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Abstract

Novel multimodal imaging methods are capable of gen-
erating extensive, super high resolution datasets for preclin-
ical research. Yet, a massive lack of annotations prevents
the broad use of deep learning to analyze such data. In
this paper, we introduce a novel generative method which
leverages real anatomical information to generate realis-
tic image-label pairs of tumours. We construct a dual-
pathway generator, for the anatomical image and label,
trained in a cycle-consistent setup, constrained by an inde-
pendent, pretrained segmentor. Our method performs two
concurrent tasks: domain adaptation and semantic syn-
thesis, which, to our knowledge, has not been done be-
fore. The generated images yield significant quantitative
improvement compared to existing methods that specialize
in either of these tasks. To validate the quality of synthe-
sis, we train segmentation networks on a dataset augmented
with the synthetic data, substantially improving the segmen-
tation over the baseline.

1. Introduction
Recently, the combination of fluorescence microscopy

and tissue clearing has enabled the generation of single-cell
resolution, terabyte sized 3D datasets of whole specimens
and organs [29, 33, 44]. These datasets facilitate the quan-
titative study of disease or age-induced anatomical alter-
ations, as well as drug targeting, in human organs or animal

models. An intriguing feature of such datasets is the multi-
channel nature of the data. An autofluorescence channel,
denoted as ”anatomical channel”, images general tissue,
and a pathology channel marks objects of interest such as
tumours (”tumour channel”) using fluorescence dyes. The
sheer size and multi-channel characteristics of these data re-
quire the use of high throughput deep learning methods to
analyze and segment them [31, 20, 27]. However, data vol-
ume and complexity increase the manual annotation cost, as
the timeframe required for manual labeling of a single scan
of a whole mouse can span up to two months. This evidently
motivates the development of new approaches for synthetic
image-label pair generation and data augmentation [19].

Anatomical channel Tumour Channel Annotation

Figure 1. Motivation: the characteristic dim metastases can only
be identified by multiple adjustments of contrast, and only from
certain angles. Such properties lead to inconsistent annotations,
even from experts. First, these inconsistencies make the label-
ing very expensive. Second, training segmentation networks on
these datasets is only stable for large numbers of annotated sam-
ples. Both of these aspects motivate the need for our generative
tumour inpainting to create labeled datasets.
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Nevertheless, our experiments showed us that existing
methods often fail to generate semantically correct images
when underlying annotations used for training are noisy.
Importantly, current approaches either perform image trans-
lation of structures that are visible in both domains, or gen-
erate them, based on labels, in the target domain. This
leaves the generator with the task of synthesising back-
grounds that fail to take advantage of structurally rich pri-
ors. The generated images are semantically correct, but of-
ten trivial. Therefore, these aspects motivated the techni-
cal development of MetGAN, a generative method that per-
forms domain translation and semantic synthesis simultane-
ously, generating realistic images in the target domain that
show structures imposed by the desired label.

Application wise, we present a generative adversarial
network (GAN) based approach, which leverages the ad-
vantages of fluorescence microscopy datasets, namely a
high SNR and multiple channels, to generate realistic data.
Our application focuses on a dataset pertaining metastatic
spread in a whole mouse organism. Based on information
in the anatomical channel, we generate synthetic images in
the pathology (cancer) domain, with objects of interest (tu-
mours) placed in user-defined locations. Thus, we derive
the generated samples from existent and distinctive priors,
without the additional burden on the generator of having to
synthesise both diverse backgrounds and foreground. Addi-
tionally, our method solves characteristic inconsistencies in
foreground data and labels (see Figure 1).

The use of generative adversarial networks for synthetic
data generation and augmentation [28, 24] to improve seg-
mentation and classification tasks is a current topic of in-
terest. Goodfellow et al. introduced the concept of GANs
[8], which was successfully improved and extended towards
image-to-image translation [11, 45, 6], with one of the key
applications being medical imaging [40, 13, 32]. Within
these approaches, a representation of a structure of interest
is translated into another domain or multiple other domains
such as different imaging modalities or contrasts[37, 17].
For this application, most studies use a Cycle-GAN inspired
architecture (for unpaired data), or conditional GANs (such
as Pix2Pix), where applications focus on aligned and paired
datasets. Based on such results Cohen et al. showed that the
use of distribution matching losses can lead to hallucinating
structures (such as tumours), which translated to medical
misdiagnosis [7], indicating the need for advanced image
synthesis techniques; for example losses which punish the
generation of unwanted elements. Thus, in order to enforce
the preservation and correct translation of the semantics of
the data, many authors constrain their GANs with one or
more additional segmentation networks [10, 43, 5, 39]. An-
other approach is dividing the task into two stand-alone
steps: adaptation, followed by semantic alignment [16].
This concept improved the combination of appearance and

semantic adaptation.
Another common use of GANs in computer vision and

medical imaging is to generate semantically guided im-
ages in a target domain [21, 46, 14, 36, 12, 2, 1]. A
common feature of these applications is the use of Spade
ResNet blocks in the generator, sometimes further con-
strained by an additional segmentor [22]. For other med-
ical images, label-based conditional GANs have been used
for data infill [15] and augmentation for underrepresented
classes [18], to improve segmentation [42], as well as clas-
sification [35, 4, 25]. While GAN-based approaches have
been used to generate synthetic tumor images [38], to the
best of our knowledge no coupling between images and la-
bels has been achieved. A summary of relevant state-of-the-
art methods and their difference to our proposed method can
be found in the Supplementary material.
Contributions: 1) We develop a novel generative model,
MetGAN, to synthesize realistic microscopic images of tu-
mour metastases, based on real autofluorescence image in-
formation and arbitrarily placed tumour labels. Our model
consists of a dual-pathway generator, MetGen, trained in a
cycle-consistent setup, and further constrained by an inde-
pendent, pretrained segmentor. Our novelty lies in: the gen-
erator architecture, the addition of a passive segmentor in
the cycle-consistent training setup, and the additional con-
straint with a pair-wise loss for improved domain transla-
tion, as well as the task itself: concurrent medical domain
translation and semantic synthesis. 2) We present qualita-
tive results of our generated microscopic tumour images,
and we quantitatively evaluate the error comparative to the
real ground truth images. This shows the superiority of our
model over existing state of the art methods. 3) We exten-
sively validate our method in an ablation study and a down-
stream segmentation task, where we use our generated tu-
mour images to train a segmentation network. We show
that training solely on generated image-label pairs achieves
identical performance as training on a large set of real data.
Furthermore, augmentation of the real dataset with syn-
thtetic data improves lesion detection.

2. Methods

2.1. Architecture

In this work, we propose a cycle-consistent 2D frame-
work for domain translation and semantic tumour inpaint-
ing, using a customized GAN, whose architecture is de-
picted in Figure 3. Our setup is inspired by CycleGAN,
a proven model in domain translation tasks [45].

It has been shown that networks which employ simple
batch normalization layers tend to lose semantic informa-
tion when it comes to label-based generation [21]. This as-
pect motivated us to construct proposed our generator net-
work, MetGen, with an additional pathway, tailored for se-
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Figure 2. Depiction of the proposed generator architecture, MetGen. Our setup processes the input image through a U-net architecture, and
the semantic information through Spade ResNet Blocks. The features are concatenated with the final upconvolutional layers and used for
spatially and semantically accurate inpainting.
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Figure 3. Proposed conditional GAN training setup of MetGAN: The generator F learns the mapping from the anatomical to the tumour
channel, conditioned on the imposed label, through the discriminator DX . Because we train in a cycle consistent manner, G learns the
inverse mapping, through DY . A pretrained segmentor is used to enforce semantics by punishing F for incorrect tumour placement.

mantic synthesis. Thus, we delimit two paths: one follow-
ing a traditional U-net architecture [23, 34], that receives the
anatomy channel as input; and a second path composed of
7 Spade ResNet Blocks[21], which process the label-input
to the network. We then merge the resulting features of the

two paths in the upconvolutional layers of the U-net decoder
(see Figure 2). We have observed that this separation better
preserves the flow of semantic information and results in a
more accurate label-based inpainting compared to a naive
channel-wise concatenation of the input image and the an-
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notation.
Furthermore, we want to ensure that the generated out-

put is consistent with the desired label - a constraint we
enforce through a pre-trained and frozen segmentor net-
work, employed as a passive player in the training process.
Its role is twofold: not only does it enforce the placement
of metastases at the desired locations, but it also helps to
suppress hyperintensities in the anatomy channel which are
preserved in the case of CycleGAN, creating semantic am-
biguities.
To clarify our terminology, we refer to our generator as seen
in Figure 2 as MetGen, and to the whole GAN architecture
(as seen in Figure 3) as MetGAN.

2.2. Training Losses

As presented in Figure 3, our final loss consists of four
terms. Firstly, we define the discriminator and cycle consis-
tency losses similar to [45]:

LD =LDX
+ LDY

=Ex[logDX(x)] + Ey,l[log(1−DX(G(y, l)]+

Ey[logDY (y)] + Ex,l[log(1−DY (F (x, l)] (1)

LCycle =Ex∼p(x)
[∥G(F (x, l), l)− x∥1]+

Ey∼p(y)
[∥F (G(y, l), l)− y∥1], (2)

where we denote: X - the anatomical domain, Y - the tu-
mour domain, L - the binary domain marking the presence
or absence of a tumour; x,l ∼ p(x,l) and y,l∼ p(y,l) are sam-
ples from domain X and Y; F (x, l) is a mapping from X ×
L → Y; and G(y, l) a mapping from Y × L → X, with DX

and DY as corresponding discriminator functions.
Secondly, in order to ensure the desired segmentation

map is respected, and that the setup is robust against arte-
facts and hyperintesities in the autofluorescence channel,
we use a weighted binary cross-entropy loss LSegm, given
by the predictions of the segmentor network, penalizing the
discrepancy between the real and segmented label. Lastly,
to leverage the paired nature of our data and to facilitate fea-
ture adaptation achieved in the domain translation task, we
also use a pair-wise loss between real and generated images
in each domain:

LPair = LPairX + LPairY

= Ex,y[∥F (x, l)− y∥1] + Ex,y[∥G(y, l)− x∥1].
(3)

The final loss is a weighted linear combination of these
components, where the parameters α1−4 are hyperparam-
eters adjustable per dataset.

Lfinal = α1LD + α2LCycle + α3LSegm + α4LPair. (4)

3. Experiments

We compare our proposed solution to established base-
line methods in image translation or semantic synthesis in
general computer vision, namely Pix2Pix[11], CycleGAN
[45], SPADE [21], and SEAN [46], as well as medical
applications: SIFA [5] and RedGAN [22]. Additionally,
in an ablation study, we also test our network against
mixture models, trained with our generator and/or with an
additional segmentation loss. Furthermore, we perform
a robustness study exploring our solution’s performance
under noisy labels. Lastly, we implement a downstream
study, where we train segmentation networks on synthetic,
real and mixed data.

Dataset: In our evaluation, we use a publicly available light
sheet microscopy dataset [20, 26]. The dataset contains
1602 300x300 pixel samples, with their ground truth
annotations. We put aside 20 % of the data as a test set
that is unseen by any network. The test set includes cases
with and without metastases, with a balanced organ-based
distribution. The samples are resized to the size of 256x256
and normalized to [-1,1]. Random rotations are used at train
time. We evaluate the generated images from a qualitative
and a quantitative point of view, based on the unseen test
set. For this, we use 414 real triplets of anatomical channel,
real label, and tumour channel. More information about the
architecture components can be seen in Table 2.

Evaluation Metrics: We used five image similarity
metrics to evaluate the synthetic images: : mean absolute
error (MAE), mean sum of squared differences (MSD),
image similarity index measure (SSIM), Frechet inception
distance (FID) [9], and the learned perceptual image patch
similarity (LPIPS) [41]. Among them, FID and LPIPS are
two metrics that calculate the distance between the feature
vectors obtained from pre-trained deep networks such as
[30] for real and synthetic images.

Implementation details: We train our models using Py-
torch, on an NVIDIA GeForce RTX 2080, for 200 epochs,
with batch size=1, using Adam optimizer with β1 = 0.5,
β2 = 0.999, initial learning rate = 0.0002 and linear learn-
ing rate decay after 100 epochs. The pre-trained segmentor
network (U-net) developed by Pan et al. in [20] is loaded,
and not modified during training. As a discriminator, we
use PatchGAN with 3 layers and a field of view of 70x70
pixels. Training our final method takes approximately 24
hours. For the final loss function, we use α1 = 1, α2 = 10,
α3 = 100, and α4 = 10, obtained empirically. The base-
line methods were adapted to fit our requirements, and a
description of this can be found in the supplementary mate-
rial.
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4. Results

4.1. Quantitative Results

Table 1. In a quantitative comparison, our proposed method
outperforms most state of the art methods in MAE, MSD, SSIM
and LPIPS. Our improvements are all significant based on t-test
analysis (all p-values <0.005). Best scores are indicated in bold
digits. Only in one measure (FID) MetGAN is outperformed by
one method which is CycleGAN.

Method MAE↓ MSD↓ SSIM↑ FID↓ (×10) LPIPS↓
Pix2Pix 0.122 0.028 0.650 9.364 0.239
CycleGAN 0.129 0.031 0.656 6.731 0.223
RedGAN 0.214 0.070 0.174 48.804 0.618
SPADE 0.346 0.190 0.372 48.262 0.569
SPADE+VAE 0.295 0.137 0.396 44.125 0.567
SEAN+VAE 0.299 0.139 0.394 34.612 0.586
SIFA 0.302 0.118 0.517 26.898 0.605
MetGAN (Ours) 0.111 0.023 0.700 7.945 0.214

In Table 1, we compare the ”tumour channel” images
generated by various methods to the corresponding ground
truth using five image similarity metrics. In FID, we achieve
close performance when comparing to CycleGAN (7.945
vs. 9.364). We observe that MetGAN leads to a consistent
an statistically significant (p value < 0.005) improvement
of the generated images compared to baseline according to
4 out of the 5 metrics. Thus, our method obtains a good im-
age similarity, as well as a similar distribution to the ground
truth, according to numerical, as well as perceptual metrics.

4.2. Qualitative Results

Figure 4 shows examples of qualitative results obtained
for our method and state-of-the-art methods. We observe
the following common features: while standalone Pix2Pix
and CycleGAN obtain good image similarity and domain
translation, they either fail to create the desired tumours, or
the networks hallucinate features in undesired places. An-
other Cycle-GAN based approach, SIFA, retains most of the
information of the autofluorescence channel and overim-
poses tumours, but these are not realistic, as they lack depth
and dimension. On the other hand, the methods that are
specialized for generating structures in the target domain,
such as SPADE, SEAN and RedGAN, respect the semantic
maps, but they fail at generating diverse and realistic back-
grounds. Additionally, when training RedGAN, the net-
work converged to a solution that portrays heavy checker-
board artefacts, an issue we also observed when training
ResNet-based generators. On the other hand, MetGAN con-
sistently places the tumours at the imposed label location,
whilst adapting features from the anatomical domain.

Overall, the combination of our quantitative and qualita-
tive results conclusively proves how MetGAN is generating
superior tumour images for our use case.

4.3. Additional Experiments

4.3.1 Ablation Study

In order to investigate the effects of the components of
our setup, we carry out an ablation study on two different
datasets: the metastasis dataset described in Section 3,
and a second microscopy dataset of the mouse peripheral
nervous system. For both cases, the anatomy channel is
translated to contrast-enhanced channel, with semantics
based on the imposed annotation of metastases or nerves.

Main Dataset: We trained combinations of Pix2Pix,
CycleGAN and MetGen with or without a segmentor and
pair-wise loss. Quantitative and qualiative results can be
observed in Table 2 and Supplementary Figure 1.We can
observe that standalone Pix2Pix and CycleGAN produce
good image similarity, but incorrect tumour placement.
Adding a segmentor network helps to ensure that the new
structures are inpainted at the desired location, but still
leads to additional unwanted tumours (Pix2PixSeg), or fails
on the domain translation task (CycleGANSeg). The use
of our generator improves the qualitative synthesis in both
conditional (MetGenCondSeg) and cycle-consistent setups
(MetGAN-). Nevertheless, MetGenCondSeg often fails to
maintain features from the anatomical channel, producing
dark images with bright metastases, which is a simple, but
only occasionally correct solution to the task. On the other
hand, MetGAN- keeps too many of the original features.
An optimal balance is reached with our proposed solution,
MetGAN, which consistently places tumours at the imposed
label location, whilst adapting features from the anatomi-
cal domain, and also obtaining the best quantitative metrics.

Nerve Dataset: Furthermore, we test our proposed genera-
tor (without a segmentor) against the baseline on an anatom-
ically different dataset; the murine peripheral nervous sys-
tem. This second dataset is similar to the metastases dataset;
it has a similar in resolution and contains two-channel (aut-
ofluorescence and contrast) images. As the density of struc-
tures of interest exceeds that of the metastases by far, we
process these samples in a slice-wise manner (unlike the
projection-based manner used for the metastases). There-
fore, from 18 400x400x400 pixel volumes, we select 10500
images (slices) for training, and 2000 images for testing
(25%). For information about the acquisition of the sec-
ond dataset, please see Cai et al. [3].
From both qualitative and quantitative points of view, we
can observe that using MetGen improves the similarity
scores of the conditionally generated images, while respect-
ing the semantics. Unlike for the metastasis dataset, we
easily outperform the baseline without the need for an ad-
ditional segmentor network. We attribute this result to two
factors: the larger amount of training data and the reduced
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Figure 4. Qualitative results from our proposed generative method compared to the previous state-of-the-art methods. We can see that state
of the art domain translation methods fail at respecting the imposed semantic map and/or underperform in the domain translation, whilst
semantic synthesis methods fail at generating realistic backgrounds. Our method generates the most realistic looking images, with correct
tumour placement.
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Table 2. Quantitative comparison on metastasis dataset, our proposed method outperforms the baseline and ablated models in MAE, MSD,
SSIM and LPIPS. Our improvements are all significant based on t-test analysis (p-values <0.005). Best scores are indicated in bold.

Name Generator Segmentor Pair Loss Cycle-Con MAE↓ MSD↓ SSIM↑ FID↓ (× 10) LPIPS↓
Pix2Pix U-net ✓ 0.122 0.028 0.650 9.364 0.239
Pix2PixSeg U-net ✓ ✓ 0.118 0.026 0.658 9.364 0.239
CycleGAN U-net ✓ 0.129 0.031 0.656 6.731 0.223
CycleGANSeg U-net ✓ ✓ 0.210 0.059 0.563 26.308 0.467
MetGenCond MetGen ✓ 0.120 0.026 0.627 10.636 0.257
MetGenCondSeg MetGen ✓ ✓ 0.125 0.028 0.643 8.938 0.227
MetGenCycle MetGen ✓ ✓ 0.154 0.042 0.626 10.787 0.251
MetGAN - MetGen ✓ ✓ 0.120 0.026 0.654 7.450 0.216
MetGAN MetGen ✓ ✓ ✓ 0.111 0.023 0.700 7.945 0.214

Table 3. Quantitative validation of our generator, MetGen, (without a segmentor) versus the baseline and ablated models, on a second,
proprietary dataset pertaining a mouse peripheral nervous system. MAE, MSD, and SSIM are used for comparing generated images to the
ground truth. Best scores are indicated in bold digits.

Name Generator Segmentor Pair Loss Cycle-Con MAE↓ MSD↓ SSIM ↑
Pix2Pix U-net ✓ 0.081 0.019 0.629
CycleGAN U-net ✓ 0.091 0.024 0.614
MetGen Cond MetGen ✓ 0.078 0.018 0.643
MetGen Cycle MetGen ✓ ✓ 0.075 0.016 0.656

inconsistencies between annotations and contrast images.

Anatomy Label Ground Truth MetGen Cycle MetGen Cond CycleGAN Pix2Pix

Figure 5. Validation of our generator, MetGEN (no segmentor) on
a dataset of the mouse peripheral nervous system. The anatomy
channel is translated to a contrast-enhanced nerve channel, with
semantics based on the imposed annotation. We trained MetGen
in a Cycle-consistent setup (MetGen-Cycle) or with a conditional
discriminator (MetGen Cond). We compare with CycleGAN and
Pix2Pix. We can observe that the best similarity between gener-
ated and ground truth image is obtained by our setup.

4.3.2 Robustness Study

In order to study our model’s sensitivity to annotation in-
consistencies, we train MetGAN, Pix2Pix and CycleGAN
with data consisting of 25% shuffled labels. It can be ob-
served in Figure 6 that our setup is robust to label noise,
producing superior results compared to baseline methods,
which resort to generating metastases that are randomly
placed on the produced images.

Figure 6. Robustness study. We train MetGAN, Pix2Pix and Cy-
cleGAN with data containing only 25% shuffled labels. We can
observe that MetGAN is robust to label inconsistency, and pro-
duces realistic images that are in line with the input.

4.3.3 Downstream segmentation task analysis

We analyze how MetGAN images can be used to augment
real data for training segmentation networks. We train seg-
mentation models on sets of synthetic, real or mixed data,
with a varying number of samples from each set. For gen-
erating synthetic data, we use randomized unpaired com-
binations of real anatomical channel images, and real non-
zero labels or combinations thereof (e.g. 2 non-zero labels
merged together, in order to create more objects of interest
in one image). As a segmentor network, we use the U-net
developed in [20]. We perform 5-fold cross-validation for
all experiments. We evaluate the segmentation performance
using lesion-wise Dice, precision, recall and Jaccard Index,
on an unseen test dataset (which is not used in GAN train-
ing or image generation either). Additionally, segmentation
scores of the synthetically generated test set obtained with
the original segmentor are provided in the supplementary
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material.
Purely synthetic data: By training a segmentation network
only with synthetically generated data, we observe that
we achieve a similar performance (78.8% Dice) as by
using real data (79.8% Dice). Moreover, for a low number
of samples, we not only outperform the model trained
with real data, but also offer better training stability with
decrease in dataset size. We attribute this to the fact
that our approach can generate images with an increased
number of objects of interest, allowing us to have a more
representative depiction of the data distribution, even in a
low sample regime. Nevertheless, increasing the amount
of training images past a certain point (≈1000 samples, in
our case) results in a slight decrease of performance, as the
network overfits on synthetic data.

Table 4. Mean segmentation performance of models trained on
real (R), synthetic (S), and mixed data. We see that training based
on synthetic data reaches a performance similar to the real data,
even outperforming real data at low numbers of training samples.
The best segmentation scores can be obtained by combining real
and synthetic data.

Samples DICE↑ Prec.↑ Rec.↑ J. I.↑
100 synthetic 0.657 0.607 0.718 0.489
120 synthetic 0.680 0.611 0.770 0.515
240 synthetic 0.744 0.711 0.783 0.592
480 synthetic 0.770 0.767 0.776 0.626
1000 synthetic 0.788 0.776 0.804 0.650
1800 synthetic 0.776 0.780 0.773 0.640
200 real(25%) 0.470 0.465 0.538 0.307
280 real(35%) 0.614 0.684 0.652 0.443
400 real(50%) 0.784 0.810 0.764 0.645
810 real(100%) 0.790 0.800 0.781 0.653
200R+500S 0.809 0.809 0.811 0.679
400R+500S 0.819 0.812 0.828 0.693
810R+500S 0.826 0.842 0.811 0.704
810R+1500S 0.823 0.823 0.824 0.699

Mixed data: Compared to training the segmentor purely on
real images, we observe that our augmentation can increase
the performance. Our experiments highlight that, by us-
ing as little as 25% of the available real data, together with
synthetically generated samples, we can outperform the real
data baseline. Adding our synthetic data improves the per-
formance up to a plateau point, where we speculate that the
limitations are caused by the inherent variability in anno-
tation quality (see Figure 1). Past this point, adding more
generated samples leads to overfitting and a slight decrease
in performance. On a per tumour basis, our data augmenta-
tion increases the mean number of detected metastases (true
positives) from 83 to 95, whilst simultaneously decreasing
the number of false positives from 41 to 21. The detection is

unstable

Figure 7. Segmentation performance as function of dataset size
during training. Mean values as lines (see Table 4), and minimum
and maximum achieved during 5-fold cross validation as delim-
iters of the areas. We can observe that the inclusion of synthetic
data makes training the segmentation network more stable; espe-
cially in the case of small datasets, where training on real data is
unstable and volatile. On the other hand the performance obtained
with purely synthetic or mixed data is more stable.

especially improved for small-sized or dim tumours located
in the lungs, showing that our network can produce diverse
objects that can be used to improve difficult cases.

5. Conclusions
In this paper, we introduce a novel generative method,

which is able to leverage real anatomical information to
generate realistic image-label pairs of tumours. We de-
signed a dual-pathway generator, for the anatomical image
and label, trained in a cycle-consistent fashion, which is
constrained by an independent, pretrained segmentor. This
enables concurrent domain adaptation and semantic synthe-
sis. We generate images which are substantially more re-
alistic in terms of quantitative and qualitative results, com-
pared to different state of the art models; in a manner that
is robust to inconsistencies. Moreover, we train segmenta-
tion networks on real, generated and mixed data. We find
that data synthesized with our method improves segmenta-
tion; both from a training stability point of view, observ-
able at low data regimes; as well as from a lesion-detection
point of view. Using our method leads to higher segmenta-
tion scores when used to augment real data, and can poten-
tially be further exploited by focusing on underrepresented
or low-performance cases.
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von Neubeck, Nuray Böğürcü-Seidel, Sascha Seidel, Ka-
tia Sleiman, et al. Deep learning reveals cancer metastasis
and therapeutic antibody targeting in the entire body. Cell,
179(7):1661–1676, 2019.

[21] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 2337–2346,
2019.

235



[22] Ahmad B Qasim, Ivan Ezhov, Suprosanna Shit, Oliver
Schoppe, Johannes C Paetzold, Anjany Sekuboyina, Florian
Kofler, Jana Lipkova, Hongwei Li, and Bjoern Menze. Red-
gan: Attacking class imbalance via conditioned generation.
yet another medical imaging perspective. Proceedings of
Machine Learning Research, 1:13, 2020.

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation,
2015.

[24] Veit Sandfort, Ke Yan, Perry J Pickhardt, and Ronald M
Summers. Data augmentation using generative adversarial
networks (cyclegan) to improve generalizability in ct seg-
mentation tasks. Scientific reports, 9(1):1–9, 2019.

[25] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein,
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Marie Piraud, et al. Machine learning analysis of whole
mouse brain vasculature. Nature Methods, 17(4):442–449,
2020.

[32] A. Tomczak, S. Ilic, G. Marquardt, T. Engel, F. Forster, N.
Navab, and S. Albarqouni. Multi-task multi-domain learning
for digital staining and classification of leukocytes. IEEE
Transactions on Medical Imaging, pages 1–1, 2020.

[33] Hiroki R Ueda, Ali Ertürk, Kwanghun Chung, Viviana Grad-
inaru, Alain Chédotal, Pavel Tomancak, and Philipp J Keller.

Tissue clearing and its applications in neuroscience. Nature
Reviews Neuroscience, pages 1–19, 2020.

[34] Joris van Vugt. pytorch-unet. GitHub, 2019. https://
github.com/jvanvugt/pytorch-unet.

[35] Simon Vandenhende, Bert De Brabandere, Davy Neven, and
Luc Van Gool. A three-player gan: generating hard sam-
ples to improve classification networks. In 16th International
Conference on Machine Vision Applications (MVA), pages 1–
6. IEEE, 2019.

[36] Eric Wu, Kevin Wu, D. Cox, and William Lotter. Condi-
tional infilling gans for data augmentation in mammogram
classification. ArXiv, abs/1807.08093, 2018.

[37] Bingyu Xin, Yifan Hu, Yefeng Zheng, and Hongen Liao.
Multi-modality generative adversarial networks with tumor
consistency loss for brain mr image synthesis. In The IEEE
International Symposium on Biomedical Imaging (ISBI),
2020.

[38] Zhenghua Xu, Chang Qi, and Guizhi Xu. Semi-supervised
attention-guided cyclegan for data augmentation on medical
images. In 2019 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM), pages 563–568. IEEE,
2019.

[39] Heran Yang, Jian Sun, Aaron Carass, Can Zhao, Junghoon
Lee, Zongben Xu, and Jerry Prince. Unpaired Brain MR-
to-CT Synthesis Using a Structure-Constrained CycleGAN.
In Deep Learning in Medical Image Analysis and Multi-
modal Learning for Clinical Decision Support, pages 174–
182, Cham, 2018. Springer International Publishing.

[40] Xin Yi, Ekta Walia, and Paul Babyn. Generative adversar-
ial network in medical imaging: A review. Medical image
analysis, 58:101552, 2019.

[41] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 586–595, 2018.

[42] Zizhao Zhang, Lin Yang, and Yefeng Zheng. Translating
and segmenting multimodal medical volumes with cycle-and
shape-consistency generative adversarial network. In Pro-
ceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 9242–9251, 2018.

[43] Sicheng Zhao, Bo Li, Xiangyu Yue, Yang Gu, Pengfei Xu,
Runbo Tan, Hu, Hua Chai, and Kurt Keutzer. Multi-source
domain adaptation for semantic segmentation. In Advances
in Neural Information Processing Systems, 2019.

[44] Shan Zhao, Mihail Ivilinov Todorov, Ruiyao Cai, Rami AI-
Maskari, Hanno Steinke, Elisabeth Kemter, Hongcheng Mai,
Zhouyi Rong, Martin Warmer, Karen Stanic, et al. Cel-
lular and molecular probing of intact human organs. Cell,
180(4):796–812, 2020.

[45] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of the IEEE
international conference on computer vision, pages 2223–
2232, 2017.

[46] Peihao Zhu, Rameen Abdal, Yipeng Qin, and Peter Wonka.
Sean: Image synthesis with semantic region-adaptive nor-

236



malization. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020.

237


