This WACYV 2022 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Fast Nonlinear Image Unblending

Daichi Horita'* Kiyoharu Aizawa! Ryohei Suzuki? Taizan Yonetsuji? Huachun Zhu?
!The University of Tokyo  2Preferred Networks, Inc.
Image Editin
Inputs Unblended Outputs 8 g
Linear Alpha Layers (Palette Color Change)
Palette of Linear Layers Linear Blending )
—_— Palette of Linear Layers
Palette of Nonlinear Layers .
Palette of Nonlinear Layers
Nonlinear Alpha Layers Base Image
Normal Screen Screen Normal Multiply Overlay Normal
Interim Advanced Blending Results
Input Image Edited Image
Normal, Screen, -+
Blend Modes
Reconstructed
Image

Figure 1. Image decomposition and editing results. The proposed framework decomposes an input image into both linear and nonlinear
alpha layers based on specified color palettes and blend modes. In the bottom row of the middle column, we show the interim results of
reconstructing the image using iterative advanced blending. After decomposition, we edit the image by changing the palette colors. Image

courtesy of Theo Crazzolara.

Abstract

Nonlinear color blending, which is advanced blending
indicated by blend modes such as “overlay” and “mul-
tiply,” is extensively employed by digital creators to pro-
duce attractive visual effects. To enjoy such flexible edit-
ing modalities on existing bitmap images like photographs,
however, creators need a fast nonlinear blending algorithm
that decomposes an image into a set of semi-transparent
layers. To address this issue, we propose a neural-network-
based method for nonlinear decomposition of an input im-
age into linear and nonlinear alpha layers that can be sep-
arately modified for editing purposes, based on the speci-
fied color palettes and blend modes. Experiments show that
our proposed method achieves an inference speed 370 times
faster than the state-of-the-art method of nonlinear image
unblending, which uses computationally intensive iterative
optimization. Furthermore, our reconstruction quality is
higher or comparable than other methods, including lin-
ear blending models. In addition, we provide examples that
apply our method to image editing with nonlinear blend
modes.

*Part of this work was done while Daichi Horita was a Research Intern-
ship with Preferred Networks, Inc.

1. Introduction

Alpha blending is a procedure wherein the background
colors in an image are mixed with the foreground colors.
In particular, advanced blending (hereinafter referred to as
nonlinear blending) [3, 4] comprises a total of 12 defined
and four popular blend modes—normal, multiply, screen,
and overlay —that are widely used by digital creators to
produce attractive effects with great flexibility. For exam-
ple, a creator can utilize the screen or multiply blend mode
to produce the desired mix of lighting and darkening ef-
fects, as shown in Figure 2. Such nonlinear operations as-
sume that images have layer structures. To perform nonlin-
ear blending on arbitrary RGB images such as photographs
or illustrations that do not have layer structures, we need to
first decompose images into sets of semi-transparent layers
with specific blend modes.

Soft segmentation is a particularly useful type of un-
blending operation in which an image is decomposed into
a set of semi-transparent layers. Soft color segmenta-
tion methods [5, 7, 15, 17, 22, 24, 25] decompose im-
ages into several semi-transparent layers, each of which has
a specific uniform color. However, most of these meth-
ods [5, 7, 17, 22, 24, 25] are limited to linear color un-
blending, i.e., a reconstructed image is the sum of the color
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palettes weighted by the corresponding decomposed alpha
layers. Such linear unblending is not applicable to advanced
blending of arbitrary RGB images. The first nonlinear color
unblending method proposed by Koyama et al. [15] gener-
alized the color unblending formulation to advanced blend-
ing operations. Since this method assumes an iterative op-
timization approach, the unblending operation is time con-
suming, which limits its practical use in cases that involve
trial-and-error procedures to explore the combination of
multiple blend modes.

In this paper, we propose the first neural-network-based
nonlinear color unblending method, which decomposes an
input image into its nonlinear alpha layers when given the
blend modes and color palettes. Our proposed framework
consists of five stages, as shown in Figure 3. First, we
determine the palette colors by an automatic algorithm or
by manual selection, which assigns a uniform color to each
decomposed layer. The decomposed linear layers are then
composited into a base image by linear blending, which is
used as the background layer for advanced blending. Fi-
nally, the base image as a background layer is composited
with the nonlinear as the foreground layers using advanced
blending to reconstruct the original image.

As a typical use case of our method, an RGB image is
first decomposed into soft color layers with automatically
extracted palettes. Then, the palette colors and blend modes
are specified according to particular use cases. In the experi-
ments, we show that our method is approximately 370 times
faster for inference than an existing method [15]. Specifi-
cally, our method decomposes a 2-megapixel (MP) image
in 0.2 s on a GPU and empowers users to experiment with
different combinations without waiting.

The primary contributions of this paper are as follows:

1. We propose the first neural-network-based method for
decomposing an image into a set of linear and nonlin-
ear semi-transparent layers according to a given color
palette.

2. Through experiments, we show that the inference
speed of the proposed method is 370 times that of the
compared nonlinear method. Additionally, we observe
that the reconstruction quality of our method is better
than or comparable to those of previous methods, in-
cluding linear blending models.

3. We provide several examples of image editing using
the proposed method. Owing to the fast inference, var-
ious combinations of edits can be performed via trial-
and-error procedures.

2. Related Works
2.1. Palette Representation

Palette extraction is a problem wherein a small number
of representative colors are generated from an input image.

Inputs Nonlinear Blending Results

Background  Foreground Normal

Figure 2. Examples of visual effects obtained by using different
blend modes. The normal blend mode simply selects the fore-
ground color, whereas the multiply and screen blend modes pro-
duce a darkening and a lighting effect, respectively.

Multiply Screen

There are two main approaches to extracting palettes. The
first is a geometric approach that computes all the color
samples and constructs the palette by calculating the con-
vex hull [24, 25, 26]. For example, RGBXY proposed by
Tan et al. [24] constructed the convex hull of an RGBXY-
space for a linear blending model to obtain a color rep-
resentation. The second approach uses clustering meth-
ods [5, 9, 13, 20, 22]. Chang et al. [9] formulated interac-
tive image recoloring applications by editing extracted color
palettes.

Several studies [7, 15] have demonstrated that using
palettes with explicit color distributions can be more con-
venient than palettes of single-color values. Aksoy et al. [7]
constructed a small number of representative color distribu-
tion models for a linear blending model using a Gaussian
kernel in RGB space. In contrast, our framework estimates
the missing colors of an input image that cannot be repre-
sented by the given palette.

2.2. Soft Color Segmentation

Soft color segmentation is the problem of decompos-
ing an image into multiple semi-transparent layers, each
of which has nearly homogeneous colors. Soft color layer
representation is crucial for color editing because it allows
the layers to be edited individually. Aksoy et al. [7] pro-
posed a color unblending formulation for a linear blend-
ing model. FSCS proposed by Akimoto et al. [5] pro-
posed a first effective convolutional neural network (CNN)-
based soft color segmentation method, which they demon-
strated to be 300,000 times faster than an optimization-
based method [7]; however, this method was only used for
a linear blending model.

DIL proposed by Koyama et al. [15] performed a
first soft color segmentation with advanced blending us-
ing an optimization method, particularly an augmented La-
grangian method. However, their method requires itera-
tive optimization and is highly time consuming for each in-
ference. To address this drawback, we propose a neural-
network-based soft color segmentation method that can
handle advanced blending and achieve faster inference.

3. Proposed Approach
3.1. Overall Framework

Our goal in this approach is to train models to decom-
pose a given image into a set of semi-transparent layers un-
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Figure 3. Overview of our framework comprising three modules: a linear alpha generator GG1,, a nonlinear alpha generator G, and a

residue generator G r. Image courtesy of Gabriel Gonzélez.

der the constraint of the blend modes {c;, ca, ..., ¢, } and
palette RGB colors {v1, va, ..., v, }, where n denotes the tar-
get number of nonlinear layers. Our framework consists of
three generative networks: a linear alpha generator GG, a
nonlinear alpha generator Gy, and a residue generator G g,
as shown in Figure 3. Given the color palettes, our frame-
work predicts a linear alpha layer o € R™*H*Wx1 apd
a nonlinear alpha layer 3 € R™*H>*Wx1 \where m and n
denote the numbers of linear and nonlinear alpha layers, re-
spectively. H and W represent the height and width of the
input image, respectively. To promote the use of the non-
linear layers, we intentionally restrict the number of linear
alpha layers to a small number (e.g., three).

Our proposed framework consists of five stages: (1) In
the palette extraction stage, a set of palette colors is deter-
mined by either an automatic algorithm or manual selection.
Each selected palette color indicates the mean color of a soft
color layer. (2) In the base image generation stage, the lin-
ear alpha generator Gz, decomposes the input image into
linear alpha layers based on the palette colors. Our frame-
work determines the base image by linearly blending the
linear alpha layers. (3) In the nonlinear alpha layer gener-
ation stage, the nonlinear alpha generator Gy predicts the
nonlinear alpha layers given the blend modes and palette
colors. (4) In the residue color estimation stage, the residue
generator G i estimates the colors that are not included in
the palette colors. (5) Finally, in the advanced blending
stage, the outputs of stages (2)—(4) are composited to recon-

struct the original input image. The nonlinear alpha layers
in stage (3) and residue colors in stage (4) together consti-
tute the nonlinear soft color layers, which are then applied
to the base image using advanced blending.

3.2. Palette Selection

When creators use the soft color segmentation method
to decompose an image, they should be able to select colors
that represent the colors of the soft color layers. For training
our framework, we simulate such behavior by automatically
determining the palette colors of the soft color layers. To be
specific, we use K-means, as in FSCS [5], as an automatic
palette extraction method to cluster the pixels in the input
image x;, in RGB space. We define the i-th palette RGB
value v; € R? as the centroid of the i-th cluster. The palette
color of each layer p; € R#*W>3 g an RGB layer of color
v; on each pixel. K-means extracts the color palettes of
the linear layers p; € R™*HXWX3 and the palette of the
nonlinear layers py € R**H>*W>3_[n this way, K-means
captures the main colors of an image, and therefore also
serves as a convenient starting point for a manual selection
in practice.

3.3. Linear Alpha Generator

In contrast with Koyama’s method [15], which uses a
base image as the first layer, our approach linearly blends
the linear soft color layer to construct the base image as a
rough approximation of the input image. Specifically, given
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the input image x;,, and the palette of linear layers p;,, the
linear alpha generator GG, predicts the linear alpha layers «,
which is then normalized to obtain the preprocessed alpha
layers & formulated as

é; :ai@Zak, a:GL(xinapL)ﬂ QY
k=1

where @ denotes the Hadamard division, namely the per-
element matrix division. Here, &; denotes the i-th normal-
ized alpha layer, and m denotes the number of linear alpha
layers. The linear RGB layers & are then defined to have the
RGB values of palette p; weighted by alpha values of é&.
Linear blending of the linear RGB layers x; yields the base
image xp. The base image later serves as the background in
the advanced blending stage.

3.4. Nonlinear Alpha Generator

The nonlinear alpha generator GGy predicts the nonlin-
ear alpha layers (3. Because changing the blend modes
or palette colors will produce different optimal alpha lay-
ers, we explicitly enforce such control of the blend modes
and palette colors over the generated alpha layers in the
proposed framework. The adaptive instance normalization
(AdalN) [11] has been adopted by a number of image-to-
image translation works [8, 12, 18, 23] and takes a style
code, which is usually encoded from a reference image, as
a parameter to manipulate the output style. We employ this
module in the architecture of the nonlinear alpha generator.
The blend mode and palette color details are embedded into
a code that parameterizes the AdaIN module, which in turn
modulates the generation of the nonlinear alpha layers. As
shown in Figure 4, a mapping network embeds the RGB
palette colors of the nonlinear layers v and the blend mode
condition ¢ into the code w € R, Thanks to AdaIN, G is
capable of generating nonlinear alpha layers based on speci-
fied blend modes and palette colors. Then, 3 are normalized
by Eq. 1 and B are produced.

3.5. Residue Generator

The input palettes calculated by the K-means method
preserve only partial color information of the input image.
To recover the full color information of and reconstruct the
input image, our framework predicts the remaining colors.
Specifically, G r predicts the residue colors r of the palette
of nonlinear layers p ;. Similar to the nonlinear alpha gen-
erator G, G g also contains the AdaIN modules in its nor-
malization layers. This step is formulated as

> Ti
D = tanh _ &=l Tt
PN py +tanh | 7 HW ;

T = GR(xin7pN7C7’U)7 (2)

where 7; denotes the residue value for the i-th pixel.
P represents the RGB layers of the color palettes with
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Figure 4. Generator architecture of both the nonlinear alpha gen-
erator G and the residue generator Gr. Here, w denotes the

scaling and shifting features of the AdaIN method.

residues. To calculate zero-centered p,;, the generated
residues r are subtracted from the spatial means of their
RGB values. We finally obtain the nonlinear RGBA lay-
ers x, by taking the RGB values from p, and alpha val-
ues from the nonlinear alpha layers B We denote x, using
boldface since it is a stack of layers.

The advantages of employing the residue estimation in-
clude not only quantitative improvement, as shown in Ta-
ble 3, but also natural implementation of palette editing. As
P can be regarded as a distribution of colors centered at
P> we can modify the center value to shift the distribution.
This naturally introduces the recoloring operation of an im-
age. For example, we can modify the palette of the leftmost
image in Figure 1 to obtain the rightmost recolored image.

3.6. Advanced Blending

Advanced blending is the process of composition that
mixes colors by overlapping the source (foreground) and
destination (background). This approach comprises two
processes, namely blending and Porter—Duff composit-
ing [21]. Blending determines how the foreground and
background RGB values are composited. Given the RGBA
values of the foreground and background layers, the RGB
values of the blended layer are calculated from the fore-
ground and background RGB values using the blending
function of a specified blend mode. The alpha value of the
blended layer is simply set to that of the foreground layer.
Then, Porter—Duff compositing is used to calculate the fi-
nal RGBA value by considering the contributions of the
blended and background RGBA values for each pixel. Here,
we use the source-over operator as the Porter—Duff com-
positing operator because advanced blending only adopts
the source-over operator in practice, and the major author-
ing tools [1, 2] only support the source-over operator. For
more details, please see the official definition [4].
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In the advanced blending stage of our framework, we use
the base image x; as the background image and the nonlin-
ear RGBA layers x, to composite the output image x,q:-
Since there are multiple nonlinear RGBA layers, we iter-
atively perform advanced blending: we start by using the
base image as the background image, and for each step, ad-
vanced blending takes a nonlinear layer as the source image
and the last output of the iteration as the source image.

3.7. Objectives

Our framework consists of three generator networks with
the following training objectives.

Reconstruction loss. We define the mean absolute error
between the input and composite images as follows:

Ly = |2in— 21, (3)
‘Co ||$zn - xout”la (4)

where the base image x;, and advanced blended image
are the outputs of stages (2) and (5), respectively.

SCU loss is inspired by the sparse color unmixing (SCU)
energy objective proposed by Aksoy et al. [6, 7]. We in-
troduce this objective to prevent large deviations of the
residues from the palette colors while promoting the use of
alpha values, both of which enable the generation of rea-
sonably advanced blending layers. The SCU loss L, is
defined as

Loew = z:/éz”pNZ _ﬁN,;H27 ®)
=1

where the normalized nonlinear alpha layersf} and palettes
with residues p are the outputs of stage (3) and (5), respec-
tively. ¢ denotes the layer number of each nonlinear palette
and alpha layer.
Total loss is optimized in our framework. It is defined as
‘Ctotal = )\b‘cb + )\oﬁo + )\SCu‘CSC’LM (6)
where Ay, Ao, and Ay, are hyperparameters described in
Section 4.1.

4. Experiments
4.1. Implementation Details

Dataset. We used the Places365-Standard [28] valida-
tion set for our training and evaluation. The dataset con-
tains 36,500 images of scenes such as “amusement park”
and “street.” We divided the images into training and test
sets containing 35,500 and 1,000 images, respectively. We
then resized the images to a resolution of 256 x 256 and
normalized the color values in the range of [0, 1].

Training. Our framework was trained using Adam [14]
with 81 = 0.0 and B2 = 0.99, and initialized using He ini-
tialization [10]. We set the learning rate for our networks
to 2¢~*. Then, we randomly sampled n blend modes from

Table 1. Quantitative comparison with the baseline methods.
NL indicates that the method is for nonlinear blending.

Image Quality
Methods NL
SSIMT  PSNR?T MSE| LPIPS|
RGBXY [24] 0.997 45.82  0.000038  0.0023
FSCS [5] 0.972 3241 0.00063  0.0165
DIL [15] v 0.991 43.94 0.00058  0.0068
Ours v 0.983 35.09 0.00031  0.0117

among the k£ blend modes as a condition vector in each it-
eration. The batch size was set to 16, and our framework
was trained for 200 epochs. The training required approxi-
mately one day with four V100 GPUs in PyTorch [19]. For
the hyperparameters, we set A\, = A\, = 20 and A, = 5.
First of a 10 epoch, we trained the linear alpha generator
using Eq (3) to learn reconstruction of a base image. Then,
we trained three generators using Eq (6). We describe the
details of our proposed network architecture in the supple-
mentary material.

4.2. Baseline Methods

The baseline methods used in our comparisons are RG-
BXY [24], DIL [15], and FSCS [5].

RGBXY [24] is a method to decompose an image into
a set of linear blending layers It consists of two steps: (1)
computation of the RGBXY convex hull (instead of using
given palettes) and (2) update of the layer.

DIL [15] is a method to decompose an image into a set
of nonlinear layers using the optimization method. The DIL
method requires not only color palettes but also their corre-
sponding color distribution parameters of each layer.

FSCS [5] is a method to perform first soft color segmen-
tation with a CNN. It also predicts the residues to identify
colors that are not included in a given palette. The FSCS
method is limited to linear blending models.

4.3. Quantitative Evaluation

Quantitative scores. As shown in Table 1, we compared
the different methods in terms of the structural similarity
index (SSIM), peak signal-to-noise ratio (PSNR), mean-
squared error (MSE), and learned perceptual image patch
similarity (LPIPS) [27] for the test set with a resolution of
256 x 256. To calculate the LPIPS, we used the ImageNet-
pretrained AlexNet [16] as the feature extractor. RGBXY
determined the palette size through an optimization and
used the number of an average and median palette size 6.95
and 7, respectively. For the other methods explored here,
we set the palette size to 7. For our proposed method and
DIL [15], we used a random blend mode from among the 12
advanced blend modes for each nonlinear layer. The color
variance parameters of the DIL were set to 0.3.

The RGBXY [24] method achieved the best score on the
image quality metrics, indicating that the iterative method
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Figure 5. Visual comparison of the soft color layers generated by FSCS [5], DIL [15], and our proposed method. For each image, both our
method and DIL use the same blend modes for nonlinear layer decomposition. The same palette is used for FSCS, DIL, and the nonlinear
alpha layer generation stage of our method. The right image is courtesy of David Revoy.

of the linear blending model performs well. Additionally,
the DIL [15] achieved higher scores than the proposed and
FSCS [5] neural-network-based methods. Compared with
the FSCS [5], which is a linear blending model, our pro-
posed method achieved better scores.

Inference time. Table 2 provides a comparison of the in-
ference times needed by the baseline and proposed methods
to decompose a given image using the seven palettes. We
performed the decomposition using an Intel Core 17-9700K
3.6 GHz CPU and an NVIDIA V100 GPU and calculated
the average values of 20 repetitions. The inference times
of FSCS, DIL, and ours were increasing linearly. The in-
ference time of RGBXY [24], which is a linear blending
model, was approximately 70-140 times greater than that
of our method with a GPU. The FSCS [5] and proposed
methods are sufficiently fast for digital creators to perform
quick trial-and-error procedures. The DIL [15] approach,
which performs nonlinear layer decomposition, required the
greatest inference time; a 2-megapixel image required 72 s
for decomposition, making it difficult to perform trial-and-
error procedures to determine the desired blend modes and
palette color. In comparison, our method achieved the same
decomposition in 0.2 s with a GPU, which is approximately
370 times faster.

4.4. Qualitative Evaluation

Figure 5 shows the results of the linear and nonlinear de-
composition and the reconstructed image. For each image,
both our method and DIL use the same blend modes for
nonlinear layer decomposition. The same palette is used for
FSCS, DIL, and the nonlinear alpha layer generation stage
of our method.

Linear method. We compared linear layers decom-

Table 2. Inference time comparison. MP and NL refer to
megapixels and nonlinear blending, respectively.

Inference Time

Methods NL

2MP[s] 4MP[s] 6MP[s] 8MPJ[s]
RGBXY 27.5 33.8 50.3 55.6
FSCS (CPU) 3.16 6.32 9.55 13.0
FSCS (GPU) 0.07 0.14 0.21 0.28
DIL v 72.4 145.5 216.8 291.6
Ours (CPU) v 6.47 124 17.5 24.6
Ours (GPU) v 0.19 0.38 0.58 0.77

posed by our method with those decomposed by FSCS [5],
as shown in the top two rows of Figure 5. FSCS used an
SCU energy objective in addition to a reconstruction loss
to train the alpha and the residue predictors. On the other
hand, we trained our linear alpha generator with only a re-
construction loss Eq. (3). As a result, while FSCS is ideal
for linear image unblending, our method generates linear
layers that composite a minimal base image for nonlinear
unblending.

Nonlinear method. We compared nonlinear layers
decomposed by our method with those decomposed by
DIL [15], as shown in the bottom two rows of Figure 5. DIL
tended to produce nonlinear layers with large alpha values
(i.e. high opacity), regardless of the blend modes. Addi-
tionally, as shown in the second and fourth layers in the
left-hand side of the bottom row in Figure 5, DIL produced
unrelated regions (e.g. mountain) even though blue palette
color was given, while our method generated the soft layer
in the region (e.g. sky) corresponding to the blue palette.
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Table 3. Ablation study. Ablation experiments for the hyperpa-
rameters and architectures. All experiments used three palettes for
the linear layers. m and k denote the number of palettes for the
nonlinear and blend modes. Variance refers to the residue color
variance. (d)~(f) networks are trained with m=7 and k=4.

Methods SSIMT  PSNR?T MSE| LPIPS| Variancel
(a) m=7, k=4 0.985 35.82  0.00029 0.0129 0.0032
(b) m=T7, k=12 0.979 35.09  0.00041 0.0147 0.0034
(c) m=5, k=4 0.980 3432 0.00037 0.0151 0.0027
(d) w/o Lscu, 0.981 35.01  0.00026 0.0107 0.029
(e) w/o Zero-

Centered 0.981 3434 0.00039 0.0164 0.067
(f) w/o Residue 0.957 33.75 0.00120 0.0275 -

This is a side effect of the optimization objective of DIL
that forces nonlinear layers to reconstruct the input image
without semantically meanings. On the other hand, while
our method behaves similarly when the blend mode is nor-
mal the decomposed nonlinear layers have small alpha val-
ues (i.e. rather transparent) when the blend mode is overlay,
screen, or multiply. Thanks to the base image that captures
the most basic colors of the input image, nonlinear layers
do not struggle to reconstruct, but instead focus on creating
the appropriate effect of the advanced blend mode.

4.5. Ablation Study

Number of blend modes. As shown in Table 3, the
scores for case (a) were better than those for case (b). Our
method, which uses fewer blend modes, achieved better
scores because it was easier to train the networks with fewer
blend modes and create the reconstructed result. For seven
palettes and 12 blend modes (m=7 and k=12), a total of
712 = 13,841,287, 201 possible blend mode combinations
are obtained, and it is difficult for the network to generalize
to all possible cases during training.

Number of palettes of the nonlinear layers. To inves-
tigate the effect of the number of layers on advanced blend-
ing, we compared case (a) with seven (m=7) and case (c)
with five palettes (m=5). In particular, the result of case
(a) was superior to that of case (c) for all metrics except
for the variance score. We see that the network generated
higher quality and more sufficient reconstructions with a
larger number of palettes.

SCU loss. The MSE and LPIPS scores in case (d) were
superior to those of case (a). This is because, in case (d),
there were no restrictions on the color variations of the
residue palette, making it easier to reconstruct. Therefore,
as shown in Figure 6, case (d) produced residue colors that
is not limited to given palette colors and had a higher color
variance score. If a residue variance is large, it prevents
users from editing the palette. This suggested that L., is
necessary for adequate learning of the color distribution of
the residue.

Residue generator. We compared cases (a) and (e) to
evaluate the residue generator. The palette of nonlinear lay-

)

First Two Layers with Ly,

)|

First Two Layers without L,

Input Image

Figure 6. Comparison of generated nonlinear layers with and

without L.,,. The palette with residue and palette color are shown
in the square on the bottom right of each image.

n Y
Input Image  Background  Final Output  Background  Final Output

Figure 7. Examples of decomposition with multiply and screen as
the final blend mode. The background, which are the last interim
results of reconstruction, and the alpha layers are in the square on
the bottom right of each image. Thanks to the visual effect of a
blend mode, the final output image successfully reconstructs the
input image.

ers with residues in case (a) had a color distribution centered
at the original palette color, whereas the one in case (e) di-
rectly predicted the distribution with a range of values from
[0, 1]. Case (a) was better than case (e) for all scores, indi-
cating that the residue generator with zero-centered output
is more effective. Finally, compared with case (f), which did
not include residues, the results had worse scores than those
of case (a). We thus conclude that the residue generator is
essential to the quality of our framework.

4.6. Discussion

Output control by AdalN.

We demonstrate that AdaIN controls the nonlinear layer
according to the input blend modes and palette colors in
Figure 7. We blended the background and corresponding
alpha layers to generate final outputs. Both background im-
ages are the last interim result of reconstruction. Both al-
pha layers have the same gray palette color. The output im-
ages reflect the visual effects of edge darkening with multi-
ply and eye highlighting with screen thanks to appropriate
alpha layers and residue colors with AdaIN conditioning.
Therefore, thanks to AdalN, the nonlinear alpha generator
is capable of controlling the generation of nonlinear layers
depending on the blend modes.

Number of linear layers. Figure 8 shows a comparison
of the base images using palette sizes of three and seven.
The base image forms the first layer for advanced blending.
Hence, having more palette colors for linear layers makes a
color editing more complicated. In this work, the number
of palettes for linear layers is set to three.
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Linear Layers with the palette size of three

Input Image Base Image

Linear Layers with the palette size of seven

Figure 8. Comparison of the base images using palette sizes of
three and seven. The palette color is shown in the square on the
bottom right of each image. The rightmost image shows the result
of reconstruction by linear blending.

Linear Layers

Nonlinear layers Base Image

Normal Screen Screen Normal Multiply Overlay Normal
Interim Advanced Blending Results

Palettes with Residues Edited Image

Figure 9. Palette color editing process of the edited image in
Figure 1. In the blending step, we use new color palettes for linear
and nonlinear layers, while alpha layers remain unchanged. Image
courtesy of Theo Crazzolara.

4.7. Applications to Image Editing

Our method can be applied to image editing that re-
quires advanced blending. Our method first decomposes
an RGB image into soft color layers—Iinear and nonlinear
layers—using the automatically determined blend modes
and palettes. A user can then adjust the soft color layers
by manually altering the blend modes and palettes. After
satisfied with the soft color layers, the user can start editing
the image by, e.g., shifting palette colors or switching blend
modes. He or she can come back anytime to exploration
of more blend modes and palettes to attain an ideal set of
soft color layers for editing. Every time the blend mode or
palette changed, our method infers the soft color layers in
a fraction of second. Consequently, such a trial-and-error
process incurs little waiting time.

Some applications to image editing include:

Editing palette color. Figures 1 and 9 demonstrate re-
sults for editing palette color. We keep blend modes the
same during unblending and blending, while changing to
another set of palette colors for soft color layers.

Inputs Nonlinear Blending Results

Input Image Background Layer Normal Multiply Screen

Figure 10. Examples of blend mode editing to create different
visual effects. For decomposition, we specify normal as the blend
mode of one of the nonlinear layers. For composition, we set the
blend mode of the nonlinear layer to either normal, multiply, or
screen. Image courtesy of Susanne Nilsson.

Editing blend mode. Figure 10 shows results for editing
blend modes. Keeping the blend mode as normal results in
the reconstruction of the input image. Switching the blend
mode to either multiply or screen, on the other hand, creates
either a darker or brighter version.

4.8. Limitations

Fixed number of palettes and blend modes. Once we
train our networks with a fixed number of palettes and blend
modes, the network cannot be used with a different number
of palettes and blend modes. For example, the generators
for the nonlinear layers trained with five palettes or four
blend modes cannot handle seven palettes or twenty blend
modes. Adaptation to the different numbers of palettes or
blend modes thus remains a problem.

GPU memory limitation. For fast inference, we accel-
erate our method using GPUs. In this case, the size of the
input image is restricted by the memory of the GPU (e.g.,
for a GPU with 12 GB memory, the input images cannot be
larger than 4 MP). Using the half-precision (e.g., FP16) for-
mat instead of the single-precision (FP32) format may thus
mitigate this issue.

5. Conclusion

We proposed the first neural-network-based method for
nonlinear decomposition according to the specified color
palettes and blend modes. We have experimentally veri-
fied that our method achieved an inference speed 370 times
faster than the state-of-the-art method of nonlinear image
unblending. Furthermore, qualitative and quantitative com-
parisons have demonstrated that our reconstruction quality
was higher than or comparable to those of other methods,
including linear blending models. To our best knowledge,
our method opens the door to fast editing of real-world pho-
tographs using blend modes.
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