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Figure 1. We present DIV2K-SCAN dataset for smartphone-scanned photo restoration (a) with Local Alignment (b), simulate varied
domains to gain generalization in scanned image properties using low-level image transformation (c), and design a Semi-Supervised
Learning system to train our network on also unscanned images, diversifying training image content (d). As a result, this work obtains
state-of-the-art performance on smartphone-scanned photos in seen and unseen domains (e1-e2).

Abstract

Physical photographs now can be conveniently scanned
by smartphones and stored forever as digital images, yet
the scanned photos are not restored well. One solution is to
train a supervised deep neural network on many digital im-
ages and their smartphone-scanned versions. However, it
requires a high labor cost, leading to limited training data.
Previous works create training pairs by simulating degra-
dation using low-level image processing techniques. Their
synthetic images are then formed with perfectly scanned
photos in latent space. Even so, the real-world degrada-
tion in smartphone photo scanning remains unsolved since
it is more complicated due to lens defocus, low-cost cam-
eras, losing details via printing. Besides, locally structural
misalignment still occurs in data due to distorted shapes
captured in a 3-D world, reducing restoration performance
and the reliability of the quantitative evaluation. To ad-
dress these problems, we propose a semi-supervised Deep
Photo Scan (DPScan). First, we present a way of produc-
ing real-world degradation and provide the DIV2K-SCAN

dataset for smartphone-scanned photo restoration. Also,
Local Alignment is proposed to reduce the minor misalign-
ment remaining in data. Second, we simulate many different
variants of the real-world degradation using low-level im-
age transformation to gain a generalization in smartphone-
scanned image properties, then train a degradation net-
work to generalize all styles of degradation and provide
pseudo-scanned photos for unscanned images as if they
were scanned by a smartphone. Finally, we propose a Semi-
Supervised Learning that allows our restoration network to
be trained on both scanned and unscanned images, diversi-
fying training image content. As a result, the proposed DP-
Scan quantitatively and qualitatively outperforms its base-
line architecture, state-of-the-art academic research, and
industrial products in smartphone photo scanning.

1. Introduction
Every moment passing by is precious, especially when

it marks important life events. The moments are often cap-
tured in photographs. Unfortunately, we may no longer re-
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Figure 2. We manually simulate different domains of degradation
affected by other shooting environments (taken at dusk with lack of
light) and devices (Xperia XZ1, Polaroid Camera) using low-level
image transformation based on the real-world degradation.

tain their high-quality digital versions because we acciden-
tally lost them or the pictures are made from film. Thanks
to technological development, photographs can now be ef-
ficiently stored by scanning applications on smartphones
as high-resolution digital images. It also provides an ef-
ficient way to share the captured moments in physical pho-
tographs to everyone via the Internet. To restore the scanned
photos, the recent Old Photo Restoration (OPR) [31, 32]
based on Deep Neural Networks (DNNs) tries to mimic and
learn the scanning degradation using low-level image pro-
cessing techniques such as Gaussian Noise, Gaussian Blur.
Their artificially degraded photos are then formed with the
perfectly scanned old photos in latent space. However,
the smartphone-scanned photos are still not restored well
since they contain more complicated degradation caused
by low-cost cameras, scanning environments, losing de-
tails via printing, varied post-processing techniques, etc. In
this work, we adopt DIV2K [30] to present the DIV2K-
SCAN dataset, which provides real-world degradation in
smartphone photo scanning. Besides the typical way of
globally aligning a scanned photo to its ground-truth im-
age, we propose Local Alignment (LA) to reduce a mi-
nor misalignment remaining in data. Inspired by [10], we
simulate many different variants from the captured real-
world degradation using low-level image transformation to
gain a generalization in smartphone-scanned image prop-
erties. Furthermore, we leverage Generative Adversarial
Networks (GANs) [8, 14, 47] to first generalize all do-
mains of degradation, then provide pseudo inputs for an
unlimited amount of unscanned images in training. Being
joint with supervised training, we design a cycle process
as high-quality images → scanned photos/pseudo inputs
→ reconstructed images. The proposed semi-supervised
scheme balances two supervised and unsupervised errors
while optimizing to limit the effect of imperfect pseudo in-
puts but still enhance restoration. Our approach is briefly
described in Figure 1. Our code and data are available at
https://minhmanho.github.io/dpscan/.

Creating real-world degradation. The performance
of DNNs mostly depends on how the training data is cre-
ated. Hence, it is crucial to develop a specific degrada-
tion close to real-world problems. For instance, although
[30, 34, 6, 16] can address the typical degradation for image

super-resolution, they do not meet real-world needs such as
image zooming and practical single-image super-resolution.
Therefore, [44] presented a way to obtain ground-truth im-
ages for zoomed regions by optically zooming and provide
a dataset for real-world computational zoom, and [40] de-
signed a practical degradation model to cover the diverse
degradations of real images. Regarding other tasks, [24]
and [1] create their training image pairs with natural noise
of photographs caused by low-ISO, and [13] creates training
{smartphone, DSLR camera} pairs to enhance smartphone-
taken photos. To the best of our knowledge, this work is
the first time to have a dataset (DIV2K-SCAN) that pro-
vides real-world degradation for smartphone-scanned photo
restoration. Besides, inspired by [10], we apply low-level
image transformation to simulate many different variants
of the captured degradation as if the photos were also cap-
tured in/by other shooting environments and smartphones
for training. As proof shown in Figure 2, the manually-
simulated domains are qualitatively similar to the real do-
mains, demonstrating the feasibility of our scheme. Our
trained restoration network can thus gain a generalization
in smartphone-scanned image properties.

Semi-Supervised Learning. Since the human-
annotated data costs a considerable resource, worldwide
researchers have proposed many semi-supervised learning
techniques to solve the lack of labeled data (ground-truth)
while training a deep neural network. For example, the im-
age classification works [3, 38, 5] utilized a well-trained
model (teacher) to generate pseudo labels for unlabeled im-
ages so that the smaller network (student) can be trained
on them. The semantic segmentation work [23] added an
unsupervised loss on synthetic maps predicted by auxiliary
decoders for unlabeled samples. They all provided good
schemes when the ground-truth data is limited. However,
in this work, we lack the input data for training. Thanks
to the seminal work of Generative Adversarial Networks
(GANs) [8], the synthetic images now are high-fidelity and
closer to the target distribution [14]. Moreover, the syn-
thetic images can be translated back to the input domain,
creating a cycle consistency [47, 35]. Inspired by the men-
tioned techniques, [32, 37, 46] proposed unpaired image-
to-image translation methods, which allow their models to
be trained on and solve the real degradation without re-
quiring ground-truth images. However, the performance
of unpaired methods is limited, and there is no published
source for smartphone-scanned photos yet. In this work,
besides providing DIV2K-SCAN dataset, we adopt the con-
cept of GANs to generalize our real-world degradation and
its simulated variants to map the unscanned ground-truth
images to a generalized domain, providing them the pseudo-
scanned inputs for unsupervised training. Thus, the training
image content is diversified. Being joint with supervised
training, it will create a cycle fashion as high-quality images
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Figure 3. We present a Semi-Supervised Learning system that allows our model to be trained on unlimited high-quality images regardless of
whether they have been scanned (supervised - a) or not (unsupervised - b) under strongly supervised loss functions such as L2 (L∗

L2), LPIPS
[42] (L∗

LPIPS), and MS-SSIM [36] (L∗
MS−SSIM ), where ∗ denotes s or u representing supervised or unsupervised scheme respectively.

Meanwhile, the distribution of the real-scanned photos is captured with adversarial losses and L1 (Ls
L1).

→ scanned photos/pseudo inputs → reconstructed images,
as shown in Figures 1 and 3. The proposed semi-supervised
scheme balances the errors between supervised and unsu-
pervised while optimizing to limit the effect of imperfect
pseudo inputs but still enhance restoration.

Network architecture. The autoencoder architecture U-
Net [27] and its variants have gained high performance and
become well-known in the field of image-to-image trans-
lation [2, 43, 14, 11]. Many techniques for customizing a
deep neural network have recently grown rapidly towards
enhancing efficiency and effectiveness. It is meaningful for
this smartphone photo scanning to operate on a limited re-
source. Inspired by the attention mechanism, Wang et al.
[33] proposed an Efficient Channel Attention (ECA) mod-
ule that reduces a huge computational cost with favorable
performance compared to its backbones in image classifica-
tion, object detection, and semantic segmentation. There-
fore, we leverage ECA to design a Residual ECA (RECA)
Block and RECA U-Block for our restoration network. As
a result, the customized architecture shows a better learn-
ing capability compared with its baseline architecture built
from U-Net [27], residual modules [15], blur pooling [41],
and EvoNorm-S0 [20].

Our contributions are as follows: 1) We present
the DIV2K-SCAN dataset with real-world degradation in
smartphone photo scanning, allowing a deep neural network
to be trained with strongly supervised loss functions. 2) A
minor structural misalignment still occurs in data, even af-
ter globally aligning, lowering restoration performance and
making a quantitative comparison using similarity metrics
less reliable. To address this problem, we propose Local
Alignment (LA) to perfectly align a smartphone-scanned
photo to its ground-truth. LA-ed data also shows that the
larger the image size, the more serious misalignment. 3)

To address the concern of our performance on photos cap-
tured in/by other shooting environments and devices (gen-
eralization), inspired by [10], we apply color style transfer
to simulate varied types of degradation based on the real-
world degradation. Thus, our work gains a generalization
in smartphone-scanned image properties. 4) We propose a
semi-supervised Deep Photo Scan (DPScan) that has two
advantages: a) Semi-Supervised Learning, which can di-
versify training image content by allowing our restoration
network to be trained on both scanned and unscanned im-
ages, and b) the customized Residual Efficient Channel At-
tention (RECA) Block and RECA U-Block. As a result, our
semi-supervised DPScan outperforms its baseline, previous
research works, and industrial products comprehensively in
1-domain and generalization tests.

2. The Proposed Deep Photo Scan (DPScan)

Our work consists of two main components: (1) data
preparation such as reproducing real-world degradation,
image annotation/alignment, and simulating many smart-
phone scanning styles using color style transfer, and (2) the
proposed semi-supervised DPScan for smartphone-scanned
photo restoration.

Regarding (1), we leverage both traditional Canny [4]
and DNN-based [25] edge detection techniques to identify
the contour of interests. Afterward, the annotated images
are warped and cropped to have a top-down view as though
a professional scanner scanned them. Furthermore, we ap-
ply a precise alignment based on SIFT [21] and RANSAC
[7, 29] to suppress the structural mismatch between in-
puts and ground-truth images with Local Alignment (LA).
Besides, inspired by [10] and the feasibility of simulating
smartphone-scanned domains using low-level image trans-
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formation shown in Figure 2, we apply color style trans-
fer to sample many different domains from the real-world
degradation as if the photos were also scanned in/by other
shooting environments and devices, as shown in Figure 1.
Regarding (2), we design a semi-supervised framework for
our DPScan that includes two generators G1 and G2, and a
discriminator D2. In that, G1 is to restore scanned pho-
tos and trained under supervised loss functions. Mean-
while, the GAN-based G2 provides the pseudo inputs for
unscanned images in a generalized domain and is trained
with the discriminator D2 distinguishing whether a scanned
photo is real or fake. Initially, all models are pre-trained
on 1-domain DIV2K-SCAN (iPhone XR) with a supervised
learning scheme in which G1 is trained independently with
G2 and D2. Afterward, G1, G2, and D2 are jointly trained
on scanned photos from DIV2K-SCAN and unscanned im-
ages from Flick2K [30], representing a Semi-Supervised
Learning for dealing with the lack of inputs. In case of be-
ing fine-tuned on multiple-domain DIV2K-SCAN, G2 will
generalize all domains and provide pseudo-scanned inputs
in the generalized domain, as shown in Figures 1 and 3.
Please check our supplemental document for visualization
of pseudo-scanned photos.

2.1. Supervised Learning for pre-training G1, G2
and D2

In pre-training on DIV2K-SCAN with supervised learn-
ing, after perspective warp, our G1 : X → Y restores the
scanned inputs Xs ∈ RH×W×3 to have Ŷs ∈ RH×W×3, as
follows:

Ŷs = G1(Xs) (1)

The errors between Ŷs ∈ RH×W×3 and its ground-truth
images Y are optimized under several supervised losses
such as L2, Multiscale Structural Similarity (MS-SSIM)
[36], and the perceptual metric LPIPS [42] as follows:

Ls
G1 = α ∗ Ls

L2 + β ∗ Ls
LPIPS + γ ∗ Ls

MS-SSIM (2)

where:
Ls
L2 = ||Ys − Ŷs||22,

Ls
MS-SSIM = MS-SSIM(Ys, Ŷs) described in [36],

Ls
LPIPS = LPIPS(Ys, Ŷs) described in [42].

To learn the specific degradation of scanned photos from
DIV2K-SCAN, we independently train a simply-designed
network G2 : Y → X to degrade the ground-truth images
Ys to synthesize its scanned version X̂s ∈ RH×W×3, as
follows:

X̂s = G2(Ys) (3)

Instead of conditioning the discriminator [22, 39], we
train the generator G2 and discriminator D2 under the L1
[14] and hinge adversarial losses [18] as:

Figure 4. Architecture of our restoration network G1 inferring the
high-quality Ŷ from the smartphone-scanned X .
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Figure 5. Illustrations of Residual Efficient Channel Attention
(RECA) Block and RECA U-Block. Regarding ”DOWN”-/”UP”-
sampling, we use the anti-aliasing max pooling and bi-linear inter-
polation from [41].

⊕
represents a summation.

Ls
D2 = −EXs

[min(0,−1 +D(Xs)]

− EYs
[min(0,−1−D(G2(Ys))] (4)

Ls
G2 = −EYs

[D(G2(Ys))] (5)

Ls
L1 = EXs,Ys [||Xs −G2(Ys)||1] (6)

The total loss for G2 is defined as:

Ls
G2 final = α ∗ Ls

L1 + δ ∗ Ls
G2 (7)

We empirically set α = 1, β = 0.2, and γ = 1, δ = 0.05
for this supervised learning scheme.

2.2. Semi-Supervised Learning for fine-tuning G1,
G2, and D2 together

After pre-training models on DIV2K-SCAN, we then
train G1, G2, and D2 together on both DIV2K-SCAN con-
taining ground-truth images Ys with their scanned photos
Xs and Flick2K [30] containing the unscanned ground-truth
images Yu ∈ RH×W×3.

Firstly, Xs and Ys are processed as described in Section
2.1. Then, G2 provides pseudo-scanned inputs X̂u for Yu

as:

X̂u = G2(Yu) (8)
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under adversarial losses updated from Equations 4 and 5
as:

LD2 = −EXs [min(0,−1 +D(Xs)]

− 0.5 ∗ (EYs [min(0,−1−D(G2(Ys))]

+ EYu [min(0,−1−D(G2(Yu))]) (9)

LG2 = −0.5 ∗ (EYs
[D(G2(Ys))]

+ EYu
[D(G2(Yu))] (10)

Combined with the supervised loss in Equation 6, we
have the updated total loss for G2 as:

LG2 final = α ∗ Ls
L1 + δ ∗ LG2 (11)

Afterward, G1 leverages the pseudo input X̂u to synthe-
size the reconstructed Ŷu, creating a cycle fashion as:

Ŷu = G1(sg(X̂u)) = G1(sg(G2(Yu))) (12)

where sg denotes the stop gradient function added to
avoid falsifying the distribution of real-scanned photos.
Similar to Equation 2, the defined loss function for G1 op-
timizing errors between Ŷu and Yu is as:

Lu
G1 = α ∗ Lu

L2 + β ∗ Lu
LPIPS + γ ∗ Lu

MS-SSIM (13)

Finally, the semi-supervised loss function for G1 is as:

LG1 = η ∗ Ls
G1 + (1− η) ∗ Lu

G1 (14)

where η, a balance weight between supervised and un-
supervised errors, is set to 0.5. Other hyper-parameters em-
pirically re-set α = 1, β = 0.1, and γ = 0.25, δ = 0.05 in
this Semi-Supervised Learning scheme.

2.3. Network architecture

The proposed semi-supervised DPScan consists of three
main deep neural networks: G1 : X → Y for scanned
photo restoration, G2 : Y → X for degrading high-quality
images, and discriminator D2 trained together with G2 to
distinguish whether the scanned images are real or fake.

Generator G1 is designed based on the network archi-
tecture of U-Net [27] with skip connections [11], resid-
ual modules (ResBlock) [9, 15], EvoNorm-S0 [20], which
have achieved a high performance in many image-to-image
translation tasks. Besides, in each block of the encoder
and decoder, we leverage the anti-aliasing max pooling
and bi-linear interpolation [41] for down-sampling and up-
sampling, respectively. The network architecture adopting
the techniques mentioned above is treated as our baseline

architecture. Afterward, we adopt Efficient Channel Atten-
tion (ECA) module [33], which has shown the efficiency
but effectiveness in image classification, to design Resid-
ual ECA (RECA) and RECA U-Block and customize G1,
as described in Figures 4 and 5. Technical details are de-
scribed in our supplemental document.

Generator G2 and Discriminator D2. We utilize the
baseline architecture mentioned above for G2 to generate
pseudo-scanned photos. Meanwhile, D2 is from the dis-
criminator of SA-GAN [39] with Spectral Normalization
[22]. More details are in our supplemental document.

2.4. Data preparation and DIV2K-SCAN

Generating the real-world degradation. We first ro-
tate the high-quality images from DIV2K [30] so that all
images are in landscape format, then apply a center crop
to all images with an aspect ratio of 15 : 10. Afterward,
the processed images are printed by a professional pho-
tography lab, where the staff is well-trained to print pho-
tographs with accurate colors and high quality, with a size
of 7.5cm × 5cm. All physical photos are then taken in a
room with sufficient light intensity on the white background
using a smartphone. Hence, our generated data contains a
complex degradation of smartphone-scanned photos such as
natural noises, haze, smartphone-level image quality, struc-
tural distortion, lost details via printing, and more.

Contour detection and image alignment. After col-
lecting the digital images of printed photos, we apply the ef-
ficient Canny [4] edge detection to detect the contours of the
actual scanned photos in the white background. However,
the method is sensitive to the color between the boundary
and usually makes mistakes in detecting a complete contour.
Thus, we utilize learning-based DexiNed [25] to support
Canny’s method. The remaining failed contour detection
will be manually corrected by humans. Please check our
supplemental document for discussion and visualization.

Even though the top-down view is obtained, the struc-
tural mismatch between the warped image and its ground-
truth still occurs. It becomes more challenging to train a
deep neural network. The recent work RANSAC-flow [28]
presents an advanced technique to precisely structurally
align an image to another one having the same context;
however, the degradation of smartphone-scanned images
can be falsified by their warping. To reduce structural mis-
match while keeping the degradation intact, we leverage
the SIFT features [21] combined with RANSAC [7, 29] to
find the homography, then align the warped images to their
ground-truth. We eventually produced 900 ground-truth im-
ages with real-scanned versions for supervised training, val-
idation, and testing. Unfortunately, the local misalignment
still occurs because the object shape taken in the 3-D world
is inconsistently distorted. Consequently, learning capabil-
ity is harmed, and the quantitative evaluation using similar-
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Figure 6. Generating Locally-Aligned data. After globally warp-
ing, we step-by-step (1) apply a center crop with a size of R1%
of the whole size to remove empty pixels, (2) resize the images to
M × N using bicubic interpolation, (3) extract patches from (3-
a) color-balanced [19] images to find homography matrices (blue)
and (3-b) original photos for warping using a sliding window with
a size of W1 and a stride of S% of W1, (4) warp the scanned
patches (3-b) with homographies (3-a), (5) center crop to R2%
of the whole size again, and finally (6) obtain the locally-aligned
patches with a size of W2 = R2 ∗ W1. O = 1 − S/R2 denotes
the percentage of how much two consecutive final patches overlap.
Extracting and warping patches are powered by Kornia [26].

ity metrics becomes less reliable. To address this issue, we
present a way of generating Locally-Aligned (LA) data for
training and test, as described in Figure 6.

Training data. We utilize 800 scanned image pairs from
DIV2K-SCAN and 2, 600 unscanned images from Flickr2K
[17] to extract 12, 000 pairs and 20, 800 unscanned patches,
respectively, using the presented Local Alignment (de-
scribed in Figure 6) with M×N of 1080×720, R1 of 95%,
R2 of 95%, final patch size W2 of 256 × 256, the stride S
of 65% W2 resulting in two consecutive final patches over-
lapping O = 1−S/R2 ≈ 31.57%. Based on the real-world
degradation, we synthesize more K ∗ 12, 000 scanned pho-
tos as if they were also scanned in/by other environments
and devices with a K of 100 color styles collected by [10].
To diversify training samples, the data is augmented by a
random flip in horizontal and vertical ways and random ro-
tation with the degrees of 0, 90, 180, 270 during training.

validation and test data. From 100 globally-aligned
images from 1-domain DIV2K-SCAN, we apply Local
Alignment to extract 4000, 1500, 600, 100, 100 patches
with the final patch size W2 of 176 × 176, 256 × 256,
384 × 384, 576 × 576, 1072 × 720, respectively, M × N
of 1072× 720, R1 of 95%, R2 of 80%, the stride S of 50%
W2 resulting in two consecutive final patches overlapping
O = 1 − S/R2 ≈ 37.5%. Regarding the final patch size
W2 of 1072 × 720, we only apply the first center crop and
resize the photos. The pairs from each size is split into two
sets, 40% for validation (valset) and 60% for test (testset).
In each set, valset contains degradation styles of iPhone XR
and two simulated domains unseen from training, and test-
set contains photos of iPhone XR, Color-Balanced iPhone
XR [19], and Sony Xperia XZ1. In a comparison with in-
dustrial products, we set a R1 of 85% to avoid large black
borders produced by Google Photo Scan.

Input Simple +RECA

+RECA+LA (SSL)+RECA+LA GTH

Input Simple +RECA

+RECA+LA (SSL)+RECA+LA GTH

Figure 7. Ablation study on RECA for customizing DPScan,
training on Locally-Aligned (LA) data, and the proposed Semi-
Supervised Learning (SSL). As a result, each component can pro-
vide an improvement in restoring the edges and reducing artifacts.
Check our supplemental video for a better comparison.

Method Learning Alignment RECA PSNR↑ LPIPS↓ MS-SSIM↑
Pix2Pix [14] SL GA 22.63 0.2138 0.8979
CycleGAN [47] SL GA 20.24 0.2504 0.8836

1D-DPScan

SL GA 23.78 0.1606 0.9275
SL GA ✓ 24.10 0.1424 0.9316

SSL GA ✓ 24.38 0.1423 0.9333
SL LA ✓ 24.85 0.1351 0.9415

SSL LA ✓ 25.26 0.1242 0.9446

Table 1. Comparison between previous works [14, 47] and our ab-
lation models with Supervised Learning (SL) or Semi-Supervised
Learning (SSL), Global Alignment (GA) or Local Alignment
(LA), and non-RECA or RECA. All models are trained and eval-
uated on 1-domain DIV2K-SCAN. ↑ / ↓: higher/lower is better.

3. Experiments

In this section, we conduct an ablation study on our pre-
sented techniques, including RECA for the architecture of
DPScan, training on Locally-Aligned (LA-ed) data, and
the proposed Semi-Supervised Learning (SSL). Further-
more, we also train and compare with two typical works
Pix2Pix [14] and CycleGAN [47] in the same condition on
1-domain DIV2K-SCAN (iPhone XR). DPScan trained on
only iPhone XR is denoted as 1D-DPScan. To prove our
high generalization performance, we compare Generalized
DPScan (G-DPScan) with recent works designed to solve
many different degradation types of scanned photos such as
Industrial products Google Photo Scan (GPS) and Ge-
nius Scan (GS) (we manually produce their results using
iPhone XR without flash), and Academic Research Old
Photo Restoration [32]. Besides the set of iPhone XR, all
methods are evaluated on also unseen sets of color-balanced
iPhone XR [19] and Xperia XZ1, which have better and
worse performance than iPhone XR, respectively. Other ex-
periments on deep modules for designing DPScan, image
alignment, pseudo-scanned photo synthesis, number of sim-
ulated domains K are described in the supplemental docu-
ment. Additionally, supplemental videos can be found on
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our webpage 1.
All quantitative comparisons are conducted on DIV2K-

SCAN testsets described in Section 2.4 using similarity
metrics such as Peak Signal-to-Noise Ratio (PSNR), LPIPS
[42], and MS-SSIM [36]. Unfortunately, the similarity met-
rics are less reliable due to a minor misalignment remain-
ing in data. Consequently, the smaller the image size, the
smaller the structural mismatch between input and ground-
truth after alignment, the more accurate evaluation. There-
fore, we use the average score over three sizes of 176, 256,
and 384 for all quantitative comparisons on LA-ed data.

Comparison between ablation models and previ-
ous works trained and evaluated on 1-domain DIV2K-
SCAN (iPhone XR). We adopt U-Net [27], residual
modules [9, 15], anti-aliasing down-/up-samplers [41],
EvoNorm [20] to design a baseline architecture. While
considering improving network architecture, we conduct
an ablation study on customized deep learning techniques
such as Flow Warping Block (FWB) [12], Residual Feature-
based Attention (RFA), Residual Self-Attention (RSA)
[39], Residual Channel Attention Block (RCAB) [45], and
Residual Efficient Channel Attention (RECA) [33]. The
Efficient Channel Attention (ECA) [33] has shown the ef-
ficiency yet effectiveness in reducing computational costs
with high accuracy for the image classification task. More-
over, an experimental result shows that the customized
RECA outperforms other ablation techniques with the best
image quality (technical and experimental details are in
the supplemental document). Therefore, we leverage the
RECA module and its variant RECA U-Block, which is
customized for u-style architecture [27], to design our net-
work, as shown in Figures 4 and 5. Besides, we propose
Local Alignment and Semi-Supervised Learning (SSL) to
solve (i) the remaining minor misalignment between the in-
put and ground-truth in data and (ii) expensive costs leading
to lack of real-scanned data. We also compare our ablation
models with the Pix2Pix [14] and CycleGAN [47] trained
in the same condition to prove our restoration effectiveness.
As a qualitative result, each presented technique gradually
improves the restoration performance as clearer edges with
fewer artifacts, as shown in Figure 7 (a better qualitative
comparison is in our supplemental video). In comparison
with previous works, our work provides the highest im-
age quality without the haze effect, as shown in Figure 8.
Quantitatively, our designed baseline architecture for DP-
Scan can outperform the previous works [14, 47] with better
average PSNR, LPIPS [42], and MS-SSIM [36] of 23.78,
0.1606, 0.9275. The average PSNR is further improved
+0.32dB when the baseline DPScan is customized with
RECA, +0.75dB more when the model is trained on LA-
ed data, +0.41dB more when the model is trained with the
proposed SSL. Eventually, all presented techniques bring

1https://minhmanho.github.io/dpscan/

Figure 8. Qualitative comparison between two typical works
Pix2Pix [14] and CycleGAN [47] trained on 1-domain DIV2K-
SCAN (iPhone XR), industrial products Google Photo Scan (GPS)
and Genius Scan (GS), the previous work Old Photo Restoration
(OPR) [32], and our 1-domain (1D-DPScan) and generalized (G-
DPScan) networks. This work provides the most detailed photos
without haze and color fading.

Figure 9. Ablation study on the number of simulated domains (K)
for fine-tuning 1D-DPScan in two stages of 100, 000 iterations us-
ing average PSNR. The model with K = 100 obtains the highest
generalization performance.

+1.48dB totally. Likewise, the average LPIPS and MS-
SSIM are improved -0.0364 and +0.0171, respectively, in
total, as shown in Table 1.

Comparison with previous works and industrial
products on multiple-domain DIV2K-SCAN. The recent
works Google Photo Scan (GPS), Genius Scan (GS), and
Old Photo Restoration (OPR) [32] try to solve many dif-
ferent types of real-world degradation in smartphone photo
scanning. Even though the industrial products GPS and
GS have a user-friendly interface, their scanned photos
are distorted with significant artifacts. Inspired by deep
learning, OPR [32] trained their network on the scanning
degradation simulated by low-level image processing tech-
niques. Although their synthetic images are formed with
the perfectly real-scanned old photos in latent space, their
model is weakly trained because the ground-truth images
of real-scanned photos are missing. Moreover, the real-
world degradation in smartphone photo scanning is more
complicated caused by natural lens defocus, low-cost cam-
eras, losing details via printing, and more. To overcome this
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Method iPhone XR (seen) iPhone XR + SCB [19] (unseen) Xperia XZ1 (unseen) Average Method iPhone XR (seen)
PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR↑ LPIPS↓ MS-SSIM↑ PSNR LPIPS MS-SSIM

Inputs 16.71 0.3734 0.8436 19.65 0.3569 0.8853 15.24 0.4327 0.7783 17.20 0.3877 0.8357 Inputs 16.74 0.3944 0.8367
OPR [32] 19.83 0.3479 0.8792 19.64 0.3498 0.8786 19.44 0.4010 0.8551 19.64 0.3662 0.8710 GPS 16.58 0.3916 0.8431
1D-DPScan 25.26 0.1242 0.9446 20.80 0.1883 0.9172 21.65 0.2357 0.8972 22.57 0.1827 0.9197 GS 16.67 0.3955 0.8322
G-DPScan 24.10 0.1413 0.9363 22.93 0.1610 0.9276 22.48 0.2134 0.9045 23.17 0.1719 0.9228 G-DPScan 24.09 0.1571 0.9315

a) w/ Recent Works. R1=95% (R1: The first center crop ratio set to remove black borders.) b) w/ Industrial Products. R1=85%

Table 2. A quantitative comparison of generalization performance (1 seen: 2 unseen domains) between the research work OPR [32], our
DPScan trained on iPhone XR only (1D-DPScan), Generalized DPScan (G-DPScan), and industrial products Google Photo Scan (GPS)
and Genius Scan (GS). ↑ / ↓: higher/lower is better.

issue, we present DIV2K-SCAN with real-world degrada-
tion, Local Alignment to effectively reduce the remaining
structural misalignment in data, RECA-customized archi-
tecture, degradation simulation (inspired by [10]) for do-
main generalization in smartphone-scanned image proper-
ties, and Semi-Supervised Learning to diversify training
image content. As a quantitative result, 1D-DPScan can
outperform OPR with better average PSNR, LPIPS, MS-
SSIM of 22.57, 0.1827, 0.9197. However, 1D-DPScan is
trained on iPhone XR only, and its performance on iPhone
XR is much higher than on unseen photos from color bal-
anced iPhone XR [19] and Xperia XZ1, raising a concern
of our generalization. Therefore, we simulate K scanning
domains based on our real-world degradation using color
style transfer [10] as if our scanned photos were also taken
in/by other environments and devices. An ablation study
on K ∈ {25, 50, 75, 100} shown in Figure 9 reveals that
G-DPScan has the best generalization performance when
K = 100, even though it takes a long training time (more
details are in the supplemental document). Eventually, our
G-DPScan gains better average PSNR, LPIPS, MS-SSIM
of 23.17, 0.1780, 0.9223 compared with 1D-DPScan and
the research work OPR [32], and 24.24, 0.1615, 0.9330
compared with industrial products GPS and GS, as shown
in Table 2. Qualitatively, our DPScan provides the clearest
edges without haze effect in both 1-domain and general-
ization tests. Particularly, our results show the highest de-
tails of the girl, bird, and lines on iPhone XR, as shown in
Figure 8. Regarding the domains unseen from training and
validation, such as color balanced iPhone XR [19] and Xpe-
ria XZ1, 1D-DPScan and G-DPScan obtain the best image
quality compared with the previous works. Surprisingly,
1D-DPScan generates more pretty colors on its unseen do-
mains than G-DPScan, although it is trained on iPhone XR
only and quantitatively worse than G-DPScan, as shown
in Figure 10. Please check our supplemental document
for more interesting experiments and results. In conclu-
sion, our semi-supervised DPScan outperforms the previous
works and industrial products comprehensively.

4. Conclusion

This work presents a way to produce real-world degra-
dation in smartphone photo scanning and provides DIV2K-

Figure 10. Qualitative comparison on unseen domains including
the color-balanced iPhone XR [19] (top sample) and Xperia XZ1
(bottom sample). Our 1-domain (DPScan) and generalized (G-
DPScan) models obtains the highest image quality.

SCAN dataset for smartphone-scanned photo restoration.
Besides, Local Alignment is proposed to solve a minor
misalignment remaining in data, reducing the restoration
performance and reliability of the quantitative evaluation.
Moreover, we apply color style transfer to simulate many
different variants of the real-world degradation as if the
photos were also captured in/by other shooting environ-
ments and devices. Finally, we propose a semi-supervised
Deep Photo Scan (DPScan) that has two advantages: 1)
Semi-Supervised Learning, which allows our network to be
trained on both scanned and unscanned images, and 2) the
u-style architecture customized by Residual Efficient Chan-
nel Attention (RECA). Our DPScan thus obtains a gener-
alization in both training image content and smartphone-
scanned image properties. As a result, our semi-supervised
DPScan outperforms its baseline [27, 41, 20], the indus-
trial products Google Photo Scan and Genius Scan, the re-
cent work Old Photo Restoration [31, 32], two re-trained
Pix2Pix [14] and CycleGAN [47] in 1-domain and gener-
alization tests quantitatively and qualitatively. This work,
therefore, becomes a promising baseline for smartphone-
scanned photo restoration.
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[23] Yassine Ouali, Céline Hudelot, and Myriam Tami. Semi-
supervised semantic segmentation with cross-consistency
training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 12674–
12684, 2020.

[24] Tobias Plotz and Stefan Roth. Benchmarking denoising
algorithms with real photographs. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1586–1595, 2017.

[25] Xavier Soria Poma, Edgar Riba, and Angel Sappa. Dense
extreme inception network: Towards a robust cnn model for
edge detection. In The IEEE Winter Conference on Applica-
tions of Computer Vision, pages 1923–1932, 2020.

[26] Edgar Riba, Dmytro Mishkin, Daniel Ponsa, Ethan Rublee,
and Gary Bradski. Kornia: an open source differentiable
computer vision library for pytorch. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 3674–3683, 2020.

[27] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015.

[28] Xi Shen, François Darmon, Alexei A Efros, and Mathieu
Aubry. Ransac-flow: generic two-stage image alignment. In
16th European Conference on Computer Vision, 2020.

[29] Richard Szeliski. Image alignment and stitching: A tutorial.
Foundations and Trends® in Computer Graphics and Vision,
2(1):1–104, 2006.

1888



[30] Radu Timofte, Shuhang Gu, Jiqing Wu, Luc Van Gool, Lei
Zhang, Ming-Hsuan Yang, Muhammad Haris, et al. Ntire
2018 challenge on single image super-resolution: Methods
and results. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, June 2018.

[31] Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong
Chen, Jing Liao, and Fang Wen. Bringing old photos back to
life. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 2747–2757,
2020.

[32] Ziyu Wan, Bo Zhang, Dongdong Chen, Pan Zhang, Dong
Chen, Jing Liao, and Fang Wen. Old photo restora-
tion via deep latent space translation. arXiv preprint
arXiv:2009.07047, 2020.

[33] Qilong Wang, Banggu Wu, Pengfei Zhu, Peihua Li, Wang-
meng Zuo, and Qinghua Hu. Eca-net: Efficient channel at-
tention for deep convolutional neural networks. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11534–11542, 2020.

[34] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. Esrgan: En-
hanced super-resolution generative adversarial networks. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 0–0, 2018.

[35] Yaxing Wang, Salman Khan, Abel Gonzalez-Garcia, Joost
van de Weijer, and Fahad Shahbaz Khan. Semi-supervised
learning for few-shot image-to-image translation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 4453–4462, 2020.

[36] Zhou Wang, Eero P Simoncelli, and Alan C Bovik. Multi-
scale structural similarity for image quality assessment. In
The Thrity-Seventh Asilomar Conference on Signals, Sys-
tems & Computers, 2003, volume 2, pages 1398–1402. Ieee,
2003.

[37] Xiaohe Wu, Ming Liu, Yue Cao, Dongwei Ren, and Wang-
meng Zuo. Unpaired learning of deep image denoising. In
European Conference on Computer Vision, pages 352–368.
Springer, 2020.

[38] Xiaohua Zhai, Avital Oliver, Alexander Kolesnikov, and Lu-
cas Beyer. S4l: Self-supervised semi-supervised learning. In
Proceedings of the IEEE international conference on com-
puter vision, pages 1476–1485, 2019.

[39] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augus-
tus Odena. Self-attention generative adversarial networks.
In International Conference on Machine Learning, pages
7354–7363. PMLR, 2019.

[40] Kai Zhang, Jingyun Liang, Luc Van Gool, and Radu Timo-
fte. Designing a practical degradation model for deep blind
image super-resolution. arXiv preprint arXiv:2103.14006,
2021.

[41] Richard Zhang. Making convolutional networks shift-
invariant again. In ICML, 2019.

[42] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018.

[43] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,
Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time
user-guided image colorization with learned deep priors.
ACM Transactions on Graphics (TOG), 9(4), 2017.

[44] Xuaner Zhang, Qifeng Chen, Ren Ng, and Vladlen Koltun.
Zoom to learn, learn to zoom. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 3762–3770, 2019.

[45] Yulun Zhang, Kunpeng Li, Kai Li, Lichen Wang, Bineng
Zhong, and Yun Fu. Image super-resolution using very
deep residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV), pages
286–301, 2018.

[46] Yuzhi Zhao, Lai-Man Po, Tingyu Lin, Xuehui Wang,
Kangcheng Liu, Yujia Zhang, Wing-Yin Yu, Pengfei Xian,
and Jingjing Xiong. Legacy photo editing with learned noise
prior. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 2103–2112, 2021.

[47] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networkss. In Computer Vision
(ICCV), 2017 IEEE International Conference on, 2017.

1889


