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Abstract

Since the resurgence of deep neural networks (DNNs),
image super-resolution (SR) has recently seen a huge
progress in improving the quality of low resolution images,
however at the great cost of computations and resources.
Recently, there has been several efforts to make DNNs more
efficient via quantization. However, SR demands pixel-level
accuracy in the system, it is more difficult to perform quan-
tization without significantly sacrificing SR performance.
To this end, we introduce a new ultra-low precision yet
effective quantization approach specifically designed for
SR. In particular, we observe that in recent SR networks,
each channel has different distribution characteristics. Thus
we propose a channel-wise distribution-aware quantiza-
tion scheme. Experimental results demonstrate that our pro-
posed quantization, dubbed Distribution-Aware Quantiza-
tion (DAQ), manages to greatly reduce the computational
and resource costs without the significant sacrifice in SR
performance, compared to other quantization methods.

1. Introduction
Image super-resolution (SR), one of the fundamental

computer vision tasks, targets for rejuvenating a given low-
resolution (LR) input image to its high-resolution (HR)
counterpart. The task boasts a wide range of application, in-
cluding but not limited to medical [17, 39], satellite [3, 45]
image processing, military surveillance [46], and automo-
tive industry, giving rise to a great amount of attention from
the computer vision community. Together with the inter-
est from the community and the rapid development of deep
neural networks (DNNs), SR has recently witnessed an un-
precedented breakthrough in performance.

Recent SR works have enjoyed outstanding performance
from increasing the network size [13, 28, 32] and employing
more complex network structures, such as residual block
and spatial attention [48, 47, 32]. However, a network with
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Figure 1: Quantizing EDSR(×4) [32] on Set14. The pro-
posed quantization method (DAQ) achieves higher PSNR
with less resource consumption (BOPs and memory).

the larger size and complexity inherently demands heav-
ier computing resources. The deployment of such resource-
hungry systems becomes challenging especially in practical
applications that often have limited resources available.

Quantization has gained the popularity as one of the
promising methods to reduce the amount of required re-
sources for DNNs. Through discretizing the values of net-
work weights [22], features [7], or gradients [50], quantiza-
tion has significantly reduced the computation loads while
minimizing the accuracy loss, particularly on high-level vi-
sion tasks, such as classification. SR has yet to benefit from
the recent advances in quantization mainly because SR re-
quires pixel-level accuracy [43, 35] and most SR meth-
ods have developed ad-hoc network structures [31], such
as the absence of batch normalization (BN) [32]. Few re-
cent works have attempted to achieve quantization for SR
via either adopting a learnable parameter for each binary
convolution weight (BinarySR [35]); employing a bit accu-
mulation mechanism to approximate the full-precision con-
volution (BAM [43]); and learning the layer-wise max scale
value of weights and features (PAMS [31]). However, these
methods have neglected the unique distribution characteris-
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Figure 2: Channel-wise feature map distributions of two dis-
tinct images (red and blue) in pre-trained (a) ResNet [20]
on image classification task and (b) EDSR [32] on image
SR task. In SR networks, channels present diverse non-zero
distributions that also vary upon the input image.

tics of SR networks, which have domain-specific designs.

On the other hand, this work starts with an observation
that the recent state-of-the-art SR networks have distinct
distributions for each channel, compared to networks that
are designed for semantic-level tasks, as illustrated in Fig-
ure 2. Further, we observe that the channel distributions
vary upon input images.

Upon the observations, we propose a Distribution-Aware
Quantization (DAQ) that performs an effective channel-
wise quantization. In particular, DAQ computes the distri-
bution of each channel to determine the per-channel quanti-
zation transformation (or scaling) parameters that are adap-
tive to each input. The adaptive scaling approach facilitates
effective clipping of outliers that dominate the quantization
error. Despite such compelling observation, per-channel
quantization for feature map has yet to be deeply explored,
due to the large computational overhead that could nullify
the computation benefits of quantization [38]. We adjust the
process of quantized convolution to significantly reduce the
computational overhead, enabling DAQ to effectively and
efficiently quantize SR networks.

Overall, our contributions can be summarized as follows:

• To the best of our knowledge, we present the first
feasible channel-wise quantization method for image
super-resolution networks in ultra-low precision with
marginal accuracy loss.

• Our scheme is directly applicable to existing SR net-
works without any architectural modification or spe-
cialized training scheme.

• Experimental results show that the proposed DAQ
outperforms state-of-the-art SR quantization methods,
yielding higher PSNR with less resource consumption.

• DAQ effectively reduces quantization error, achieving
accurate quantization on pre-trained SR networks even
without retraining.

2. Related Work

2.1. Image super-resolution

Image super-resolution (SR) is a conventional computer
vision problem that increases the resolution of an image
while restoring its structural details. Convolutional neural
network (CNN) based approaches [32, 48, 13, 28] have
achieved a great performance improvement in this field.
However, CNNs require heavy computational costs and
memory footprints that greatly limit their applicability on
resource-constrained devices. To alleviate this problem, re-
cent works [14, 40, 23, 9, 18, 27] have focused on improv-
ing the model efficiency in terms of FLOPs, parameters,
and run-time by designing novel lightweight network ar-
chitectures. However, these networks still consume a large
amount of resources since the convolution layers of CNNs
operate in 32-bit floating-point (FP32).

2.2. Network quantization

Network quantization is a promising research area that
aims to map 32-bit floating-point (FP32) values of fea-
ture maps and weights to lower bits (or precision) val-
ues. However, quantized networks usually suffer from se-
vere accuracy degradation. Many works tackle this problem
by optimizing the uniform [10, 50, 7] or non-uniform [19,
44, 26, 16] intervals between the quantized values. This
work focuses on quantization with the uniform interval that
can be accelerated in the hardware with simple arithmetic
pipelines. Recently, research on specializing the precision
of each part of the network [6, 34] and learning the quantiza-
tion method without network retraining [29, 49, 2, 8, 37, 4]
have been actively conducted. However, these approaches
focus on semantic-level tasks, such as image classification,
which may be an easier task for network quantization than
SR, which requires pixel-level accuracy [35, 43].

To this end, few recent works have focused on net-
work quantization specifically for SR. BinarySR [35] pre-
sented the first attempt to quantize SR networks, however
for weights only. BAM [43] and BTM [25] either mod-
ified the network architecture with multiple skip connec-
tions or utilized specialized convolution layers to quantize
both weights and feature maps. Recently, Hwang et al. [24]
proposed an SR network compression method that jointly
performs channel pruning and different-bit quantization for
each layer. The conventional approaches have neglected
the first and last layers, but FQSR [41] quantized all the
weights and feature maps of SR networks. PAMS [31] may
be considered to be similar to our proposed method in that
it learns quantization ranges with uniform intervals, how-
ever for each layer in contrast to our method that performs
channel-wise quantization, which aligns well with the ob-
servation from Figure 2. Furthermore, the works mentioned
above have proposed specialized training schemes such as
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Figure 3: Overview of our distribution-aware quantization (DAQ) process.

knowledge distillation, self-supervised learning, and gradi-
ent update rules. Although these custom network architec-
tures and training schemes may reduce performance degra-
dation to some extent, their ad-hoc techniques or specialized
networks generally make it difficult to apply quantization
methods to various networks.

On the other hand, we investigate a quantization range
tailored to each channel in SR networks, while existing
SR-based methods quantized all channels in a feature map
with the same range. Very few recent works have managed
to achieve per-channel quantization, however for semantic-
level tasks [42]. To the best of our knowledge, our method
is the first to achieve per-channel scaled quantization that
manages to greatly reduce performance degradation.

3. Method

3.1. Motivation

Network quantization for image super-resolution (SR)
has suffered from substantial performance degradation that
occurs due to quantization of feature map values [35]. Most
previous works [43, 25] tackle this problem by manually de-
signing architectures and heuristic training schemes while
their quantization functions are fixed for a feature map. Our
work started by investigating the characteristics of the fea-
ture maps in SR network.

The distribution of each channel in SR network (See
Figure 2(b)) has diverse values for its mean and variance.
Moreover, channel distributions are observed to be differ-
ent for each input image. This observation has led to our
assumption that quantizing each channel in different func-
tions may effectively reduce the quantization error in SR
networks while it may not be as beneficial in semantic-level
tasks. To this end, we formulate a quantized convolution
method as described in following sections.

3.2. Distribution-Aware Quantization (DAQ)

3.2.1 Overview

Quantization function is a sequence of processes that dis-
cretizes a FP32 tensor to lower precision. General pipeline

of quantization on neural networks are processed as fol-
lowing. Input feature and weight are respectively scaled (or
transformed) to integer range, and then discretized. Then,
the quantized convolution is performed with discretized in-
put feature of integer values and discretized weight of inte-
ger values. Then the convolution output is descaled back via
de-transformation, which is a costly procedure for channel-
wise quantization. Our proposed method follows a general
pipeline of quantization function, except that a standard de-
transformation is replaced with our newly proposed effi-
cient de-transformation scheme. Overall, our DAQ convo-
lution operates in a sequence of the following processes, as
summarized in Figure 3(a):

• Channel-wise quantized convolution (Figure 3(b)).

1. Per-channel transformation and discretization of
input feature maps (Section 3.2.2)

2. Transformation and discretization of convolution
filter weights (Section 3.2.3).

3. Per-channel convolution over quantized weights
and quantized input feature maps (dot product
operation in a sliding window manner: multipli-
cation of the two and kernel-wise sum).

4. Proposed computationally efficient per-channel
de-transformation (Section 3.2.4).

• Element-wise sum of outputs of the channel-wise con-
volution (

∑C) in low-bit precision (Section 3.2.4).

• De-transformation of the convolution output to full
precision FP32.

3.2.2 Quantization of feature map

As we discussed above, we define a quantization function
specialized in each channel. Formally, given a feature map
x ∈ RB×C×H×W , we quantize b-th element of the mini-
batch and c-th channel xb,c ∈ RH×W , where B,C,H, and
W denote the mini-batch size, number of channels, height
and width of the feature map, respectively. In the subsequent
sections, we drop the subscript b for notational simplicity.
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Figure 4: Illustration of feature map quantization ranges with examples of two distribution from different channels (red and
blue). (b) PAMS [31] exploits learnable layer-wise fixed scale parameter β. (c) channel-wise linear quantization (LinQ) [36]
utilizes the whole input tensor range as the quantization range, keeping the outliers that dominate quantization error. (d) Our
DAQ adaptively determines the channel-wise quantization range with µ and σ that effectively clip outliers. γ = 2n−1 · s(n)
is the network hyperparameter.

Adaptive transformer Existing quantization works for
SR [31] often adopt linear scaling before discretizing the
FP32 values to integer values. The linear scaling might be
a good transformer for tensor with a zero-mean and bell-
shaped distribution, like the channel-wise feature of ResNet
visualized in Figure 2(a). However, the distribution of each
channel, as shown in Figure 2(b), has a non-zero mean and
even varies across different input images, suggesting that an
adaptive transformer might be a better alternative for each
channel distribution. We define the transformer f(·) using
a standardization function to normalize values of xc before
discretization. f(·) is formally given by,

x̂c ≡ f(xc) =
xc − µc

σc · s(n)
, (1)

where µc and σc, respectively, denote the average and the
standard deviation of the c-th channel xc and s(n) deter-
mines an uniform interval between quantized values by the
bit-width n. Table 1 presents the actual values of s(n) which
represent the optimal quantization for Gaussian distribution.
We interchangeably refer to statistics µc and σc as quantiza-
tion transformation parameters as they are used to perform
transformation during quantization process.

Adaptive discretizer In general, a discretizer clips the
values of x̂c to a range given by the quantization bit-width
n, followed by the mapping of the values to integers. Our
adaptive discretizer is formulated as follows:

x̂q
c ≡ d(x̂c) = ⌊g(x̂c)⌉, (2)

Table 1: Step sizes s(n) with respect to bit-width n. The
sizes are the optimal values for uniform quantization of
Gaussian distribution [33].

Bit-width n 1 2 3 4 8
Step size s(n) 1.596 0.996 0.586 0.335 0.031

where g(·) is the clamp function of a range (−2n−1 +
α, 2n−1+α] and ⌊·⌉ rounds up a value to the nearest higher
integer. The shifting parameter α is a function of s(n), µc,
and, σc formally given by,

α =

{
max(2n−1 − µc

σc·s(n) − 1, 0) after ReLU

0 otherwise,
(3)

allowing the minimum quantized value (of original scale) to
be zero after ReLU function. d(·) is distribution-dependent
due to its dependency on channel statistics, µc and σc.

Figure 4 illustrates the effectiveness of our distribution-
aware quantization (DAQ). Our method reduces quantiza-
tion error by a large margin for diverse channel distribu-
tions. We use xq

c ≡ f−1(x̂q
c) for visualization, where x̂q

c

denotes low-bit quantized integer and f is the transform
function of each method.

3.2.3 Quantization of weight

Weight distributions over filters are empirically observed to
have less degree of variance than feature maps in SR net-
works. Hence, a single quantization function is applied to
the weight of each convolution w ∈ RC×Cout×K×K , where
C and Cout denote the number of input and output chan-
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nels, respectively, and K is the kernel size of the convolu-
tion filter. The distribution of weight values are observed to
be bell-shaped with zero-mean, and is independent of the
input image. Thus, for quantizing the weight w, we assume
the mean of w to be 0, which simplifies a transformer for
weight quantization f(w) as f(w) = w

σw·s(n) , where σw

denotes the standard deviation of w. The shifting parameter
α of the weight discretizer is set to 0 since the weight values
are not zeroed out by activation.

3.2.4 Adaptive de-transformer

Standard per-channel de-transformer Once per-
channel quantized convolution response is obtained,
normally one would de-scale (or de-transform) each
per-channel convolution output back to its full-precision
before the summation of channel-wise convolution outputs
along the channel dimension. However, de-transformation
of each channel-wise convolution output to full precision
(FP32) using quantization transform parameters (in this
case, channel-wise statistics µc and σc) will result in a large
computational overhead of the overall quantized convolu-
tion process, due to the FP32 summation of de-transformed
convolution responses along the channel dimension.

Efficient per-channel de-transformer Recently, Dai et
al. [11] reduces the overhead by decomposing scaling fac-
tors into channel-specific quantized values and a global
FP32 value for the low-bit addition in image classifica-
tion networks. Similarly, our solution achieves efficient im-
plementation but with the distribution awareness. We pro-
pose to perform quantization on statistics µ and σ to ob-
tain quantized statistics, allowing us to perform the sum-
mation of the channel-wise convolution responses in low-
bit precision. Formally, recall µc and σc, the mean and the
standard deviation of the c-th channel in Equation (1), as
the c-th elements of µ ∈ RC and σ ∈ RC . We quantize
the quantization transform parameters, thus named QQ. The
quantized transform parameters using Equation (1) and (2)
approximate their FP32 versions:

µc ≈ µq
c ≡ σµ · s(m) · µ̂q

c + µµ, (4)

σc ≈ σq
c ≡ σσ · s(m) · σ̂q

c + µσ, (5)

where m is the bit-width of QQ, and σ∗ and µ∗, ∗ ∈ {µ, σ},
denote the mean and the standard deviation of µ and σ.
Note that σ∗ and µ∗, ∗ ∈ {µ, σ}, is FP32 values which are
independent to channels while σ̂q

c and µ̂q
c are low-bit inte-

gers specific to the channels. Using the quantizing quanti-
zation parameters, our quantized channels become,

xq
c = σc · s(n) · x̂q

c + µc

≈ σq
c · s(n) · x̂

q
c + µq

c .
(6)

As a result, we can place the de-transformation process
after the summation of the channel-wise convolution and
eliminate the potential possibility of a computation over-
head that could have occurred from channel-wise quantized
convolution (please refer to Section 3.3.1 and the supple-
mentary document).

3.3. Hardware Implementation

3.3.1 Computation of per-channel detransformer

As discussed in Section 3.2.4, the computational overhead
from the standard per-channel de-transformer is largely re-
duced by our efficient adaptive de-transformation process.
The approximation by Equation (6) replaces a large propor-
tion of high-precision operations with low-precision oper-
ations by modifying arithmetic pipelines. For instance, the
sum of quantized channels (

∑
c x

q
c) should be operated in

FP32 (
∑

c(σc · s(n) · x̂q
c + µc)) due to the channel-specific

mean and standard deviation of FP32 values. However, the
sum of the approximated quantized channels (

∑
c(σ

q
c ·s(n)·

x̂q
c + µq

c)) can expand the low-bit channel sum (σσ · s(n) ·
s(m)

∑
c σ̂

q
c ·x̂

q
c+µσ ·s(m)

∑
c x̂

q
c+σµ ·s(m)

∑
c µ̂

q
c+µµ).

3.3.2 FP32 Arithmetic Computation

The proposed method adaptively quantizes the value of in-
terest with respect to its distribution by using standard-
ization function as the tranformer. The computation com-
plexity of Equation (1) can be specified into the complex-
ity for calculating the mean and the standard deviation,
and for the transformer function itself, of which are both
O(n). Specifically, the overall complexity of Equation (1)
is C(5HW + 3) for the feature map and 3K2CinCout for
the weight. Weight standardization is independent of in-
put images and thus occurs only once before the inference,
which allows us to measure its computational complexity
only once. On the other hand, the complexity of feature
standardization is calculated per test image.

3.4. Training

Recently, training quantized networks (or quantization-
aware training) is a well-known approach for accuracy re-
cover. The back-propagation in quantized networks calcu-
lates the gradient of loss ℓ with respect to wq . Quantiza-
tion function is generally not differentiable, and thus not
possible to directly apply back-propagation. Consequently,
we adopt the straight-through estimator [50] to approximate
the gradients calculation. We approximate the partial gradi-
ent ∂wq

∂w with an identity mapping (∂w
q

∂w ≈ 1). Accordingly,
∂ℓ

∂wq can be approximated by

∂ℓ

∂wq
=

∂ℓ

∂w

∂w

∂wq
≈ ∂ℓ

∂w
. (7)
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4. Experiments
4.1. Experimental setup

Models and datasets To verify the effectiveness and the
generalizability of the proposed quantization method, we
conduct experiments on widely used SR networks, includ-
ing EDSR [32], RDN [48] and SRResNet [30]. We use pre-
trained models publicly available at codes1. We retrain the
quantized models on DIV2K dataset [1], which consists of
800 2K-resolution images. We finetune the DAQ-applied
EDSR model using the training settings from [32], where
a batch size is set to be 4, a learning rate is 10−4, and the
number of updates is 3 × 105. DAQ-applied RDN is fine-
tuned using 3 × 104 updates with batch size 16, and ini-
tial learning rate 10−4. SRResNet-DAQ is finetuned with
an initial learning rate of 10−5 for 6 × 105 iterations while
we follow the other training settings from [30]. We evaluate
the quantized models on four standard benchmark datasets:
Set5, Set14, B100, and Urban100.

Implementation details Our proposed quantization
method is directly applied to existing SR models with-
out modifying the network architecture. Along with the
majority of quantization works, we quantize weights and
feature maps in all layers except the first convolution and
the last reconstruction modules. We set m=4 for quantizing
quantization parameters.

BOPs The number of floating-point operations (FLOPs)
is a conventional measure for the computational complexity
of full-precision models. However, a low-precision model
often consists of operations with inputs of different low bit-
widths. To take the low-precision operations into account,
we weight the number of bit operations by multiplying n·m,
where n and m denote the bit-widths of two different inputs,
respectively for each operation. The weighted number of bit
operations is referred to as BOPs. The reported BOPs are
measured to generate a FHD image (1920×1080).

Energy A quantized network boasts energy efficiency
as lower-precision operations consume less energy. We
adopt the approximation of energy consumption introduced
in [12, 21] and compute it for generating a FHD image.

Memory Another benefit of network quantization is the
reduction in memory requirement for model storage. The n-
bit weights require n

32 amount of memory of FP32 weights.

4.2. Comparisons with SotA methods

SR quantization methods To demonstrate the effective-
ness of our channel-wise quantization paradigm, we com-

1https://github.com/thstkdgus35/EDSR-PyTorch

pare our method with PAMS [31] and BinarySR [35], which
adopt per-layer quantization ranges. Without architecture
changes of existing networks, Table 2 presents outstand-
ing performances of our method (DAQ) on most mea-
sures and all benchmarks. Specifically, RDN-DAQ achieves
1 dB higher PSNR than RDN-PAMS on Urban100 with
less resource consumption of BOPs, Energy, and Memory.
SRResNet-DAQ requires only 50 % BOPs of SRResNet-
BinarySR of which weights are 1-bit while outperforming
1.51 dB on Set5.

On the other hand, BTM [25] and BAM [43] employ spe-
cialized architectures or training schemes for low-precision
SR networks. Our proposed quantization method is orthog-
onal to these techniques, providing additional performance
gains, as shown in the supplementary document.

Comparison with per-channel quantization methods
To show the importance of distribution awareness in per-
channel quantization function as proposed in this work,
we compare DAQ with the SR models quantized by
other per-channel quantization methods LinQ [29] and VS-
Quant [11], which are however tailed for classification and
do not consider per-channel distribution in contrast to DAQ.
Table 2 shows that EDSR-DAQ outperforms EDSR-LinQ
and EDSR-VS-Quant over than 1 dB on Urban100 while
consuming less resources, validating the benefits of formu-
lating the channel-wise quantization function with distribu-
tion statistics.

Qualitative comparisons Figure 5 presents the output
images from SotA models compared in Table 2. Our
method generates a visually clean output image, while
RDN-PAMS [31] and SRResNet-BinarySR [35] suffer from
a checkerboard artifact. Interestingly, EDSR-LinQ gener-
ates a sharper image than EDSR-PAMS with lower PSNR
scores. The result of SRResNet-DAQ has a more realistic
structure (at the bottom of the image).

Comparison with methods without retraining To fur-
ther demonstrate the effectiveness of DAQ in dynamically
reducing the quantization error, we evaluate DAQ and other
quantization methods without fine-tuning, as shown in Ta-
ble 3. DAQ is shown to greatly reduce the quantization er-
ror to a large extent compared to other methods. EDSR-
LinQ calculates min/max values for each channel-wise ten-
sor during inference, which is the same process in the previ-
ous section. DFQ [37] controls weight ranges and biases of
the pre-trained models during inference, proposed for im-
age classification. EDSR-DFP is a re-implemented version
of DFQ on EDSR, based on the publicly available codes.
EDSR-DAQ outperforms the compared methods over 1.4
dB with less computation costs. The results corroborate our
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Table 2: Comparisons of existing quantization methods on EDSR [32], RDN [48] and SRResNet [30] of scale 4.

Method Precision BOPs Energy Memory Parameters PSNR (dB)
w a Set5 Set14 B100 Urban100

EDSR 32 32 10019.3 T 22504.3 mJ 172.3 MB 43.1M 32.46 28.77 27.69 26.54
EDSR-PAMS [31] 4 4 351.3 T 366.7 mJ 40.2 MB 43.1M 31.59 28.20 27.32 25.32
EDSR-LinQ [29] 2 2 878.4 T 2616.6 mJ 30.7 MB 43.1M 31.08 27.75 27.05 24.45
EDSR-VS-Quant [11] 2 2 425.6 T 555.7 mJ 31.0 MB 43.1M 31.10 27.82 27.11 24.94
EDSR-DAQ (ours) 2 2 267.8 T 328.6 mJ 30.7 MB 43.1M 32.05 28.54 27.50 25.97

RDN 32 32 5636.0 T 12659.0 mJ 89.2 MB 22.3M 32.24 28.67 27.63 26.29
RDN-PAMS [31] 4 4 204.8 T 222.3 mJ 12.3 MB 22.3M 30.44 27.54 26.87 24.52
RDN-LinQ [29] 2 2 474.5 T 1044.3 mJ 6.9 MB 22.3M 30.90 27.73 27.05 24.65
RDN-VS-Quant [11] 2 2 239.1 T 311.6 mJ 6.9 MB 22.3M 31.16 27.89 27.12 24.83
RDN-DAQ (ours) 2 2 168.8 T 220.1 mJ 6.9 MB 22.3M 31.61 28.21 27.31 25.52

SRResNet 32 32 324.6 T 728.2 mJ 6.1 MB 1.6M 31.94 28.43 27.46 25.71
SRResNet-BinarySR [35] 1 32 38.9 T 58.3 mJ 1.5 MB 1.6M 30.16 27.19 26.66 24.24
SRResNet-LinQ [29] 2 2 37.8 T 58.8 mJ 1.7 MB 1.6M 31.44 28.03 27.21 25.05
SRResNet-VS-Quant [11] 2 2 22.5 T 41.8 mJ 1.7 MB 1.6M 31.24 27.95 27.15 24.89
SRResNet-DAQ (ours) 2 2 19.1 T 38.5 mJ 1.7 MB 1.6M 31.67 28.26 27.32 25.39

EDSR EDSR-PAMS (w4a4) EDSR-LinQ (w2a2) EDSR-VS-Quant (w2a2) EDSR-DAQ (w2a2)
(22.08 dB / 193.3 T) (20.95 dB / 6.78 T) (20.64 dB / 16.94 T) (21.29 dB / 8.21 T) (21.84 dB / 5.17 T)

RDN RDN-PAMS (w4a4) RDN-LinQ (w2a2) RDN-VS-Quant (w2a2) RDN-DAQ (w2a2)
(27.70 dB / 108.72 T) (22.23 dB / 3.95 T) (24.90 dB / 9.15 T) (25.01 dB / 4.61 T) (26.85 dB / 3.26 T)

SRResNet SRResNet-BinarySR (w1a32) SRResNet-LinQ (w2a2) SRResNet-VS-Quant (w2a2) SRResNet-DAQ (w2a2)
(25.22 dB / 6.26 T) (22.19 dB / 0.75 T) (21.31 dB / 0.73 T) (22.27 dB / 0.43 T) (23.23 dB / 0.37 T)

Figure 5: Qualitative evaluation of existing quantization methods on EDSR [32], RDN [48] and SRResNet [30] of scale 4,
as in Figure 5. Evaluation is done on ‘barbara’ of Set14 and ‘img060’ and ‘img097’ of Urban100. Quantitative measures are
also denoted (PSNR / BOPs).
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Table 3: Comparison of quantization methods without retraining on pre-trained EDSR [32] of scale 4.

Method Precision BOPs Energy Memory PSNR (dB)
w a Set5 Set14 B100 Urban100

EDSR 32 32 10019.3 T 22504.3 mJ 172.3 MB 32.46 28.77 27.69 26.54
EDSR-LinQ [29] 2 2 878.4 T 2616.6 mJ 30.7 MB 30.26 26.78 26.44 23.14
EDSR-DFQ [37] 4 4 351.3 T 366.7 mJ 40.2 MB 31.20 27.77 26.29 24.18
EDSR-DAQ 2 2 267.8 T 328.6 mJ 30.7 MB 31.42 28.12 27.23 25.56

observations from channel distributions (Figure 2 and as-
sumptions that the per-channel and distribution-aware quan-
tization is effective in SR networks.

Table 4: Ablation study of the proposed method on feature
map quantization. 2-bit quantization is evaluated on EDSR.

Granularity Distribution QQ BOPs PSNR
aware scaling (Urban100)

Layer ✗ ✗ 83.5 T 6.99 dB
Layer ✓ ✗ 90.1 T 7.17 dB

Channel ✗ ✗ 878.4 T 7.26 dB
Channel ✓ ✗ 889.3 T 25.98 dB
Channel ✓ ✓ 267.8 T 25.97 dB

Table 5: Ablation study of the proposed method on weight
quantization. Evaluation done on EDSR.

Distribution Granularity Precision
aware scaling 4-bit 2-bit 1-bit

✓ Layer 26.48 26.07 25.07
Output channel 26.50 26.15 24.94
Input channel 26.47 26.10 25.09
Kernel 26.45 26.12 25.31

✗ Layer 26.20 7.16 7.17
Output channel 26.51 7.11 7.17
Input channel 26.50 23.84 7.17
Kernel 26.54 26.47 17.73

Table 6: Ablation study on various distribution assumptions.

EDSR (×4) Gaussian Uniform Laplacian Gamma

4-bit 26.51 24.52 26.21 26.25
1-bit 24.20 23.64 23.82 23.71

4.3. Ablation study

Feature map quantization To verify the efficacy of our
quantization scheme in practical SR networks, we do abla-
tion on each of our contribution. In Table 4, granularity rep-
resents the tensor to be quantized, where “Layer” quantizes
the feature map with a single quantization range and “Chan-
nel” quantizes each input channel with a specialized range.
The non-distribution-aware scaling uses min/max values to
normalize distributions. As shown in Table 4, channel-wise
and distribution-aware property are both important for ac-

curate low-bit quantization, but suffer from heavy compu-
tational resources. Utilizing quantization function for the
quantization transform parameters (QQ) significantly re-
duces BOPs, while maintaining a high PSNR.

Weight quantization Though our main contributions in
the method are focused on feature map quantization, we
also evaluate the effectiveness of the proposed weight quan-
tization in Table 5. Distribution awareness in quantization
plays an key role in maintaining the performance, especially
in lower-precisions. Layer-wise quantization presents a bet-
ter trade-off between computational efficiency and perfor-
mance among different extents of granularity.

Distribution assumption Scaled step size s(n) in quanti-
zation function is a pre-determined hyper-parameter. Many
quantization works [5, 15] select different scaled step size
for different bit-widths assuming a certain distribution of
the tensor to be quantized. We follow the Gaussian assump-
tion in the main experiments, while results on different dis-
tribution assumptions, including Gaussian, Uniform, Lapla-
cian, and Gamma distribution are shown in Table 6.

5. Conclusion
We propose an efficient yet effective quantization

method for deep SR networks. Based on the observa-
tion that each channel of SR networks has distinct dis-
tribution, we introduce a channel-wise Distribution-Aware
Quantization (DAQ) method. However, channel-wise quan-
tization with standard de-transformation incurs a large com-
putational overhead. Instead, we utilize an efficient de-
transformation by quantizing quantization parameters, re-
ducing the computational costs of channel-wise quantiza-
tion significantly. Our proposed scheme reduces the quan-
tization error to a large extent, achieving high performance
even without quantization-tailored training. Evaluations on
various SR networks demonstrate the outstanding perfor-
mance of DAQ, compared to other quantization methods,
with similar amount of resource consumptions.
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