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Abstract

We examine the benefits of splitting encoder-decoders for
multitask learning and showcase results on three tasks (se-
mantics, surface normals, and depth) while adding very few
FLOPS per task. Current hard parameter sharing meth-
ods for multi-task pixel-wise labeling use one shared en-
coder with separate decoders for each task. We generalize
this notion and term the splitting of encoder-decoder archi-
tectures at different points as fission. Our ablation stud-
ies on fission show that sharing most of the decoder lay-
ers in multi-task encoder-decoder networks results in im-
provement while adding far fewer parameters per task. Our
proposed method trains faster, uses less memory, results in
better accuracy, and uses significantly fewer floating point
operations (FLOPS) than conventional multi-task methods,
with additional tasks only requiring 0.017% more FLOPS
than the single-task network. We show results with a real-
time model on a Pixel phone with released source code.

1. Introduction
Multi-task learning aims to jointly learn multiple tasks

and helps with generalization, improving results given an
inductive bias[34]. Deep learning methods have made great
improvements in multi-task pixel-wise prediction tasks
through the use of architectural improvements like encoder-
decoders[12]. Early work by Caruana[4] shows that hard
parameter sharing with backprop nets “discovers task re-
latedness without the need of supervisory signals”; how-
ever, this hasn’t been extended fully to encoder-decoders.
While there have been several studies on combining differ-
ent modalities (i.e. fusion), there has been relatively lit-
tle work that examines the properties of the task-specific
decoders. Motivated by this, we undertake an exploration
of hard parameter sharing of encoder-decoders with sev-
eral outputs, which we call network fission. We consider
(a) early fission (splitting the network at the encoder with
separate decoders, Figure 1a), (b) late fission (splitting the
network only at the very end and sharing the entire encoder-
decoder Figure 1d), and (c) mid fission (sharing most of the

encoder-decoder and splitting at one of the intermediate de-
coder blocks, Figures 1b and 1c).

Initial work for semantic labeling and depth prediction
focused on using fully convolutional networks (FCNs) [24]
but later decoder-based architectures were proposed [30, 2]
to overcome the limitations of FCNs. Encoder-Decoder ar-
chitectures are effective and established methods for pixel-
wise prediction tasks. When doing multitask pixel-wise
predictions, hard parameter sharing is a popular method and
it is common to take the features at the end of the encoder
and then split to give each task its own decoder. This is the
method used by many [19, 18, 23, 11, 15], which we refer
to as early fission.

There are several recent soft parameter sharing
methods[27, 34, 33] that have a model for each task and
learn parameters between single task networks to combine,
stitch, and/or regularize them; however these can be difficult
to learn and are prone to overfitting. They also aren’t con-
ducive to small models needed for mobile devices. In terms
of hard parameter sharing, most methods only use early fis-
sion (splitting at the encoder bottleneck with separate de-
coders for each task) as shown in Figure 1a. We do ablation
studies on different fission methods and find that mid fis-
sion (sharing all of the decoder blocks until the last decoder
layer) outperforms other multi-task methods and requires
significantly less FLOPS. We evaluate this on 3 different
architectures, including 1 server model, and 2 lightweight
mobile models. We evaluate our method on the tasks of
depth/disparity, surface normals, and semantic labels.

The main goal of this work is to examine the bene-
fits of splitting encoder-decoders in different places for
multi-task learning and showcase improvements using
new frameworks. In the past, researchers explored com-
bining data with different input fusion schemes; similarly,
we should also examine different output fission schemes.
For comparison, an example of early fusion [3, 7] is where
RGB and depth are stacked as 4 channels and input into
the same set of convolutions. Late fusion [39, 5] for the
same task puts each input modality into a set of convolu-
tions and joins the outputs at the end. Work later proposed
mid-fusion [14] where each input modality has some en-
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(a) Early Fission. (b) Early-Mid Fission.

(c) Mid Fission. (d) Late Fission.

Figure 1: The possible fissions for the eASPP decoder part of the
architecture[36]. The blue block is the encoder bottleneck, the or-
ange blocks are the first two decoder blocks, which include convo-
lutional, batchnorm, and relu layers with 256 output channels and
skip connections. The purple blocks are the last decoder block
which has convolutional transpose, batchnorm, and relu layers.

coding, but then those features are concatenated and further
convolutions are done before an embedding is reached. We
can make the same deductions for different outputs and ex-
plore early, mid, and late fission.

An easy mapping can be made from these modality fu-
sion schemes to our proposed modality fission schemes.
Early fission as shown in Figure 1a is the current method
of splitting at the encoder bottleneck and giving each task
its own decoder. Late fission as shown in Figure 1d would
be both the encoder and decoder fully shared with only one
output, computing a loss differently on different channel
subsets of the output. For the commonly used 3-stage de-
coder blocks, there are two potential splits that qualify as
mid fission. Figure 1b shows what we call early-mid fis-
sion: sharing all of the encoder and the first decoder block
(or more blocks for larger decoders). Figure 1c shows what
we call mid fission: sharing all of the encoder and most of
the decoder but allowing the last set of layers to learn fea-
tures separately for each output modality. The proposed mid
fission has not been fully explored and analyzed before and
many multi-task methods would benefit from this architec-
tural change.

Our main contributions are (1) Comprehensive abla-
tion studies comparing fission schemes with several modal-
ities on 3 different challenging datasets, (2) A shared de-
coder architecture we call mid fission that has fewer pa-
rameters, outperforms single task training, and outperforms
current multi-task methods with significantly less FLOPS
(only 0.0167% more FLOPS required per task), and (3) A
real-time demo of 3 tasks simultaneously with the model
and code[1] released.

2. Related Work
Multi-task learning has a long history but most of the

paper will focus on recent techniques. Our approach is in-
spired by early work by Caruana et. al[4] who discuss using
hard parameter sharing neural networks to predict several
tasks. This methodology, though being around since 1993,
has not been leveraged fully with current encoder-decoder
networks. There are many datasets used to leverage pixel-
wise tasks (semantic labeling, depth, normals, HHA, curva-
ture, etc), both synthetic like Scenenet [26] and real such as
Scannet [8], NYUDv2 [29], and Matterport [6]. Availability
of RGB-D data has resulted on its use to predict semantic
labels [13]. Different data source fusions have been devel-
oped (early, mid, and late) to determine where in a network
to ”join” the information. The inverse, using only RGB to
predict semantic labels, depth, normals, etc., is also a topic
of interest [9]. We briefly cover these efforts here.

Eigen et. al [9] use a common multi-scale FCN architec-
ture to predict depth, surface normals, and semantic labels
but not jointly. They only share the architecture layout but
train separately. This was one of the first works on FCNs
for joint tasks. Gupta et. al[13] later work on NYUDv2 [29]
and introduce an encoding called HHA (horizontal dispar-
ity, height above ground, and angle). They then use that
encoding to train a CNN whose features are combined with
features from a CNN trained on RGB in order to do object
detection and semantic segmentation (late fusion).

Other methods chose to combine networks or learn
shared parameters with soft parameter sharing. Ruder et.
al [34] discuss multi-task learning using a method they call
sluice networks where parameters control which sub-spaces
are shared between main and auxiliary tasks. There is a
shared input layer and task-specific output layers and all
other layers are shared with a parameter to control what is
used for each prediction. They show small networks for
NLP tasks as opposed to pixel-wise predictions which in-
volve larger, more complex architectures with an encoder-
decoder structure. Misra et. al [27] introduce cross-stitch
networks with a similar method of [34] using a parame-
ter to control the flow between the layers of the networks.
They try to learn how to stitch together two networks with
a shared representation as a linear combination of activa-
tions. They explore when to split a network for two sep-
arate tasks but only from a FCN style network based on
Alexnet [20]. This is different from more current methods
which use those architectures as an encoder and have a sepa-
rate decoder per task. Jafari et. al [17] use separately trained
networks for depth and semantics as input to a joint refine-
ment network with the hope of mutually improving both
results using cross-modality influences. Many of these soft
parameter sharing methods can be transformed into others
by specifically setting certain parameters. However, they
can be difficult to learn and require a full network trained
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on each individual task which is a large amount of FLOPS.
As opposed to learning tasks together, Taskonomy [38] at-
tempts to learn task-relatedness by transferring learning be-
tween modalities instead of doing multi-task learning.

Other hard parameter sharing work has focused on us-
ing several different modalities as both inputs and outputs
or as intermediate tasks. Kuga et. al [21] use several differ-
ent modalities as both inputs and outputs with each having
it’s own encoder and decoder but sharing skip connections
and a shared latent representation. Xu et. al [37] use depth,
surface normals, contours, and semantics as a set of inter-
mediate tasks, which are then used via a multi-modal input
into a distillation model. In this method, there is one shared
encoder with each auxiliary task having a separate decoder.
The results are then put into the multi-modal distillation
module for final task prediction, where each task has it’s
own decoder. Maninis et. al [25] use a shared encoder with
learned soft attention modules to train one network to do
several tasks, one at a time, only focusing on the encoder.

Most work has focused on what we call the early fis-
sion model, where one shared encoder is used with sep-
arate decoders for each task. Each of these then requires
clever methods in order to improve results. Initial works on
many scene tasks including geometry and semantic labels
[19] discuss task-interference and find that jointly learning
can impede accuracy. [19] jointly handle many tasks end-
to-end with a network architecture relying on task specific
responses with many fusion layers with skip pooling across
different resolutions to deal with different tasks. Their
method also use memory-efficient back-propogation to han-
dle training for many different tasks. Kendall et. al [18]
use a shared encoder with separate decoders for each task
and focus on using task-uncertainty to improve the training
for each task. Liu et. al [23] propose an end-to-end multi-
task attention network using one global feature pool and
a soft attention module per task. Using this, they hope to
learn task-shared and task-specific features in an automatic
manner. Gao et. al [11] propose a fused network model
by combining multiple single-task networks using discrim-
inative dimensionality reduction with several 1x1 convolu-
tions. This method however, is high in parameters as it com-
bines several networks trained for separate tasks just like
other soft parameter sharing methods. Hickson et. al [15]
use a shared encoder with two separate decoders to predict
semantic labels and surface normals with a real-time mobile
model. They also propose a method to clean up ground-
truth surface normals for better results which we utilize.

We go beyond previous hard parameter sharing encoder-
decoder work and try to analyze further output network fis-
sion schemes to allow for the best split between task-shared
features and task-independent features efficiently.

3. Studying the different fission schemes
The backbone architecture and hyperparameters remain

the same for all ablations in order to have a valid compari-
son. The server model is a variant of AdapNet++, while the
two mobile models are a variant of Mobilenet[35] with a
unet decoder for the first and MobilenetV3[16] with a u-net
style decoder with self-attention for the second. We explain
metrics, datasets, architecture and hyperparameters in the
Supplementary section. Here we will go over the losses and
each method (early, late, and mid fission).

For the backbone of our server ablation studies, we
adopted the Adapnet++ encoder-decoder architecture from
[36]. This architecture was chosen because it has state of
the art results on several datasets despite requiring fewer pa-
rameters. Importantly, it does not include additional modal-
ity inputs as we are exploring RGB-to-many-task predic-
tion. For training, we use two auxiliary losses after each of
the first two decoder blocks where a fully connected layer
predicts a task. We weight each of these auxiliary losses
when computing the total loss, with α1 = 0.6 and α2 = 0.5
while α0 = 1 (the final layer). An ablation study on the
auxiliary losses with multiple tasks is shown in the Supple-
mentary section.

3.1. Losses

For semantic labeling, we use the softmax cross entropy
loss with auxiliary losses in Equation 1, where y is the one-
hot encoded ground truth pixel-wise label, σ is the softmax
function, z0 is the final output of the task decoder, z1 and z2
are auxiliary branches of the decoder as in [36]. ε is 1−10

for stability.

Lsemantics(y, z) = −
3∑
a=0

αa

n∑
i=0

y(i) log(σ(z(i)a ) + ε). (1)

For surface normal prediction, we use the cosine simi-
larity with auxiliary losses in Equation 2. In this equation,
ŷ is the pixel-wise ground truth surface normals normalized
to a unit vector where each normal is clipped between -1.0
and 1.0 to prevent numerical errors. ẑ0 are the final outputs
of the task decoder and ẑ1, ẑ2 and auxiliary branches all
normalized and clipped the same as ŷ.

Lnormals(y, z) = 1−
3∑
a=0

α1(1−
3∑
i=0

ŷ(i).ẑ(i)a ) (2)

For depth prediction, we use the L1 loss with auxiliary
losses in Equation 3 where y is the ground truth pixel-wise
depth divided by 1000.0 so as to be in meters. z0, z1, z2
are the final outputs of the task decoder, the first auxiliary
branch, and the second auxiliary branch respectively.

Ldepth(y, z) =

3∑
a=0

αa|y − za|. (3)
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For disparity (inverse depth) prediction, we use a set of
scale and shift invariant loss, smoothness loss, and gradient
loss as detailed by [31]. We sum this with 0.25 of the depth
prediction loss to prevent large predictions that can cause
errors in training and in inference when quantized. More
details on this in the Supplementary section.

Now we discuss the training used for all the proposed
early, mid, and late fission schemes.

3.2. Early Fission

As discussed in Section 2, early fission is a shared en-
coder with separate decoders for each task shown in Fig-
ure 1a. This method has been widely used in the literature.
The bottleneck from the encoder connects to two separate
decoders with their own skip connections and deconvolu-
tional layers. The loss is then computed via Equation 4
where LT is the total loss. For each task 1 to n there is an
individual loss Li and a loss weight λi. In much work, there
is no loss balancing, meaning all λ is set to 1.0, in others it’s
set manually based off of loss convergence properties[15],
and others learn it[18]. In our experiments, when we bal-
ance the losses, we set λsemantics to 1.0, λnormals to 10.0 and
λdepth to 0.5 based off of the loss values after 10K iterations
when the individual single-task network starts to converge.
We do this for all 3 architectures.

LT =

n∑
i=1

λiLi(yi, zi). (4)

3.3. Late Fission

In late fission, we explore what happens if the entire de-
coder and encoder are shared as shown in Figure 1d. The
output of this is treated as a concatenated set of task-level
outputs with the loss computed via Equation 5. Here there
are several loss equations Li and several labels yi but only
one output z, which is partitioned into n splits of size τi de-
pending on the output size. In our case, τsemantics is the num-
ber of semantic labels plus one (for the background class),
τnormals is 3, and τdepth is 1. λ is the same as in early fission.

LT =

n,k+=τi∑
i=1,k=0

λiLi(yi, z[k : (k + τi)]). (5)

3.4. Early-Mid and Mid Fission

In our proposed shared decoder architecture, we use mid-
fission as shown in Figures 1b and 1c. The loss for this is
calculated the same as in Section 3.2. The only difference
is where we split the decoder. We found both early-mid and
mid fission to have superior results, shown in Table 1.

3.5. Relationship to State-of-the-art Methods

Our method is a type of hard parameter sharing, mean-
ing sharing hidden layers between tasks followed by task-

specific output layers[34]. Here the task-specific and task-
shared features are learned in the hidden layers but every-
thing else is fixed. This has the benefit of being simple to
learn and reducing overfitting as discussed in[4, 33] with the
detriment of not being robust to loosely/non related tasks.

Soft parameter sharing is where each task has it’s own
model with it’s own parameters where the parameters are
encourage in some way to be related or similar. One
example of this that we compare against are Cross-stitch
networks[27], which model shared representations as a lin-
ear combination of input activation maps. NDDR[11] can
generalize from cross-stitch networks and utilize a very sim-
ilar idea. Sluice networks[34] can generalize to a specific
case of cross-stitch networks as well and are closely related
to both cross-stitch and NDDR.

These types of soft parameter sharing methods require a
full network architecture for each task, with separate param-
eters computing specific task-shared features between the
two networks. This means they are more computationally
expensive then some of the smaller hard parameter sharing
methods such as ours. They can also be harder to learn and
to implement for many multi-task problems as they require
training several single task networks and parameters to
combine them and are prone to overfitting. They are also not
suited well to small models for real-time on resource con-
strained devices such as phones. Our method yields mod-
els only slightly larger than a single task encoder-decoder
architecture. A well-designed hard parameter sharing ar-
chitecture for related tasks can outperform these other soft
parameter sharing methods such as [27, 11, 34] as shown
in Table 4 where our server architecture outperforms all 3
of these methods on NYU40, while only requiring 0.017%
more FLOPS than the single task network.

4. Results
We evaluate our method on several different datasets

which are discussed at length in the Supplementary sec-
tion. Our ablations studies are done with the Adapnet++
server architecture on the Scenenet RGBD dataset [26] be-
cause it is a synthetic dataset with many samples, clean
depth/semantic images, and low noise/label error. The de-
cision to evaluate on this data was done to avoid spuri-
ous errors caused by noise and labeling errors. For real
world evaluation, we use both the NYUDv2 [29] and Scan-
netv2 [8] datasets to verify our results. For all datasets, we
evaluate with the dataset image resolution despite our train-
ing resolution. For depth/disparity, we use the evaluation
metrics from [22], which are the percent of pixels under
log maximum relative depth error of 1.25{1,2,3}. For sur-
face normals we use the same metrics as [10] which are the
percent of pixels with angle error less than 11.25◦, 22.5◦,
and 30◦ as well as mean angle error (MAE). Equations for
all of these are included in the Supplementary section for
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reference. For semantic labels, we use the mean class in-
tersection over union score as well as mean pixel accuracy.
Evaluations of these for a single modality/task baseline net-
work are in the Supplementary section.

For comparing multi-task to single-task, we introduce a
metric called % improvement (%τ ), which shows the aver-
age improvement each task had over the single task version.
This is shown in Equation 6 where for each task i: si is the
metric for the single task method and mi is the metric for
the multi-task method. The result is multiplied by 100 af-
ter subtracting 1 to convert it into percent better (positive)
or worse (negative) than the single task results. For sur-
face normals, we use % < 11.25◦ for m, snormal, for depth
we use % under relative depth error of 1.25 for m, sdepth,
and for semantics, we use the mean intersection over union
(mIoU) for m, ssemnatics,

%τ =
100

n
(
n∑
i=0

mi

si
− 1). (6)

We also use a variant of this that accounts for the in-
crease of the model size over a single task. We call this
percent improvement per FLOP increase percentage (PIP-
FIP). It is simply (%τ ) divided by the percent increase in
model size given by multi-task model size fm and the sin-
gle task network size (we use semantics as the single task)
fl as seen in Equation 7. We set negative values to 0 as there
is no improvement then

PIPFIP =
%τ

100( fmfl − 1)
. (7)

4.1. Fission-scheme Ablation Study

To test the three proposed output fission schemes in Sec-
tions 3.2, 3.3, and 3.4, we do an ablation study on the
Scenenet synthetic dataset shown in Table 1. We use the
same encoder structure for all 4 decoder types with the two
tasks chosen being surface normals and semantic labels. We
use two tasks for this ablation study in order to examine
the effect of two tasks vs three tasks, which we show later.
Here we focus on semantic labels and surface normals. Re-
sults with depth & normals and depth & semantic labels are
shown in the Supplementary section.

For this ablation study, we used loss balancing of
λnormals = 10 and λsemantics = 1 as this was found to be ben-
eficial for all three methods in the loss balancing ablation
study found in the Supplementary section. We test all four
output fission methods with three different initializations:
a) the decoder trained from scratch and encoder initialized
with ImageNet weights, b) initializing with the single task
network trained on semantic labels, and c) initializing with
the single task network trained on normals We tested with
different initializations since many other methods such as
[36] utilize this for multi-task learning.

Interestingly enough, when trained from scratch, all 4
methods outperform the single task method on surface nor-
mals, however, mid fission underperforms on semantic label
prediction. Late fission actually is competitive with early
fission in these two tasks despite having far fewer task-
specific parameters which implies that these tasks are either
very interrelated (i.e. they have many efficient task-shared
parameters) or that one of the tasks only requires a few pa-
rameters. We can rule out the few parameter hypothesis
given much literature on the number of parameters used for
semantic label prediction as in [11] and the channel multi-
plier ablation study in [15] for surface normals.

When initialized with the single task trained on semantic
labels, the surface normal prediction quality suffers greatly
and semantic label prediction also decreases for everything
but early fission, which is counter-intuitive. Our theory is
that a network trained on surface normals makes for a good
initialization for multi-task learning; we see this throughout
our ablation studies. When initializing with surface nor-
mals, surface normal prediction of all 4 methods greatly in-
creases while semantic label prediction for early and late
fission decrease slightly, which is expected given we are
emphasizing the surface normal loss. However, our pro-
posed early-mid fission and mid fission schemes greatly in-
crease semantic label prediction as well with this initializa-
tion due to task-shared features. It outperforms all other
modes of early and late fission in both surface normal and
semantic label prediction while also outperforming individ-
ual task predictions. Early-mid fission is almost as many
flops as early fission. However, the mid fission method only
requires 68.3% of the FLOPS of early fission as shown in
the bottom of Table 1 yet it outperforms early fission which
is used by most current multi-task pixel-wise labeling meth-
ods. It might seem non-intuitive that mid fission is fewer
FLOPS than late fission but this is due to the number of
output channels of the final 1x1 convolutions. For exam-
ple, 17x17 (14 semantic labels + 3 normals) requires more
operations than 14x14 + 3x3. Due to mid fission’s supe-
rior performance and minimum FLOPs, we select it for the
further ablation studies.

In the Supplementary section, we show results for mid
fission for a model trained jointly on several different com-
binations of tasks with different initializations: from scratch
and from each single-task network. For mid fission, ini-
tializing from normals seems to always improve all the
tasks. This makes some sense given that surface normals
are highly correlated to other tasks as suggested in [38]. To
check how much our results would vary in Table 1, we ran a
variability study by training our mid fission network 3 times
to see if they converge to similar metrics. This is shown in
the Supplementary section and metrics only shift +/-0.1%
at most verifying these results are meaningful and not just
noise. Mid fission outperforms the single-task semantic la-
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Method Normals Semantics Imp FLOPS PIPFIP

% < 11.25 % < 11.25 % < 30 MAE mIoU % billion %

Individually Trained Baselines
Normals 83 91.5 93.8 8.3 - - 38.43 -
Semantics - - - - 50.3 - 38.57 -

Trained From Scratch
Early 84.9 92.7 94.9 7.6 51 1.84 56.56 0.04
Early-Mid 84.9 92.6 94.7 7.7 50.8 1.64 52.96 0.04
Mid 83.9 92.2 94.5 8 49.8 0.05 38.58 1.74
Late 85 92.6 94.8 7.6 50.9 1.8 38.64 9.92

Initialized from Labels
Early 80.1 91.1 93.8 9.3 51 -1.05 56.56 0
Early-Mid 83.7 92.3 94.5 8 49.8 2.31 52.96 0.06
Mid 78.2 89.8 92.9 9.8 49 -4.2 38.58 0
Late 81.1 91.1 93.8 8.9 50.1 -1.34 38.64 0

Initialized from Normals
Early 85.1 92.7 94.8 7.5 48.5 -0.52 56.56 0
Early-Mid 86.6 93.5 95.4 6.9 51.6 3.58 52.96 0.10
Mid 86.6 93.4 95.3 7 51.3 3.16 38.58 121.99
Late 85.6 92.9 95 7.3 50 1.27 38.64 7.00

Table 1: Joint Normals and Semantics results with different fission methods when the loss is balanced (λnormals = 10.0 and λsemantics =
1.0) and auxiliary loses are used (α1 = 0.6, α2 = 0.5 for both tasks) with different initialization methods. Imp is the percent improvement
metric and PIPFIP is percent improvement per flop increase percentage.

beling network by 1% mIOU, which is significantly more
than the variance due to training.

4.2. All 3 Modality Results

Using what was learned in the aforementioned ablation
studies, we test the different fission methods with all 3 tasks,
depth prediction, surface normal prediction, and semantic
labeling.

In Table 2, we do a similar ablation study as in Table 1
but now with all 3 tasks. Note here that early, late, and
mid fission all improve on normal prediction when balanc-
ing losses. However, late fission degrades on depth and se-
mantic prediction tasks while early and early-mid fission
degrade on depth prediction. Mid fission increases across
the board as we have seen in our other ablation studies. The
results are not as good as the two task results due to the dif-
ficulties of predicting 3 different tasks. This makes some
amount of sense given depth is an absolute distance of a
pixel from camera viewpoint and that is not necessarily a
good indicator of the normal or label. This is the reason we
select surface normals and semantic labels as the two main
tasks on our real dataset experiments. Different losses on
the depth such as reverse huber, scale-shift invariant depth,
or cross-task consistency could help improve both, which
we use in the mobile model in Section 4.4.

Note that we also initialize the early-mid and mid fis-
sion with the single task trained on surface normals but keep
standard initialization for early and late fission as that was
deemed best in Section 4.1. Loss balancing (λdepth = 0.5,

λnormals = 10, λsemantics = 1) is used in the last 3 columns
and for all columns, all auxiliary losses are used. Note
that while surface normal prediction and semantic labeling
prediction are still outperforming the single task-networks,
depth prediction is equal in percent of pixels under 1.252

and 1.253 but slightly worse in percent of pixels under
1.25. Our hypothesis is that the number of encoder chan-
nels would have to be increased to generate more features
relevant to the depth task; it must have more task-specific
features and less task-shared features. We found this to be
true in our ablation studies with our results using depth. The
mid fission strategy still outperforms others even though
early fission is widely used in the literature for multi-task
prediction. Note that here mid fission only requires 51.9%
of the FLOPS of early fission since adding a new task only
adds a small number of new decoder parameters with one
last block for each new task (0.017% FLOPS). Mid fission
is also the only method with a positive % improvement and
PIPFIP score.

4.3. Real-world Results

We also test our proposed method on two real-world
datasets, NYUDv2[29] and Scannet[8]. We chose to train
and evaluate on the tasks of surface normals and seman-
tic labels as they seem to have the greatest correlation and
the most task-shared features as discovered by the ablation
studies. Table 3 show multi-task results on the 13 class la-
bel subset. This dataset has very few training images so
we initialize with our model with our network trained on
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Method Normals % < Depth % < Semantics Imp FLOPS PIPFIP

11.25 22.5 30 1.25 1.252 1.253 mIoU % billion %

Single Task
Normals 83 91.5 93.8 - - - - - 38.43 0
Depth - - - 86.1 95.3 97.5 - - 38.40 0
Semantics - - - - - 50.3 - - 38.57 0

No Loss Balancing
Early 76.2 89.5 92.7 80.2 89.1 92 49.7 -5.38 74.54 0
E-Mid 81.3 91.4 94.0 78.3 87.3 90.4 50.0 -3.89 67.35 0
Mid 70.8 86.5 90.8 77.1 87.5 90.2 49.0 -9.21 38.58 0
Late 73.3 88.1 91.9 81.8 90.7 93.4 50.5 -5.39 38.66 0

Balancing λd = 0.5,λn = 10
Early 84.6 92.5 94.7 78.7 88.9 91.7 50.6 -1.99 74.54 0
E-Mid 86.2 93.3 95.2 77.2 89.1 92.9 50.6 -1.86 67.35 0
Mid 85 93.1 95.1 84.8 95.3 97.5 50.4 0.86 38.58 33.32
Late 84.2 92.4 94.6 78.9 90.8 93.7 49.4 -2.87 38.66 0

Table 2: Joint 3 task results with different fission methods both with no loss balancing and when the loss is balanced (λsemantics = 1,
λdepth = 0.5 and λnormals = 10). N is the single task normals baseline, D the depth, and S the semantics.

Normals % < Semantics

Method 11.25 22.5 30 mAE mIoU

[32] from [23] 21.8 43.1 54.9 32.3 16.1
[23] 23.2 45.7 57.5 31.1 17.7
Ours 50.1 70.8 78.1 20.6 42.1

Table 3: NYUDv2 13 class results with our proposed mid fission
method compared to state of the art training on NYUDv2 13 class.

Scannetv2. We also show results on the 40 class label sub-
set of NYUDv2 in Table 4 with many other state-of-the-art
multitask and single task methods. Note that some train on
normals from [9] quantized to RGB images. This creates
several degrees of normal error, resulting in % < 11.25
being much worse but the rest of the metrics being better.
We do not recommend this as it is not indicative of actual
surface normals but show our method quantized as well to
evaluate properly.

Finally, we also train and evaluate on the Scannetv2
dataset in Table 5. We separate a subset of 10% of the
scenes in the training set as validation set since there is
no given validation split. We evaluated on this due to the
large number of experiments done and GPU limitations for
training. Many of the other methods such as [36] use dif-
ferent initialization to improve results. It is common to
also crop sections of the test image with flips to evaluate
several portions of the test image at full resolution in or-
der to produce the best results. We avoided these tech-
niques as they are not indicative of which architecture is
most promising. Therefore, we evaluate by simply resiz-
ing the test image and running it through the network once.

Normals % < Semantics

Method 11.25 22.5 30 mAE mIoU

Misra[27] from [11]∗ 48.6 76 86.5 15.2 34.8
Gao et al.[11]∗ 53.5 79.5 88.8 13.9 36.2
Ruder[34] from [11]∗ 49.7 77.1 88.0 14.8 34.9
Ours quantized∗ 40.9 82.7 90.5 15.2 38.5

Misra et al.[27] 39 54.4 60.2 34.1 19.3
Mousavian et al.[28] N/A N/A N/A N/A 39.2
Kokkinos et al.[19] 35.3 65.9 76.9 21.4 N/A
Xu et al.[37] N/A N/A N/A N/A 33.1
Hickson et al.[15] 59.5 72.2 77.3 19.7 N/A
Ours 60.2 79.1 86.1 15.2 40.6

Table 4: NYUDv2 40 class results with our proposed mid fission
method compared to state of the art (fine-tuned). ∗ Indicates the
normals are from [9] that were then quantized to RGB images.

Other reported results are shown in the first half of the ta-
ble for fairness followed by our trained results. These in-
clude our results for the backbone architecture [36], the
standard early fission method, and our proposed mid fis-
sion method. Our proposed method is only slightly larger
(0.017% more FLOPS) than the single-task architecture and
68.2% of the FLOPS of the standard early-fission method.
We did not compare with methods that use several input
sources (RGB+D,RGB+HHA) as we are evaluating on the
single-to-many multi-task labeling domain.

Our proposed method considerably outperforms the
competitive Adapnet++ baseline[36]. Figure 2 shows some
qualitative results from the Scannetv2 validation set show-
ing our impressive results.
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Figure 2: Illustration of the Scannetv2 data, together with the predictions of our model on them. Columns, from left to right: RGB image,
ground truth surface normals, our normal predictions, ground truth semantic labels, then our semantic predictions.

Normals % < Semantics

Method 11.25 22.5 30 mAE mIoU

[2] N/A N/A N/A N/A 27.5
Adapnet N/A N/A N/A N/A 47.3
DeepLabv3 N/A N/A N/A N/A 50.1
[36] N/A N/A N/A N/A 50.3
[15] 50.1 63.2 68.2 28.8 N/A

Ours [36] N/A N/A N/A N/A 56.2
Ours Early 50.8 72.9 80.3 18.6 56
Ours Mid 57.8 77.4 83.8 16.3 62.5

Table 5: Scannetv2 validation set results. with our proposed mid
fission method compared to state of the art.

4.4. Real-time Mobile Model Results

Multi-task networks are even more important to resource
constrained devices such as robots, mobile phones, and lap-
tops. Due to this, we tested the same method of splitting
the decoder in several places on two separate mobile device
specific architectures with results shown in Table 6. We
tested on 3 tasks, surface normals, semantic labels, and dis-
parity. We did 3 tasks instead of just 2 as in the server model
to show the potential of this method for mobile inference.
The first architecture, Mobilenetv1-unet is a variant of the
architecture used in [15] with receptive field enlarged using
5x5 convolution kernels and prelu layers. The second archi-
tecture Mobilenet-V3 w/attention uses [16] as the encoder
followed by a rASPP layer and two self attention blocks
in the decoder. We have included model size, latency, and
runtime memory on a Pixel 3XL. The Mobilenetv3 model
is smaller so it has lower latency and worse results. What
is important to note that for both of these, the same findings
we found in the server model hold true. Mid-fission is sub-
stantially faster and has smaller model size all while having
comparable or even better accuracy than the early fission

approach. In Table 6, latency is in milliseconds on a Pixel
3XL, model size is the size (MB) of the tflite model with
float16 quantization, and memory is runtime memory MB.
An average of 50 runs is used for these metrics.

Metrics MobilenetV1-Unet MobilenetV3-Attention

Early Mid Late Early Mid Late

Normals % <
11.25 49.98 46.67 49.16 40.46 43.99 39.43
22.5 66.43 67.61 67.87 66.5 68. 65.24
30 74.16 77.76 75.75 76.6 77.51 75.07

Disparity % <
1.25 96.12 95.5 91.22 91.98 79.52 30.21
1.252 99.2 99.63 98.56 99.82 98.51 74.66
1.253 99.97 99.99 99.68 100 99.76 96.4

Semantic Accuracy 81.4 84.94 80.12 60.67 67.9 60.45
Latency (ms) 30.1 18.78 31.94 11.59 9.61 23.9
Model size (MB) 1.8 1.3 1.3 2 1.7 1.7
Memory (MB) 157.1 110.9 104.3 72.5 69.1 71.6

Table 6: Fission methods on 2 mobile architectures on Scannetv2
with NYU13 semantic labels and losses as described in Section 3.1

5. Conclusion
We explore fission methods for multi-task pixel-wise

prediction tasks. We show ablation studies on different
fission methods and find that our proposed mid-fission
method outperforms standard early fission methods with
only 0.017% more FLOPS per task. We evaluate this on
several tasks on several datasets producing SoTA results of
multiple modalities on multiple datasets. We also evalu-
ate this on mobile architectures to demonstrate its use for
resource constrained devices such as mobile phones and
robots. We open source the model and example code[1]. We
hope this can help multi-task pixel-wise prediction methods
achieve better results using this simple architecture change.
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