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Abstract

Modern single image super-resolution (SR) system based
on convolutional neural networks achieves substantial
progress. However, most SR deep networks are compu-
tationally expensive and require excessively large activa-
tion memory footprints, impeding their effective deploy-
ment to resource-limited devices. Based on the observa-
tion that the activation patterns in SR networks exhibit high
input-dependency, we propose Multi-Dimensional Dynamic
Model Compression method that can reduce both spatial
and channel wise redundancy in an SR deep network for dif-
ferent input images. To reduce the spatial-wise redundancy,
we propose to perform convolution on scaled-down feature-
maps where the down-scaling factor is made adaptive to
different input images. To reduce the channel-wise redun-
dancy, we introduce a low-cost channel saliency predictor
for each convolution to dynamically skip the computation
of unimportant channels based on the Gumbel-Softmax. To
better capture the feature-maps information and facilitate
input-adaptive decision, we employ classic image process-
ing metrics, e.g., Spatial Information, to guide the saliency
predictors. The proposed method can be readily applied to
a variety of SR deep networks and trained end-to-end with
standard super-resolution loss, in combination with a spar-
sity criterion. Experiments on several benchmarks demon-
strate that our method can effectively reduce the FLOPs of
both lightweight and non-compact SR models with negligi-
ble PSNR loss. Moreover, our compressed models achieve
competitive PSNR-FLOPs Pareto frontier compared with
SOTA NAS-based SR methods.

1. Introduction

Single image super-resolution (SISR) is a classic low-
level computer vision task, which entails recovering a high-
resolution (HR) image from a single low-resolution (LR)
image, often assumed to be a bicubic downsampled version
of the HR couterpart. Since these exists multiple HR im-

ages that can be downsampled to the same LR input, the
SISR problem is ill-posed. Recently, deep convolutional
neural network (CNN) based methods have demonstrated
remarkable improvements on SISR. The pioneer work SR-
CNN [8] designed a three-layer convolutional network, and
outperformed previous non deep learning methods signifi-
cantly. Since then, more complicated and deeper architec-
tures [30, 50, 52] are proposed to expand the CNN repre-
sentation ability and continuously enhance the SISR perfor-
mance. Nevertheless, the state-of-the-art SISR networks are
computationally more expensive, and require excessively
larger memory footprints, compared to image classification
CNNs. For example, the FLOPs for processing a 224× 224
color image using the state-of-the-art RDN [52] (x4 SISR)
and ResNet-50 (classification) are 1140G and 4.1G, respec-
tively. Moreover, the memory footprint of the SR network
can be two order of magnitude larger than the classification
network. Therefore, model compression and inference ac-
celeration on SISR CNNs become a necessity.

Channel pruning [27, 34, 35, 16] has been broadly ac-
knowledged as an effective compression approach, due to
its advantage in significant speedup and memory reduction
of both model storage and intermediate feature-maps. Prior
arts evaluate the channel importance over entire training set
and discard the least important channels to minimize the
accuracy loss. One of the limitations is that the represen-
tation ability of the network is permanently reduced after
channel pruning. It neglects the diverse demands for net-
work parameters and capacity from different images. thus
the pruned model may not regain its accuracy. In addi-
tion, conventional methods do not take into consideration
that the channel activation patterns exhibit high variation
with respect to different input images, which is a more sig-
nificant phenomena in SISR CNNs, as illustrated in Fig.1.
We plot the variation of the maximum activation response
for all channels of the first convolution layer in the EDSR-
baseline [30] network, given 100 DIV2K validation images.
We observe that some input images elicit very high activa-
tion values, whereas the other images elicit little response
from the same set of channels. This phenomena suggests
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Figure 1: Variation of the maximum activation response for all 64
channels of first convolution in EDSR-baseline, given 100 DIV2K
validation images for x4 SISR.

that the relative importance of each channel can vary greatly
w.r.t. different input images (i.e., high input-dependency).
Last but not least, the spatial redundancy in the interme-
diate feature-maps is not considered by most of the chan-
nel pruning methods. To illustrate the spatial redundancy
in SR networks, we conduct the following experiment. In
Fig.2(a), we visualize the output feature-maps generated by
the first-layer convolution in EDSR-baseline for one DIV2K
image. For comparison in Fig.2(b), we downsample the in-
put feature-maps by 2x, then apply the optimized first-layer
convolution, and finally upscale the output to original spa-
tial size. As shown, although the convolution is performed
on spatially reduced feature-maps in Fig.2(b), the generated
output feature-maps have little visual discrepancy compared
to Fig.2(a). This result indicates that the spatial redundancy
can be reduced with minimal information loss.

To rectify the aforementioned limitations and maximally
excavate the redundancy, we propose Multi-Dimensional
Dynamic Model Compression, that allows the SR network
to learn to jointly reduce the spatial and channel wise re-
dundancy for different input images, as depicted in Fig.3.
To achieve spatial-wise dynamic compression, we per-
form convolution on scaled-down feature-maps, where in-
put feature-maps corresponding to different input images
are processed at different spatial resolutions based on a
learnable router module. To achieve channel-wise dynamic
compression, we learn the channel importance w.r.t. differ-
ent inputs by a channel saliency predictor. Instead of per-
manently pruning unimportant channels, we accelerate the
convolution by selectively computing a subset of channels
predicted to be important, while skipping the computation
of unimportant ones. The binary gating decisions on the
channel-wise computation are made trainable by employing
Gumbel-Softmax. Both the routers and saliency predictors
take conditioning information computed from the feature-
maps as input. To facilitate input-adaptive decisions, we
employ classic image processing metrics, e.g., Spatial In-
formation (SI) [20], as the feature-maps statistics to guide
the routers and saliency predictors. Compared with naive
global average/maximum pooling, SI can capture high-
frequency spatial details in the feature-maps better, which

(a) Conv(Xin) (b) f↑2(Conv(f↓2(Xin)))

Figure 2: Illustrations of spatial redundancy in SR networks. We
take the first convolution layer in EDSR-baseline (x4 SR) as an
example. (a): output feature-maps generated by the standard con-
volution. (b): output feature-maps generated by (i) down-scale the
spatial resolution of input feature-maps, (ii) perform convolution,
(iii) up-scale the output to the original spatial size .

makes it more suitable to SISR. The proposed method can
be trained end-to-end with gradient-based optimization us-
ing standard super-resolution loss, in conjunction with a
sparsity criterion which drives the network to satisfy a com-
putation budget. Experiments on four benchmarks demon-
strate that our method can achieve 2x FLOPs reduction with
negligible quantitative/qualitative loss for both lightweight
(e.g., CARN [2]) and non-compact (e.g., RDN [52]) net-
works. In addition, our extremely compressed models es-
tablish a new series of efficient SISR with superior PSNR-
FLOPs Pareto frontier compared with SOTA methods.

2. Related Works
Channel pruning. Channel pruning methods [27, 35, 34,
16, 54, 15, 32, 48, 7, 31, 28] aim to remove uninforma-
tive channels and associated filte parameters to reduce the
computation cost and memory requirement of deep CNNs.
However, existing channel pruning methods ignore the spa-
tial redundancy, thus limiting the achievable FLOPs reduc-
tions. Recently, MDP [12] proposes to jointly prune chan-
nels and compress the spatial-temporal dimension. Our
method differs that (1) MDP is a static pruning method,
thus suffers from the limitations discussed in Section 1: the
model capacity is permanently restricted after pruning, and
it ignores that the channel importance exhibit high input-
dependency. We propose dynamic model compression that
can preserve the model capacity and learn input-dependent
compression policies by considering diverse demands from
inputs. (2) MDP imposes L1 regularization on the scaling
factors of channels/branches, and prune channels/branches
with small scaling factors, i.e., MDP cannot explicitly con-
trol the computation cost of the pruned network. In contrast,
we utilize Gumbel-Softmax together with a sparsity crite-
rion so that our compressed models satisfy explicit compu-
tation budgets, which is more attractive in real applications.

Dynamic inference. Dynamic inference methods provide
input-dependent compression strategies and vary the com-
putation cost for each individual input. The pioneer work
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ACT [11] dynamically halts the execution of layers when
the generated features are good enough for the final clas-
sifier. Later methods observe that residual networks are
robust to block dropping, and propose to dynamically ex-
ecute the residual blocks for different inputs. For exam-
ple, SkipNet [46] and BlockDrop [47] leverages reinforce-
ment learning (RL) to train extra gating modules or policy
nets to selectively execute residual blocks. Another line of
works prune channels dynamically. For example, FBS [10]
rank the channel importance dynamically and only execute
the top-k channels. Apart from layer or channel skipping
methods, [44] proposes to train pixel-wise gating masks so
that the convolution is applied to important spatial regions
only. Our proposed dynamic model compression is a dif-
ferentiable method, due to the usage of Gumbel-Softmax.
Thus, our method can be efficiently trained via gradient op-
timization, in contrast to the inefficient RL-based methods.
Moreover, we learn input-dependent compression policies
in multi-dimensions, jointly reducing spatial and channel
wise redundancy. Thus, our method holds more flexibility
than prior arts that singly prune channels or layers.

Efficient image super-resolution. Although numerous
deep CNN based methods [8, 22, 43, 24, 25, 51, 52, 14,
33, 29, 6, 40] have been proposed for SISR, these models
are difficult to deploy on resource-limited devices due to
their excessively large computation cost and memory foot-
print. Therefore, designing efficient SR networks becomes
a popular research topic. For example, FSRCNN [9] ac-
celerates SISR by a compact hourglass CNN architecture.
DRCN [23] and DRRN [42] adopt recursive layers to build
efficient SR networks with fewer parameters. CARN [2],
GhostSR [39] reduce the computation cost by combining
lightweight residual blocks with variants of group convolu-
tions. SESR [5] proposes a new training protocol for effi-
cient SR by replacing standard convolutions with collapsi-
ble linear blocks. In comparison, our method holds better
generality such that it can be applied to a variety of archi-
tectures. Moreover, Our method can achieve further FLOPs
reduction on top of efficient SR models (e.g., CARN) with
negligible PSNR loss. Another line of works [36, 53, 38]
exploit the attention mechanism to improve discriminate
learning and representation power of SR networks, so that
a compact network achieves good performance. More re-
cent works apply neural architecture search to SISR by di-
rectly searching efficient architectures [26]. While the focus
of this paper is not on NAS, we show that our compressed
models achieve competitive PSNR-FLOPs trade-off com-
pared with SOTA NAS-based SR models.

3. Methodology

The proposed multi-dimensional dynamic model com-
pression is illustrated in Fig.3. When an input image comes

in, at each residual block, the router chooses a spatial res-
olution to perform convolution on. Then, the input feature-
maps are down-sampled to the chosen resolution, and pro-
cessed by convolution layers in the residual block. The
output is up-sampled back to the original spatial size and
added to the input feature-maps to form a residual learn-
ing. For each convolution layer, the Spatial Information
(SI) of the input feature-maps are computed and fed into
fully-connected (FC) layers to predict the channel impor-
tance scores. Then, Gumbel-Softmax (GS) is used to selec-
tively execute the important channels to produce the output.

3.1. Dynamic spatial-wise compression

Residual block (RB) has become the building mainstay
in modern SR networks. A standard RB is expressed as:
Xb+1 = F(Xb) +Xb, where Xb is the input feature-maps
to bth RB, andF(·) is the residual function composed of two
convolution layers with a non-linear function in-between.
Our method leverages the spatial redundancy of the feature-
maps, and makes F conditional on the spatial resolution.

Specifically, a low-cost router receives the feature-maps
Xb and decides the spatial resolution that the following con-
volution layers would perform on. The router consists of
Spatial Information (SI) operator and one fully-connected
(FC) layer with softmax activation. The SI operator [20]
measures the amount of spatial details in the feature-maps
by calculating the standard deviation over the pixels after
Sobel-filtering: SI(Xb) = Std[Sobel(Xb)]. After the SI
operator, we obtain a channel descriptor vector, which is
converted into the routing probability distribution by:

hb = Wrouter
b · SI(Xb) (1)

pi(Xb) =
exp([hb]i)∑N
j=1 exp([hb]j)

(2)

where Wrouter
b denotes the parameters of the FC layer in the

router, hb is the pre-softmax logits, pi(Xb) is the probabil-
ity to choose spatial resolution i, and N is the number of
available resolution levels.

For a specific spatial resolution i ∈ [N ], we first down-
sample the input feature-maps to this RB along the spatial
dimension with a factor i. For example, i = 2 indicates
that the spatial size becomes 1/4 of the original size. The
down-sampled feature-maps is fed into the residual func-
tion F . As mentioned before, our method also perform
dynamic channel selection within F for each convolution
layer, which will be detailed out in Sec.3.2. After all the
convolution operations inF , we up-sample the output to the
original spatial size so that the output feature-maps can be
added to the original input feature-maps to form the resid-
ual learning. In practice, we adopt average pooling for
down-sampling and nearest-neighbour interpolation for up-
sampling, due to their efficiencies.
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Figure 3: Overview of Multi-Dimensional Dynamic Model Compression for one residual block in SR nets. Sec.3 explains detailed flow.

Based on the softmax distribution in Eq.(2), the spatial
resolution corresponding to the maximum probability is se-
lected to perform the convolutions in F . Thus, the RB op-
erated on the selected spatial level i is described as:

Xb+1 = pi(Xb)f↑i(F(f↓i(Xb))) +Xb (3)

where i = argmax {pj(Xb), j = 1, ..., N}, f↑i, f↓i rep-
resent the up-sampling and down-sampling operation, re-
spectively. We multiply the probability value to the residual
output in order to make the router trainable end-to-end.

3.2. Dynamic channel-wise compression

For each convolution, our method dynamically deter-
mines the most important subset of channels by Gumbel-
Softmax, according to the importance scores produced by
a channel saliency predictor. The convolution is conducted
on the selected channels only to generate the output feature-
maps. To make the predictor low-cost, we follow a similar
design of the squeeze-and-excitation [18]. We use the SI
operator to extract the global information from the feature-
maps. Then, two fully-connected (FC) layers (with ReLU
in-between) and Sigmoid activation are applied to generate
the importance scores, where the first FC has a reduction
ratio of r (we set r = 16). For the lth convolution layer, the
score vector gl ∈ RCl

is calculated as:

gl = δ(Wl
fc1 · σ(Wl

fc2 · SI(Xl−1))) (4)

where Xl−1 ∈ RCl−1×Hl−1×W l−1

denotes the input
feature-maps, Wl

fc1 ∈ RCl−1×Cl−1/r,Wl
fc2 ∈ RCl−1/r×Cl

are the parameters of two FC layers, δ, σ represent Sigmoid
and ReLU activation. (C,H,W represent the channel num-
ber, spatial height and width, respectively.) The computa-
tion cost of this predictor module is cheap, which requires
Cl−1H l−1W l−1 + Cl−1

2
/r+ClCl−1/rMulti-Adds. This

is relatively negligible compared with the computation cost
of convolution, which requires Cl−1ClH lW lk2 Multi-
Adds, where k is the kernel size.

To determine which channels get computed by convolu-
tion, we view gli as the probability to estimate how likely
each channel is selected, since Sigmoid squeezes gli to
[0, 1]. Directly sampling channels from a Bernoulli distri-
bution using gli as the probability is a reasonable option.

However, this sampling procedure is not differentiable. To
address this limitation, we employ the Gumbel-Softmax
(GS) trick [21], which performs differentiable sampling to
approximate the categorical distribution. GS converts the
soft probabilities into hard decisions while enabling back-
propagation to update the channel saliency predictor. For-
mally, GS defines a continuous and differentiable approxi-
mation as:

zi =
exp((log(πi) + ξi)/τ)∑n
j=1 exp((log(πj) + ξj)/τ)

(5)

where ξi are noise samples drawn from Gumbel(0,1) distri-
bution, and τ is a temperature constant. The output of GS
becomes identical to a Bernoulli sample as τ approaches
to 0. Since channel selection is binary (n = 2 in Eq.(5)),
we can further simplify the GS formulation. Take ith chan-
nel in lth layer as an example, π1 = gli indicates the prob-
ability that such channel is selected for convolution, then
π2 = 1 − gli is the probability to not select the channel.
To ease the following presentation, denote the pre-Sigmoid
vector in Eq.(4) as ĝl. Substituting π1, π2 into Eq.(5) can
reduce the GS formulation into:

z1 = σ((ĝli + ξ1 − ξ2)/τ) (6)

Throughout our experiment, we set the GS temperature τ =
1. We adopt the straight-through estimator [3] to generate
the hard decisions during forward pass, and gradients are
computed from soft samples during backward pass:

ml
i =

{
1z1>0.5 = 1(ĝl

i+ξ1−ξ2)/τ > 0 forward
z1 backward

(7)

where ml
i is the decision for ith channel. During inference

time, we do not add Gumbel noise (i.e. ξ1, ξ2=0) for gener-
ating the hard decisions. After ml ∈ RCl

is obtained, the
convolution will be conducted on selected channels only:

Xl = f(Ŵl,Xl−1), Ŵl = Wl[νl, :, :, :], νl = {i|ml
i = 1}
(8)

where f(·, ·) stands for convolution operation, Wl ∈
RCl×Cl−1×Hl×W l

denotes the convolution tensor. Since
we only execute the selected channels, the output feature-
maps Xl has a dimension of (1− ηl)Cl ×H l ×W l, where
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ηl is the channel sparsity computed by 1 − |νl|/Cl. This
implies that the subsequent (l + 1)th convolution layer can
also make use of the input-side sparsity ηl. Thus, every con-
volution can exploit both input and output channel sparsity.

3.3. Sparsity loss and training strategy

Without additional constraints, our method becomes ac-
curacy driven only, and the optimal compression policy is to
execute each input image at the original resolution with all
channels. Therefore, apart from the super-resolution loss,
we incorporate a sparsity loss into the training objective.
We define a computation budget κ ∈ (0, 1) to represent
the relative amount of desired computation. For example,
κ = 0.5 indicates that on average 50% FLOPs of the full
model would be executed. Suppose there are B residual
blocks (RB) in the SR network, each of which has FLOPs
Fb when there is no compression. With dynamic compres-
sion, the averaged FLOPs of bth RB depends on the spa-
tial resolution ib in Eq.(3) and the channel sparsity η1b , η

2
b

(two convolutions per block) in Eq.(8). Specifically, the
post-compression FLOPs of bth RB can be calculated by:

Fb,sp =
η1b + η1bη

2
b

2(ib)2
Fb. To satisfy the computation budget,

we design a sparsity loss (denoted by Lsp) as follows:

Lsp = log(|
∑B
b=1 Fb,sp∑B
b=1 Fb

− κ|+ 1) (9)

During training, this sparsity loss is averaged over images
in each mini-batch, and the network learns how to distribute
FLOPs among different RBs and images.

To make the reconstructed SR images (ISR) possess sim-
ilar visual quality as the ground-truth images (IGT), we use
L1 distance as the super-resolution loss (denotes as Lsr):

Lsr = ‖ISR − IGT‖1 (10)

The final optimization objective involves two kinds of
losses, Lsr for reconstructing high quality images and Lsr
for constraining the computation cost of the SR network:

Ltotal = Lsr + αLsp (11)

Optimizing Eq.(11) from scratch produces models with rel-
atively lower PSNR at target computation budget. We con-
jecture that the reduced ability to learn is due to the inter-
action between compression policy learning and image re-
construction learning. Therefore, we propose a two-stage
training strategy to improve our models’ performance:

1. Pre-training stage: Train the plain SR network from
scratch without incorporating routers (Eq.(1)) and
channel salience predictors (Eq.(4)). The training loss
involves Lsr only. This supervised pre-training is able
to leverage labeled data to initialize the backbone net-
work parameters, paving way for the searching stage.

2. Searching stage: Add routers and channel salience
predictors into the SR network. Train the backbone
network together with routers and predictors using
joint loss Eq.(11). The model learns the optimal input-
dependent compression policies across different RBs
to satisfy the target FLOPs budget.

4. Experiments
We evaluate our method on both lightweight and non-

compact SR networks. Both quantitative and qualitative
comparisons are provided to verify the efficacy. The supe-
riority to competing methods is also evidenced by ablation
studies. All experiments are conducted on NVIDIA Tesla
P100 GPUs. Our method is implemented in PyTorch.

4.1. Setup

Datasets and evaluation metrics. Following [39], we use
the 800 RGB images from DIV2K [1] to train our models.
In order to compare with previous SOTA methods, we eval-
uate on four standard benchmark datasets: Set5 [4], Set14
[49], BSD100 [37], and Urban100 [19]. LR images are gen-
erated by downsampling the corresponding HR images us-
ing the bicubic kernel. Quantitatively, we calculate PSNR
and SSIM between the reconstructed SR images and the HR
ground-truth on Y-channel of the YCbCr color space.

Implementation details. Our method is applied to three
SOTA SR architectures: EDSR-baseline [30], CARN [2],
and RDN [52]. The FLOPs of these networks range from
389G to 5911G (on DIV2K for x4 SISR), covering both
lightweight and non-compact regimes. To improve the per-
formance of our models, we do not compress the first and
last convolutoin layers, since they count for very tiny por-
tion of FLOPs. Throughout all experiments, we set α = 1
in Eq.(11) for training. We train the SR models with batch-
size 16 and RGB input patches of size 48×48 cropped from
the LR input. Standard data augmentations are performed,
including random rotation by 90◦ and random horizontal
flipping. In addition, all input images are substracted by
the mean values computed over DIV2K images. We adopt
ADAM optimizer with β1 = 0.9, β2 = 0.999, ε = 10−8.
The initial learning rate is set to be 10−4 and gets halved
every 200 epochs for a total of 1000 training epochs.

4.2. Comparison with state-of-the-art

Quantitative results. In Table 1, we compare the
PSNR/SSIM of our compressed models against baseline
models and other model compression methods for x4 SISR.
The baseline results are obtained by our re-training, which
match the results reported in the original papers. Among
various competing methods, C-SGD [7] and DI [17] are
SOTA static channel pruning methods; Ghost-DW [13]
and GhostSR [39] replace the standard convolutions by
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Table 1: Quantitative results of our compressed models compared with baseline models and other model compression methods for x4 SISR.
Our method achieves better PSNR/SSIM while reducing more FLOPs compared with other methods.

Scale Method FLOPs Set5 Set14 B100 Urban100
reduction PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

x4

EDSR-baseline [30] - 32.14 / 0.893 28.59 / 0.782 27.59 / 0.737 26.12 / 0.787
DI [17] 50% 32.04 / 0.891 28.50 / 0.779 27.52 / 0.735 25.90 / 0.780

Ours 50% 32.25 / 0.894 28.63 / 0.782 27.59 / 0.737 26.04 / 0.784

CARN [2] - 32.16 / 0.894 28.59 / 0.781 27.58 / 0.736 26.03 / 0.783
C-SGD [7] 22% 32.08 / 0.893 28.52 / 0.780 27.56 / 0.735 25.93 / 0.780

Ghost-DW [13] 19% 32.14 / 0.894 28.59 / 0.781 27.57 / 0.735 26.02 / 0.782
GhostSR [39] 20% 32.11 / 0.893 28.57 / 0.780 27.56 / 0.735 25.98 / 0.781

Ours 50% 32.20 / 0.894 28.61 / 0.781 27.57 / 0.736 26.05 / 0.783

RDN [52] - 32.47 / 0.899 28.81 / 0.787 27.72 / 0.742 26.61 / 0.803
GhostSR [39] 47% 32.32 / 0.897 28.70 / 0.784 27.66 / 0.740 26.37 / 0.795

Ours 47% 32.39 / 0.897 28.78 / 0.785 27.68 / 0.740 26.41 / 0.795

Set14: Baboon

Groundtruth
PSNR/SSIM

EDSR-baseline
23.03/0.535

CARN
22.98/0.528

RDN
23.09/0.539

Bicubic
22.44/0.451

Compressed EDSR-baseline
23.03/0.534

Compressed CARN
23.00/0.529

Compressed RDN
23.07/0.535

Figure 4: Visual comparisons of baseline models and our compressed models for x4 SISR. Our method can effectively reduce the compu-
tation cost of both lightweight and non-compact networks without incurring visual quality loss for SISR.

Figure 5: Comparison with SOTA dynamic compression methods,
SkipNet [46], FBS [10] for x4 SISR on DIV2K validate set.

cheaper depthwise convolutions or shift operations to re-
duce FLOPs. For the lightweight CARN network, our
method achieves 2x FLOPs reduction while slightly outper-
forming the baseline on three out of four benchmarks. We
attribute this PSNR improvement to the fact that our method
can maintain the representation ability by selectively com-
puting a sub-structure based on each input for accelera-
tion. Moreover, due to the two-stage training strategy, our
method can leverage the pre-training information, which fa-
cilitates the searching stage to learn more effective com-
pression policies for different inputs. On the other hand, the
comparative methods achieve very limited (∼20%) FLOPs

reduction for CARN, and suffer from PSNR loss. For exam-
ple, the PSNR of C-SGD drops by 0.1dB on the Urban100
dataset. This is because CARN is compact and static chan-
nel pruning greatly reduces the model capacity. Compared
with [13, 39], our method also achieves better PSNR values.
For more complex and non-compact SR architecture RDN,
our method manages to reduce nearly half of FLOPs while
yielding higher PSNR/SSIM than [39]. Since our method
jointly reduce the spatial and channel wise redundancy, we
achieve better PSNR-FLOPs trade-off than other methods
focusing only on channel-wise compression.

In Fig.5, we compare with SOTA dynamic compression
methods, SkipNet [46] and FBS [10]. PSNR are evaluated
with EDSR-baseline for x4 SISR. we plot PSNR against a
range of FLOPs reduction ratios. Our method outperforms
these two leading approaches under various trade-off be-
tween PSNR and FLOPs.

Qualitative results. Fig.4 compares the quality of SR im-
ages produced by our method versus the baseline for x4
SISR. As observed, the details and textures in images pro-
duced by our method demonstrate undetectable visual dif-
ference compared to the baseline.

Comparison with super-efficient SR methods. In Table
2 and Fig.7, we compare with SOTA super-efficient SR for
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Table 2: Quantitative comparison against SOTA super-efficient SR methods, including manually designed [9, 45, 5] and NAS-based [26]
networks. FLOPs are calculated as the number of multiply-adds needed to convert an image to 720p (1280 × 720) resolution. Red/Blue
indicate Best/Second Best in each group. Our compressed models exhibit competitive PSNR-FLOPs Pareto frontier compared with SOTAs.

Scale Method FLOPs Set5 Set14 B100 Urban100
PSNR / SSIM PSNR / SSIM PSNR / SSIM PSNR / SSIM

x4

VDSR [22] 613G 31.35 / 0.884 28.02 / 0.767 27.29 / 0.725 25.18 / 0.752
SESR-XL [5] 6.6G 31.54 / 0.887 28.12 / 0.771 27.31 / 0.728 25.31 / 0.760

Ours-L 6.6G 31.74 / 0.887 28.31 / 0.773 27.36 / 0.729 25.46 / 0.763

FEQE-P [45] 5.6G 31.53 / 0.882 28.21 / 0.771 27.32 / 0.727 25.32 / 0.758
FSRCNN [9] 4.6G 30.71 / 0.866 27.59 / 0.754 26.98 / 0.713 24.62 / 0.726

TPSR-NoGAN [26] 3.6G 31.10 / 0.878 27.95 / 0.766 27.15 / 0.721 24.97 / 0.746
Ours-M 3.6G 31.53 / 0.884 28.19 / 0.770 27.29 / 0.727 25.24 / 0.756

SESR-M11 [5] 1.9G 31.27 / 0.881 27.94 / 0.766 27.20 / 0.723 25.00 / 0.747
Ours-S 1.9G 31.31 / 0.879 28.04 / 0.767 27.19 / 0.723 25.03 / 0.747

Urb100: Img047

Groundtruth
FLOPs | PSNR

Bicubic
- | 20.01

VDSR
613G | 21.21

FEQE-P
5.6G | 21.40

FSRCNN
4.6G | 20.99

TPSR-NoGAN
3.6G | 21.18

SESR-M11
1.9G | 20.72

Ours-L
6.6G | 21.52

Ours-M
3.6G | 21.38

Ours-S
1.9G | 21.25

Figure 6: Visual comparison with SOTA super-efficient SR methods for x4 SISR. Our compressed models demonstrate better image quality
while requiring similar or fewer FLOPs than other manually designed or NAS-based models.

Figure 7: PSNR on Set14 versus FLOPs for different SR networks
(x4 SISR). Our method achieves superior PSNR-FLOPs Pareto
frontier, compared with SOTA super-efficient SR methods.

x4 SISR, including both manually designed and NAS-based
networks. Since we target highly compact SR networks, we
apply our method to generate a series of compressed models
with extremely large FLOPs reductions. Our super-efficient
model are obtained by compressing EDSR-baseline (114
GFLOPs) to 6.6 GFLOPs (Ours-L), 3.6 GFLOPs (Ours-
M), and 1.9 GFLOPs (Ours-S). This corresponds to 17x,
32x, and 60x FLOPs reduction, respectively. To the best
of our knowledge, SESR [5] is the current best in terms of
PSNR-FLOPs trade-off. Notably, Ours-L/S achieves higher
PSNR/SSIM than SESR-XL/M11 on all benchmarks, when

using the same FLOPs. Compared with FEQE-P [45], Ours-
M achieves competitive PSNR/SSIM while requiring 1.6x
fewer FLOPs. Moreover, Ours-M outperforms the NAS-
based TPSR-NoGAN [26] noticeably when using the same
FLOPs. For example, on Set5 dataset, Ours-M gains 0.4dB
over TPSR-NoGAN. Finally, we notice that both Ours-L
and Ours-M achieve better PSNR than VDSR [22], but re-
quire 93x and 170x fewer FLOPs, respectively. Fig.6 shows
the image quality of different efficient SR methods. Our
method generates better quality SR images with sharper
edges and less artifacts than competing methods.

5. Results Analysis and Discussion
We conduct ablation studies to further evidence the ef-

fectiveness of our method. The results are based on com-
pressing EDSR-baseline for x4 SISR with 50% FLOPs re-
duction. More results are provided in the supplementary.

Effect of multi-dimensional compression. Our method
jointly reduces spatial and channel wise redundancy for dif-
ferent input images. To investigate the effectiveness of both
components, we perform experiments to dynamically re-
duce the channel-wise redundancy only, or to reduce the
spatial-wise redundancy only. The results are shown in Ta-
ble 3. As observed, under the same FLOPs reduction, ei-
ther channel-wise or spatial-wise compression alone yields
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(a) (b) (c)
Figure 8: (a) FLOPs ratio for processing each image in DIV2K validation set versus the total variation (TV) values of these images. (b)
Achieved PSNR of each image in DIV2K validation set versus FLOPs ratio for processing these images. (c) PSNR difference between two
models with substantial capacity versus the TV values for all the DIV2K images.

Table 3: Ablation study of spatial and channel wise dynamic
model compression. The proposed multi-dimensional dynamic
model compression achieves the highest PSNR by jointly reduc-
ing spatial and channel redundancy.

Channel Spatial Set5 Set14 B100 Urban100

X 7 32.16 28.56 27.55 25.98
7 X 32.20 28.61 27.57 26.00
X X 32.25 28.63 27.59 26.04

Table 4: Comparison of different feature-maps statistics for guid-
ing routers and saliency predictors. “GMP”: global max pooling.
“GAP”: global average pooling. “SI”: spatial information.

Statistics Set5 Set14 B100 Urban100

GMP 32.05 28.50 27.51 25.83
GAP 32.19 28.55 27.53 25.93

SI (default) 32.25 28.63 27.59 26.04

lower PSNR than jointly compressing multi-dimensions.
It is also interesting to note that spatial-wise compression
alone leads to higher PSNR than channel-wise compression
alone. This result further corroborates the spatial redun-
dancy of intermediate feature-maps in SR networks.

Comparison of feature-maps statistics. In our method,
we compute the Spatial Information from feature-maps
to guide the routers and the channel saliency predictors.
In Table 4, we compare SI with global average pooling
(GAP) and globabl maximum pooling (GMP) for extracting
feature-maps statistics. As observed, SI achieves the high-
est PSNR on four benchmarks, due to its power to capture
the high-frequency spatial details. On the other hand, max
pooling operation inevitably causes greater information loss
than two other alternatives, it yields the lowest PSNR.

Understand the learnt compression policy. We study
the correlation between the compression policy and the
complexity of input images. In Fig.8(a), we plot the FLOPs
(relative to the full model FLOPs, i.e., FLOPs ratio) used
to process each image in DIV2K validation versus the com-
plexity of each image measured by total variation (TV) [41].
A larger value of TV implies a more complex image to re-

construct for SISR. In Fig.8(b), we plot the FLOPs ratio
versus the PSNR for each image in DIV2K validation. In-
terestingly, our method learns to assign more FLOPs to pro-
cess relatively simpler images and achieve better PSNR on
these images, while assign fewer FLOPs to process more
complex images. This leads to an average of 28.96 dB
PSNR on DIV2K validation with 50% FLOPs reduction of
EDSR-baseline. To explain this seemingly counter-intuitive
compression policy, we conduct the following experiment.
We compare two models with substantial capacity differ-
ence, one is the full EDSR-baseline and the other is the 0.1x
EDSR-baseline. Fig.8(c) shows the PSNR difference be-
tween two models versus the TV values for all DIV2K im-
ages. As observed, complex images are almost equally hard
for both models. While for simpler images, the larger ca-
pacity model achieves significantly higher PSNR. The com-
pression policy learnt by our method automatically exploit
this property of SR: complex images are processed by fewer
FLOPs since the PSNR would not get improved much even
with more FLOPs, while simple images are processed with
more FLOPs to sustain a high PSNR value. Our method
effectively leverage diverse demands for computation from
inputs to achieve better FLOPs-PSNR trade-off for SISR.

6. Conclusion
This paper proposes Multi-Dimensional Dynamic Model

Compression for efficient SISR. For SR networks, we
observe that the channel importance exhibit high input-
dependency and the spatial redundancy can be reduced by
downsampling with minimal information loss. Accord-
ingly, our method learns to jointly reduce spatial and chan-
nel wise redundancy and vary the computation cost for dif-
ferent inputs. Our method can be readily applied to a va-
riety of SR networks and trained end-to-end with standard
super-resolution loss, in combination with a sparsity crite-
rion. Experiments on several benchmarks and SR models
show that our method achieves noticeable FLOPs reduction
with negligible quantitative and visual quality loss. Our ex-
tremely compressed models achieve superior PSNR-FLOPs
trade-off compared with SOTA super-efficient SR methods.
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