence and estimating all trajec-
tories. We believe our method will contribute to general
multi-object tracking research in addition to cell tracking.
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