
Lane-Level Street Map Extraction from Aerial Imagery

Songtao He
MIT CSAIL

songtao@mit.edu

Hari Balakrishnan
MIT CSAIL

hari@csail.mit.edu

Abstract

Digital maps with lane-level details are the foundation
of many applications. However, creating and maintaining
digital maps especially maps with lane-level details, are
labor-intensive and expensive. In this work, we propose
a mapping pipeline to extract lane-level street maps from
aerial imagery automatically. Our mapping pipeline first
extracts lanes at non-intersection areas, then it enumerates
all the possible turning lanes at intersections, validates the
connectivity of them, and extracts the valid turning lanes to
complete the map. We evaluate the accuracy of our mapping
pipeline on a dataset consisting of four U.S. cities, demon-
strating the effectiveness of our proposed mapping pipeline
and the potential of scalable mapping solutions based on
aerial imagery.

1. Introduction
Digital maps with lane-level details are the foundation of

many applications, including lane-to-lane navigation, route
planning for delivery fleets or autonomous vehicles, and
lane-level localization. However, creating and maintaining
digital street maps, especially with lane-level details, are
time-consuming and labor-intensive. As a result, automatic
mapping techniques have drawn much attention from both
industry and academics, and they have proposed many solu-
tions to automate the mapping process. Albeit great efforts
devoted to this problem, given the complex nature of real-
world scenarios, how to automatically produce digital maps
at scale with low costs and an acceptable accuracy is still an
open research question.

We can put automatic mapping techniques into two cate-
gories based on their data sources. (1) One type of map-
ping solution relies on the sensors mounted on vehicles,
e.g., GPS receivers, IMUs, cameras, and lidars. This type
of mapping solution can provide decent mapping accu-
racy. However, because it relies on sensor-equipped ve-
hicles, the mapping cost is often high, especially when
maintaining an up-to-date map covering a large region. (2)
Another type of mapping solution relies on remote sens-

ing data, i.e., imagery and radar data, collected from air-
planes or satellites. This type of mapping solution can
quickly scale up to a large region at a low cost. How-
ever, limited by the top-down view and the resolution of the
data, prior works mainly focus on extracting maps at road
level [30, 7, 44, 9, 40, 29, 14, 21, 35, 6, 8], extracting road
curbs [37, 38, 39], segmenting visible lane markers [5, 18],
and inferring lane count and lane position [22, 42]; none of
them extract a complete and routable lane-level street map.

Figure 1. Example of a lane-level street map and our proposed
mapping pipeline. We show lanes at non-intersection areas with
solid lines and show the turning lanes with dashed lines. The col-
ors of lanes indicate their driving directions. We highlight the ter-
minal nodes in blue.

This work takes one step forward toward a promising
direction – extracting routable lane-level street maps from
aerial imagery. In Figure 1 (a), we show an example of
the lane-level street map at an intersection. Unlike road-
level street maps, the lane-level street maps capture detailed
road network features, including lane geometry such as lane
merging and lane diverging, and rich semantic information
such as driving directions, e.g., the one-way road in Fig-
ure 1 (a), and turning lane restrictions, e.g., the left-only
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and right-only lanes in Figure 1 (a,b). Because of the com-
plexity of lane topology and semantic, extracting lane-level
street maps from aerial imagery is a challenging vision task
and existing road-level street map extraction solutions are
incompetent to solve it.

In this work, to address the challenge, we propose a map-
ping pipeline for lane-level street map extraction. We have
a key observation that, unlike road-level map extraction, ex-
tracting the entire lane-level maps in one shot can be very
challenging. However, the lane extraction problem becomes
solvable if we divide the task into sub-tasks and solve them
separately. Hence, we split the lane extraction task into two
sub-tasks. As shown in Figure 1(b), we first create lane-
level maps at non-intersection areas with lane geometry and
lane direction. Then, we enumerate all the possible turning
lanes, i.e., a connection between two terminal nodes (we
highlight the terminal nodes in blue in Figure 1), at the inter-
sections. We check if the turning lanes are valid and extract
the geometry of the valid turning lanes to complete the map.
Here, we consider the lanes that go straight at intersections
also turning lanes.

We evaluate our mapping pipeline on a dataset contain-
ing 400 km of lanes in four US cities, Boston, Seattle,
Phoenix, and Miami. In the evaluation, we compare dif-
ferent neural network designs at each stage of the mapping
pipeline, showing the effectiveness of our mapping pipeline
and the potential of aerial-imagery-based lane-level street
map extraction.

In this work, we make the following contributions,
• We proposed an automatic mapping pipeline to extract

routable lane-level street maps from aerial imagery. To
the best of our knowledge, this is the first work that
extracts a fully-routable lane-level street maps from
aerial imagery.

• Our evaluation demonstrates the effectiveness of our
mapping pipeline and unveils challenges in the task,
which can inspire future research work.

2. Related Work
Mapping with aerial or satellite imagery. Extracting

digital maps from aerial or satellite imagery has been ex-
tensively studied. Most of the prior works focus on ex-
tracting road-level maps. A widely-used strategy to solve
this problem is to turn the road extraction problem into a
road segmentation problem, for examples, DeepRoadMap-
per [30], D-LinkNet [44], joint orientation learning [9],
and many other works [40, 11, 36, 17] – they all adopt a
segmentation-based map extraction strategy. Besides the
segmentation-based approaches, RoadTracer [7] first pro-
poses to extract the road network using an iterative graph
construction approach that does not rely on the road seg-
mentation but constructs the road network directly. After
RoadTracer, several follow-up works [29, 35, 14] have pro-

posed improvements upon the graph construction strategy.
Recently, Sat2Graph [21] proposes the graph-tensor encod-
ing to unify the segmentation strategy and the graph con-
struction strategy, and shows promising results. However,
all of those works focus on map extraction at road levels,
and we cannot directly apply them to lane-level map ex-
traction given the complexity of lane-level maps in terms of
both topology and semantic.

Besides road topology extraction, many other works ex-
tract different map features from aerial or satellite imagery.
For example, lane marker extractions [5, 18], lane curb
extraction [37, 38, 39], lane count and position extrac-
tion [22, 42], road attribute inference [22], road safety as-
sessment [23, 31], etc. These works extract important fea-
tures about the road networks; however, they cannot pro-
duce a complete routable lane graph that is directly useful
for downstream applications.

Mapping with vehicle sensors. Creating maps us-
ing sensor data collected on vehicles, including dedicated
survey vehicles and other vehicles like taxis, has drawn
great attention in industry and academics. Prior works
have explored mapping solutions with different sensor data
sources including GPS [3, 10, 12, 15, 16, 20, 34, 4], cam-
eras [26, 25], lidars [24, 27, 32, 43], and the combinations of
different data sources [45]. In this work, we focus on map-
ping with remote sensing data, i.e., aerial imagery, which
complements the mapping solutions based on vehicle sen-
sors.

3. Mapping Pipeline
In this work, we represent the lane-level street map as a

directed graph G = {V,E}, where the vertices represent
locations in a plane and the edges represent lane segments
(centerlines). This graph captures both non-intersection
lanes and the turning lanes (virtual lanes) at intersections.
The direction of the edge encodes the driving direction of
the lane. We call this directed graph a lane graph when we
use it to describe a lane-level street map. While a lane-level
street map contains many features, the lane graph is a basic
but essential map representation capturing the core features
that make the lane-level street map routable. In this work,
we propose a mapping pipeline to extract the lane graph
from aerial imagery.

Though prior works have proposed many solutions on
road network extraction, we cannot directly use them to ex-
tract lane graphs because most of the existing works extract
the road network as a planar graph (no intersecting edges).
However, at road intersections, the lane graph is not planar
– it needs to represent turning lanes that intersect but are
not connected. Nevertheless, we need to extract the driv-
ing directions of the lanes, whereas this is not necessary for
road-level map extraction. Therefore, we have to design a
new solution to extract the lane graph.
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Figure 2. Our proposed lane-level street map extraction pipeline.

We propose a mapping pipeline to extract lane graphs
from aerial imagery. As shown in Figure 2, we split the
lane graph extraction task into two sub-tasks. In the first
sub-task, the goal is to extract lanes at non-intersection ar-
eas, where the lane graph is planar; therefore, we can adapt
existing road extraction algorithms to extract the lanes. We
show the details of this sub-task in Section 3.1.

In the second sub-task, the goal is to extract turning lanes
at intersections. At intersections, the lane graph is no longer
planar, and it contains many intersecting edges, making it
very challenging to extract the lane graph. To overcome this
challenge, we extract each turning lane separately instead of
extracting the entire lane graph in one shot. As we have al-
ready extracted the lane graph at non-intersection areas, we
can locate all the terminal vertices (the endpoints of lanes at
intersections, highlighted in blue circles in Figure 2 (f)). Be-
cause each turning lane has to start from one terminal vertex
and end at another terminal vertex, we can enumerate all
the possible pairs of terminal vertices that may have valid
turning lanes connecting them. In our mapping pipeline,
we enumerate all the terminal vertex pairs whose distance
(distance between two vertices in a pair) is below a thresh-
old. Then, for each pair, we validate its connectivity using
a classifier (a neural network). If the classifier indicates a
turning lane connecting the pair of terminal vertices, we ex-
tract the vectors of the turning lanes (Figure 2 (g)). Finally,
we merge the extracted turning lanes with the lane graph
extracted in sub-task 1 to create a complete lane graph.

3.1. Lane Extraction at Non-Intersection Areas

In the first sub-task of the mapping pipeline, we ex-
tract the lane graph at non-intersection areas using a
segmentation-based approach. In this approach, we repre-
sent the lane graph as a lane segmentation, e.g., Figure 2 (b),
where each location in the segmentation has a value of ei-

ther one or zero , indicating if that location has a lane or not.
To extract the lane graph from aerial imagery, we first use
a semantic segmentation model to extract the lane segmen-
tation from aerial imagery and then extract the lane graph
(Figure 2 (d)) from the lane segmentation. Different from
road extraction tasks, we also need to extract the direction of
the lanes. To do so, we extract a direction map (Figure 2 (c))
from the input aerial imagery and combine it with the ex-
tracted lane graph to create the final directed lane graph
(Figure 2 (e)). Next, we discuss the details of the model
architecture, and the training/inference processes.

Figure 3. Lane Extraction Model
Lane extraction model. Suppose the input aerial image

has a spatial dimension of N×N with three color channels.
We use a convolutional neural network to extract the lane
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segmentation s ∈ RN×N , 0 ≤ si,j ≤ 1 and the direction
map d ∈ RN×N×2,−1 ≤ di,j,k ≤ 1. In the direction map
d, if the location (i, j) overlaps with a lane, we encode the
lane direction as a normalized 2D vector in di,j ; otherwise,
we set di,j to a zero vector.

In Figure 3, we show the architecture of our lane extrac-
tion model. Inspired by [44, 17], we adapts an UNet [33]
structure with a ResNet [19] encoder for better feature ex-
traction and dilated convolutional layers [41] for larger re-
ceptive field. To output the lane segmentation and the lane
direction map, we use two branches after the last decoder
block so that these two tasks can share most of the neu-
ral weights in the model. We use softmax as the activation
function for the lane segmentation branch and use linear ac-
tivation function for the direction map branch.

Ground truth. We create the ground truth lane segmen-
tation ŝ and the direction map d̂ by rendering edges of the
lane graph with a width of 5 pixels, which is 0.625-meter
wide as the imagery in our evaluation dataset has a ground
sampling distance (GSD) of 0.125 meters/pixel.

Training. We set the input window size to 640 × 640
during training. We intend to use this large window size
so that the model can learn to use global information. For
example, if trees occlude a short lane segment, the model
should still extract it by using nearby information.

Inspired by the joint orientation learning work [9], we
train the lane segmentation branch and the lane direction
branch jointly as Batra et al. [9] have shown that learn-
ing road extraction jointly with road orientation can achieve
better connectivity.

For the lane segmentation branch, inspired by the
SpaceNet challenge [17], we use a linear combination of
the cross-entropy loss (Lce) and the soft dice loss (Ldice) as
the loss function. For the lane direction branch, we use L2

loss. Therefore, the overall loss function is,

L = L2(d, d̂) +
1

2
(Lce(s, ŝ) + Ldice(s, ŝ)) (1)

Inference. We need to apply our model to large aerial
images whose size is often over thousands of pixels during
inference. To run the lane extraction model on such large in-
put images, we use a 2-dimension sliding window approach
where the sliding window size is 640× 640. Each time we
move this sliding window by 256 pixels either vertically or
horizontally to cover the entire input image. Because we
move the sliding window 256 pixels each time, the infer-
ence results from different sliding window instances may
overlap on each other. When this happens, we use the aver-
age result from different sliding window instances.

Lane graph extraction. After we extract the lane seg-
mentation and the lane direction map from the input aerial
image, we first extract the lane graph (undirected) from
the lane segmentation. Similar to other segmentation-based

road extraction work, we binarize the output lane segmenta-
tion with a threshold (e.g., 0.5), create a skeleton from this
binary segmentation mask using morphology thining, and
turn the skeleton into a graph.

Next, we use the direction map output to assign direc-
tions to the lane graph. As shown in Figure 2 (d), we
first decompose the lane graph into individual lane seg-
ments. Each lane segment consists of a sequence of edges
[e1, ..., em] (ei connects to ei+1). Because the direction map
output can be very noisy, we use the entire lane segment to
decide its direction. Formally, we compute the following
value for each lane segment.

c =

m∑
i=1

∑
(x,y)∈P (ei)

⟨D(ei),dx,y⟩ (2)

, where P (e) = {(x, y)|Edge e intersects location (x,y)},
D(e) is the normalized direction vector of edge e, and ⟨ , ⟩
is the vector inner product operator. If c is greater than zero
for a lane segment [e1, ..., em], that indicates the direction
of the lane segment should be from e1 to em; otherwise, the
direction should be the opposite — from em to e1.

3.2. Turning Lane Extraction

After the first stage of the mapping pipeline, we get a
lane graph covering all the non-intersection areas, and this
lane graph has many terminal nodes at intersections. In the
second stage, we extract the turning lanes at intersections
by examining all the terminal node pairs whose distances
are below a threshold, i.e., 70 meters. We consider those
terminal node pairs as candidate turning lanes. For each
terminal node pair (vA, vB), we use neural network models
to validate the turning lane going from node A to node B
and extract the turning lane vectors. In Figure 4, we show
the detailed workflow.

Input. For each terminal node pair (vA, vB), we con-
sider a window of size N × N centered at the midpoint
between node A and node B. We use the aerial image, the
direction map (extracted in stage-1) in this window as in-
puts. Meanwhile, for each node, we create an auxiliary
input p ∈ RN×N×3 whose first channel is a binary mask
indicating the position of the node, and the second and third
channels encodes the offsets from the node. Formally, sup-
pose the position of the node is at (nx, ny), we define p as,

px,y,1 = 1 if x = nx, y = ny , otherwise 0

px,y,2 =
1

N
|x− nx| px,y,3 =

1

N
|y − ny|

(3)

We use p to provide auxiliary position information for
the neural network models so that the model can reason the
relative distances effectively.

Turning lane validation. To validate a candidate turn-
ing lane (vA, vB), we first extract the segmentation of the
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Figure 4. Given a pair of terminal nodes A and B, we use the above architecture to infer if there is a valid turning lane connecting node A
and node B. If so, we extract the turning lane vectors using a segmentation approach.

reachable lanes from node A and node B. Here the reach-
able lanes from a node are the lanes that can be reached on
the lane graph through only turning lanes. As examples, we
show the corresponding reachable lanes from node A and
node B in Figure 4 (e) and (f), respectively. We extract the
reachable turning lane segmentation using a neural network
that has the same architecture (and the same loss function)
as Figure 3 except the direction prediction branch.

After we extract the reachable lane segmentation, we
concatenate it with all other input data and feed them into
a binary classification model that predicts if the candidate
turning lane is valid or not.

Alternative-1: An alternative design is to get rid of the
reachable lane extraction modules and directly feed the in-
put data to a binary classification model. Our evaluation
finds that this design yields poor accuracy on the testing
dataset because the turning lane validation task depends on
spatial information such as the relative positions of lanes
and lane markers. However, the encoder-only structure in
the binary classification model makes it difficult to reason
the spatial correlation effectively. In contrast, our design
uses the reachable lane extraction model that adapts a UNet
(encoder-decoder) structure to help reason the spatial cor-
relation. Therefore, our design can achieve much higher
accuracy on unseen data.

Turning lane extraction. To extract the turning lane,
we first adopt the same neural network model as the reach-
able lane extraction model to extract the segmentation of the
turning lane, and then extract the lane vector from the seg-
mentation (similar to sub-task 1). In our evaluation, we find
that this solution is sufficient to achieve very high accuracy.

Alternative-2: With this turning lane extraction model,
we can derive an alternative design for turning lane valida-
tion. In this alternative design, we train a lane extraction
model to produce the turning lane segmentation if the in-

put node pair is valid and produce an empty segmentation
map otherwise. We check if a path connects the two nodes
in the segmentation output to validate the turning lane dur-
ing testing. This alternative design is much simpler than
ours. However, this alternative design also performs poorly
because it often produces noisy and disconnected segmen-
tation for valid turning lanes, making it hard to reach a clear
decision by only checking the segmentation output.

Training. During training, we randomly sample termi-
nal node pairs whose distances are shorter than 70 meters
in the ground truth lane graph and use the ground truth la-
bels to generate the corresponding direction maps. For the
turning lane validation model, we train it together with the
reachable lane extraction model end-to-end. For the turning
lane extraction model, we train it with only valid terminal
node pairs so that the model can always produce a sharp
turning lane segmentation.

4. Evaluation
4.1. Dataset

We find there are very limited public datasets or re-
sources for lane-level map extraction. One of the related
datasets is the Argoverse dataset [13] where they provide
two high-definition maps, but they do not provide the cor-
responding aerial imagery. Hence, to evaluate our proposed
mapping pipeline, we create our dataset.

Our dataset covers about 400 km of lanes in four cities,
Miami, Boston, Seattle, and Phoenix. For the aerial im-
agery, we collect them from MapBox [1] and resize the im-
ages to 0.125 meters per pixel. For the lane graph labels,
we adapt the lane graph labels in the Argoverse dataset for
Miami. We tweak the lane graph labels so that they match
our aerial imagery. To improve the diversity of the dataset,
we manually annotate the lane graphs in three more cities,
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Boston, Seattle, and Phoenix. We organize the dataset as 35
tiles. The dimension of each tile is 4096 by 4096 (pixels).
We use 24 tiles as the training dataset and 11 tiles as the
testing dataset. Our dataset is available on GitHub.

4.2. Metrics

To evaluate the quality of the extracted lane graphs, we
adapt two widely used metrics in road extraction problems,
the GEO metric and TOPO metric.

GEO metric. In the GEO metric, we interpolate (den-
sify) the ground truth lane graph and the extracted lane
graph so that the distances between any two connected ver-
tices are 0.25 meters. After the interpolation, we got the
ground truth lane graph Ĝ = {V̂ , Ê}, and the extracted lane
graph G = {V,E}, where V̂ , V are the sets of vertices and
Ê, E are the sets of edges. We consider a pair of vertices
(v ∈ V, v̂ ∈ V̂ ) as a valid match if the distance between
the two vertices is less than r meters. Then, we compute a
maximal one-to-one matching between V̂ and V and denote
the matched vertices in the extracted lane graph as Vmatch.
Finally, we report the precision |Vmatch|

|V | , recall |Vmatch|
|V̂ | and

F1 score based on the matching result.
The threshold r determines the error tolerance of the

metric. In our evaluation, we set it to 1 meter so that the
metric can penalize minor errors.

TOPO metric. The GEO metric focuses on local cor-
rectness, but it does not take connectivity into account. For
example, if there is a small missing gap in an extracted
lane, the GEO metric will still report a very high recall even
though the small missing gap makes the entire lane discon-
nected. In contrast, the TOPO metric takes connectivity into
account. We implement the TOPO metric on top of the GEO
metric. For each matched vertex pair (v, v̂) in the GEO
metric, we consider the sub-graphs Sv and Ŝv̂ on G and
Ĝ where all the vertices in Sv and Ŝv̂ can be reached from
v and v̂ by walking on the graph for less than 50 meters,
respectively. We then compute the GEO metric between the
two sub-graphs Sv and Ŝv̂ , denoted as PrecisionGEO(Sv, Ŝv̂)
and RecallGEO(Sv, Ŝv̂). Finally, we report the TOPO preci-
sion and recall defined as,

PrecisionTOPO =

∑
matched (v,v̂) PrecisionGEO(Sv, Ŝv̂)

|V |

RecallTOPO =

∑
matched (v,v̂) RecallGEO(Sv, Ŝv̂)

|V̂ |

(4)

Here, we can consider the TOPO metric as a weighted
version of the GEO metric where each matched vertex pair
only contributes a fraction to the precision and recall based
on the correctness of the local connectivity.

Directed versions. To evaluate the directed lane graphs,
we derive the directed versions of the GEO and TOPO met-
ric. In the directed version, we assign a direction to each

vertex based on its edges (we ignore vertices that have more
than two neighbors). During matching, we only consider
the vertex pairs whose angle differences are less than 60
degrees. We use these directed versions to evaluate lane
graphs with driving direction information.

4.3. Implementation Details

We implement our mapping pipeline in Tensorflow [2]
and use Adam optimizer [28] for training. For all the mod-
els, we train them for 500 epochs on our training dataset.
We start with a learning rate of 0.001 and decrease it by
ten at the 350-th epoch and 450-th epoch during training.
We augment the input images with random rotations, crop-
ping, color balances, and brightness. Our implementation is
available on GitHub.

4.4. Performance of each component

In this section, we evaluate each component in our map-
ping pipeline separately. The components include,
(1) Undirected lane extraction in sub-task 1.
(2) Lane direction inference in sub-task 1.
(3) Turning lane validation in sub-task 2.
(4) Turning lane extraction in sub-task 2.

Undirected lane graph extraction. We report the eval-
uation result of the undirected lane graph extracted at non-
intersection areas (see Figure 2(d)). We compare the ex-
tracted graph with the ground truth lane graph using GEO
and TOPO metric (undirected). In Table 1, we report the
precision, recall, and F1-scores of our proposed model and
several alternatives. As shown in Table 1, our proposed so-
lution achieves decent F1 scores in both the GEO metric
and TOPO metric. Compared with the alternatives, adding
dilated layers and using ResNet encoder can help improve
the lane extraction accuracy. Overall, our model improves
the GEO F1-score by 4.2 points and improves the TOPO
F1-score by 6.9 points against the UNet baseline.

Lane direction inference. For each lane in the ground
truth graph, we extract its direction from the lane direction
map prediction (see Figure 2(c)) and compare the extracted
direction with the actual direction. If the directions match,
we consider the lane as a correct lane. In Table 2, we re-
port the lane direction inference accuracy, which is the ratio
between the total length of the correct lanes and the total
length of all lanes.

As shown in Table 2, we find all the models can achieve
high overall accuracy (around 94%). If we look at the ac-
curacy on one-way and two-way roads separately, we can
find that the accuracy on two-way roads is much higher than
the accuracy on one-way roads because inferring the lane
direction on one-way roads is very challenging. Usually,
not many visible signs from aerial imagery (e.g., arrows)
can explicitly tell the lane’s direction. The neural network
model often has to rely on weak indicators such as the head-
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Method GEO metric TOPO metric
Precision Recall F1 Score Precision Recall F1 Score

Basic UNet 0.811 0.762 0.786 0.747 0.622 0.679
Add Dilated Layers 0.818 0.792 0.805 0.753 0.680 0.715
With ResNet18 Encoder 0.828 0.812 0.820 0.768 0.708 0.737
With ResNet34 Encoder 0.835 0.821 0.828 0.774 0.724 0.748

Table 1. Lane extraction accuracy at non-intersection areas.

ing of cars and the positions of stop lines to speculate the
direction.

Method Lane direction inference accuracy
One-way Two-way All

Basic UNet 67.68% 97.81% 93.95%
+Dilated Layers 66.73% 98.22% 94.19%
+ResNet18 71.40% 98.15% 94.72%
+ResNet34 69.61% 98.23% 94.56%

Table 2. In our testing dataset, about 14.7% of lanes (in terms of
lane length) belong to one-way roads. This table reports the lane
direction inference accuracy for one-way roads, two-way roads,
and all roads separately.

Turning lane validation. To evaluate the turning lane
validation model, we enumerate all the turning lane candi-
dates (a pair of terminal vertices whose distance is below 70
meters) at the intersections in the ground truth lane graph.
Suppose we have N turning lane candidates. We check each
of them using our lane validation model and produce a la-
bel indicating the valid turning lanes during the evaluation.
Let VGT be the set of ground truth valid turning lanes, and
VInfer be the set of predicted valid turning lanes. Because
the counts of valid turning lanes and invalid turning lanes
are imbalanced, we do not use accuracy as the metric. In-
stead, we report the precision, recall, F1-score, and IoU de-
fined as,

Precision =
|VGT ∩ VInfer|

|VInfer|
Recall =

|VGT ∩ VInfer|
|VGT |

F1 =
2 · Precision · Recall
Precision + Recall

IoU =
|VGT ∩ VInfer|
|VGT ∪ VInfer|

(5)

Method Prec. Rec. F1 IoU
Classification only 0.391 0.443 0.415 0.262
Segmentation only 0.586 0.892 0.707 0.547
Ours full solution 0.921 0.961 0.941 0.888

Table 3. Turning lane validation performance.

We show the results of our proposed solution and two al-
ternatives in Table 3. Our solution achieves a high F1-score
of 94.1%, which is much higher than the F1-scores of the
two alternative solutions (Section 3.2) – 41.5% for the clas-
sification only alternative and 70.7% for the segmentation
only alternative.

Turning lane extraction. We compare each extracted
turning lane (in graph format) with the ground truth turning

lane using the TOPO metric. We find our proposed method
has very high accuracy in this task; it achieves an average
TOPO precision of 94.2% and an average TOPO recall of
95.8%.

4.5. Overall performance

We compare the complete lane graph extracted from our
mapping pipeline with the ground truth lane graph using
the GEO and TOPO metrics (directed). In Table 4, we re-
port the precision, recall, and F1-scores of the extracted lane
graphs. We also show the results of the partial lane graphs
from two earlier stages in the mapping pipeline. Over-
all, our mapping pipeline achieves a 76.5% F1-score in the
GEO metric and a 62.7% F1-score in the TOPO metric. We
consider this a decent result because the matching threshold
in our GEO metric and TOPO metric is only one meter.

4.6. Qualitative results

We show examples of the extracted lane graphs in Fig-
ure 5 (a-d). In those examples, our mapping pipeline cor-
rectly extracts the lane graphs in many challenging scenar-
ios including lane diverging, left-only and right-only turn-
ing lanes in Figure 5 (a), four-lane four-way intersection in
Figure 5 (b), two-lane four-way intersections in Figure 5 (c),
and three-way intersections in Figure 5 (d).

Failure example. In Figure 5 (e), we show an example
of the output lane graph that has several errors. As shown in
Figure 5 (e), our mapping pipeline fails to extract the cor-
rect lane geometry and direction at non-intersection areas
in the red rectangles c,d, and e, which in turn messes up the
turning lane extraction in the right two intersections. We
observe similar errors on small roads where the lane mark-
ers are missing, unclear, or the entire roads are occluded.

Our model also fails to infer the u-turn lane (red rectan-
gle a) and an unusual right turn lane (red rectangle b). These
two failure cases are examples of a fundamental challenge
in aerial-imagery-based lane graph extraction – it is often
hard or even impossible to infer the correct turning lanes at
some intersections without ground road sign information.

Limitation. The above failures unveil a major limitation
of our mapping pipeline — the quality of the extracted lane
graph depends on the visibility of important road features
such as lane markers. This limitation motivates a future
work to estimate a confidence score for the extracted lane
graph based on the visibility of roads. With this confidence
estimator, we can still use our mapping pipeline to extract
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Lane graphs at different pipeline stages GEO metric TOPO metric
Precision Recall F1 Score Precision Recall F1 Score

Lane graph at non-intersection areas (undirected) 0.835 0.821 0.828 0.774 0.724 0.748
Lane graph at non-intersection areas (directed) 0.800 0.787 0.793 0.745 0.697 0.720
Final lane graph (directed) 0.770 0.760 0.765 0.612 0.642 0.627

Table 4. Accuracy of the lane graphs at different pipeline stages.
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Figure 5. Examples of the extracted lane graph from our testing dataset.

lane graphs on high-confidence areas, e.g., the places in Fig-
ure 5 (a-d), and complement other mapping solutions.

5. Conclusion
In this work, we propose a mapping pipeline to extract

routable lane-level street maps from aerial imagery. To the
best of our knowledge, this is the first work that proposes

a complete mapping pipeline for routable lane-level street
map extraction from aerial imagery. We evaluate our so-
lution on a dataset consisting of 400 km of lanes, show-
ing the effectiveness of our solution and unveiling several
challenges in the problem. Overall, we show that extracting
lane-level street maps from aerial imagery is a promising
direction toward scalable data-driven map making.
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