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Abstract

This paper investigates the problem of Temporal Ac-
tion Proposal (TAP) generation, which aims to provide a
set of high-quality video segments that potentially contain
actions events locating in long untrimmed videos. Based
on the goal to distill available contextual information, we
introduce a Contextual Proposal Network (CPN) compos-
ing of two context-aware mechanisms. The first mecha-
nism, i.e., feature enhancing, integrates the inception-like
module with long-range attention to capture the multi-scale
temporal contexts for yielding a robust video segment rep-
resentation. The second mechanism, i.e., boundary scor-
ing, employs the bi-directional recurrent neural networks
(RNN) to capture bi-directional temporal contexts that ex-
plicitly model actionness, background, and confidence of
proposals. While generating and scoring proposals, such
bi-directional temporal contexts are helpful to retrieve high-
quality proposals of low false positives for covering the
video action instances. We conduct experiments on two
challenging datasets of ActivityNet-1.3 and THUMOS-14
to demonstrate the effectiveness of the proposed Contex-
tual Proposal Network (CPN). In particular, our method re-
spectively surpasses state-of-the-art TAP methods by 1.54%
AUC on ActivityNet-1.3 test split and by 0.61% AR@200 on
THUMOS-14 dataset.

1. Introduction

The research of video content analysis is encouraged
by the rapid growth of video sequences derived from the
fast development of digital cameras and online video ser-
vices. The related topics include temporal action detec-
tion [16, 51], video summarization [48, 49], video caption-
ing [8, 9], video grounding [7], and visual question an-
swering [1, 17]. Among these topics, the temporal action
detection task, which aims to detect the human-action in-
stances within the untrimmed long video sequences, espe-
cially plays a pivotal role in several video content analysis
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Figure 1: The proposed CPN has low false positive bound-
ary predictions. The top four images are centered frames
of 41st, 52nd, 70th, and 91st snippets on the video of Pol-
ishing Shoes action. The bottom four charts are boundary
predictions. Notice that the false positive images are de-
rived from local peaks of the boundary predictions, and our
method significantly reduces such phenomenon.

methods. Akin to the image object detection task, the tem-
poral action detection can be separated into a TAP genera-
tion stage and an action classification stage.

Recent studies [4, 10, 24, 25, 26, 28] demonstrate that
pursuing the TAP quality clearly improves the performance
of such two-stage temporal action detectors. Since a tempo-
ral action proposal generator is demanded to use fewer pro-
posals for capturing the ground-truth action instances in a
high recall rate, a high-quality TAP generator consequently
reduces the burden of the subsequent action classification
stage. In this paper, we introduce an effective temporal ac-
tion proposal generator, which aims to provide the set of
video segments, i.e., action proposals, that precisely and
exhaustively cover the human-action instances. Inspired by
the temporal boundary prediction mechanism [26], which
forms the potential proposals by estimating their boundary
probabilities, our method similarly predicts boundary prob-
ability over the video sequence to discriminate potential ac-
tion proposals.
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Our boundary-based TAP generator comprises context-
aware mechanisms for feature enhancing and boundary
scoring to carry out the high-quality temporal action pro-
posal generation. In video processing, it is common to rep-
resent each video sequence into a set of consecutive video
segments, where each segment is called a snippet, so that
the computational cost can be greatly reduced. Then, most
of the existing video representations [5, 11, 31, 33, 38,
39, 44] separately encode each snippet to form snippet-
level representation, which lacks the correlation between
the neighboring snippets. Our feature enhancing mecha-
nism employs the inception-like module [35, 36] to concern
the multi-scale temporal contexts for correlating the neigh-
boring snippets. Such multi-scale temporal contexts help to
smooth the subsequent snippet-level prediction by consid-
ering their neighbors. Before capturing the multi-scale tem-
poral contexts, our feature enhancing mechanism also em-
ploys long-range attention [20, 21, 40] to adjust the snippet-
level representation.

The boundary prediction is usually estimated on the
snippet level. Rather than directly estimating the bound-
ary probability as [26], our boundary scoring mechanism
employs the recurrent neural networks for the actionness
estimation and the additional background (existing no ac-
tions) estimation in a bi-directional temporal manner to co-
estimate the action boundaries. This co-estimation derived
from the observation that the features for describing the
long-time actionness/background are more consistent along
the temporal dimension than the short-time. The experi-
ments show that the feature enhancing mechanism enables
the CPN model to obtain an effective and robust feature
representation, and the boundary scoring mechanism allows
the CPN model to estimate the proposal boundaries of much
less false positive, as shown in Figure 1. The overview of
our temporal action proposal model, i.e., CPN, is shown in
Figure 2.

In a nutshell, our contributions are summarized below.

1. We introduce the feature enhancing mechanism to gen-
erate robust video representation concerning multi-
scale temporal contexts and long-range attention.

2. We introduce the boundary scoring mechanism to
predict the low false positive action boundaries via
bi-directional recurrent neural networks. To our
best knowledge, this is the first work attempting to
formulate boundary-sensitive predictions through bi-
directional temporal contexts that explicitly leverage
actionness and background. The ablation study sup-
ports the benefit of such a formulation.

3. The extensive experiments demonstrate that the pro-
posed CPN model achieves state-of-the-art perfor-
mance on generating the temporal action proposals.

2. Related work

This section briefly reviews the related literature on
video feature representation, attention mechanism, and tem-
poral action proposal generation.

Feature representation. As a de facto trend, instead of
using the handcrafted features, the neural-network-based
features are widely employed for addressing the action clas-
sification task. These popular neural network approaches
include the two-stream networks [11, 33, 39], which sepa-
rately represent the appearance feature and the motion fea-
ture, and 3D networks [5, 31, 38, 44], which directly repre-
sent a video as the spatio-temporal feature. In this paper, we
use the action recognition model [39, 43] to extract snippet-
level features for representing each untrimmed video.

Attention mechanism. The attention mechanism is the
process of selectively focusing on a few relevant things in
comparison with everything. Fields like natural language
processing and computer vision, broadly leverage such an
attention mechanism. For instances, Bahdanau et al. [2] en-
able their model to focus on searching a group of related
words from the input sentences for predicting the target
words, Xu et al. [45] introduce the soft and hard attention
to generate image captions, and LFB [42] introduces long-
term feature banks to analyze videos. In our CPN model,
our feature enhancing mechanism employs co-attention &
co-excitation [20] and SENet [21] to capture long-range de-
pendencies over temporal dimension and channel dimen-
sion, respectively, extending the merits of these efforts for
constructing a robust video representation.

Temporal action proposal generation. We categorize
the TAP generation methods into Anchor-based [14, 19, 32]
and boundary-based [24, 25, 26, 53, 3, 52, 34]. The for-
mer focuses on designing several multi-scale anchor boxes
to cover action instances, while the latter estimates the tem-
poral location probabilities of the action instances. Besides,
some methods [12, 28, 13] also explore the way to integrate
the above-mentioned two categories for precisely localizing
the temporal boundaries. In anchor-based methods, the S-
CNN [32] and Heilbron et al. [19] respectively evaluate an-
chors via C3D network and sparse learning, and TURN [14]
suggests regressing the temporal boundaries of action in-
stances. The boundary-based work, TAG [53], generates ac-
tion proposals via a temporal watershed algorithm to merge
contiguous temporal locations of high actionness probabil-
ities. BSN [26] generates proposals as well as their confi-
dence by formulating the probabilities of boundaries and ac-
tionness. BMN [25] proposes a boundary-matching mech-
anism to evaluate the confidence among densely distributed
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Figure 2: Contextual Proposal Network (CPN) for generating temporal action proposals. Our TAP generator CPN comprises
two context-aware mechanisms for feature enhancing and boundary scoring. The feature enhancing mechanism employs
CoAE, SENet, and Inception block to capture the multi-scale temporal contexts. The boundary scoring mechanism employs
the recurrent neural networks for the actionness estimation and the background estimation in a bi-directional temporal manner
to co-estimate the low false-positive action boundaries.

proposals. DBG [24] uses the maps of dense boundary con-
fidence and completeness to further score boundaries for all
action proposals. BC-GNN [3] relates proposal boundaries
and proposal content as nodes and edges through a Graph
Neural Network. Zhao et al. [52] introduce two regulariza-
tion terms, namely intra-phase consistency and inter-phase
consistency, to explore the relationship among temporal lo-
cations and interrelations of multiple probability sequences,
respectively. BSN++ [34] enrich context information with
a U-shape structure and refine action boundaries via a bi-
directional boundary matching scheme.

In sum, the anchor-based methods focus on the anchor-
box design and usually lack the flexible temporal bound-
aries for aligning to various action instances. The boundary-
based methods provide flexible temporal boundaries, yet
with noticeable false positive boundary predictions. By
contrast, we introduce an RNN-based boundary scoring
mechanism to correlate the snippet-level features over the
temporal dimension for estimating the long-time action-
ness/background boundaries. Combining with the feature
enhancing mechanism, we show that our TAP model out-
performs the existing leading methods.

3. Contextual proposal network

We first formulate the task of temporal action proposal
generation and then detail our method to address it. Figure 2
shows the architecture of our contextual proposal network.

TAP generation. Given a lv frames video sequence X =
{xn}lvn=1 comprising Ng actions of interest. The TAP task
aims at generating a proper set of video segments as action
proposals that can be used to detect the underlying human
actions in X . We denote an action proposal as ϕ = (ts, te),

where ts and te denotes the starting and ending frame of X .
Analogous to the object proposals for detection, action pro-
posals are generic and class agnostic. Let the Ng ground-
truth actions of X be Ψg = {ϕn = (t̂ns , t̂

n
e )}Ng

n=1. An ac-
tion proposal (ts, te) is said to be matched to some ground-
truth action (t̂s, t̂e) if their time-interval IoU (in terms of
frames) is greater than a specified threshold τ . Consider-
ing a proposal set Ψp of Np proposals, i.e., Ψp = {ϕn =

(tns , t
n
e )}Np

n=1. The goodness of Ψp w.r.t. X can be explicitly
measured by the number of matched action proposals.

3.1. Feature enhancing

To make each video a snippet-level representation, we
decompose each video sequence X into a T -snippet set, de-
noted as V = {vt}Tt=1. Our approach represents each snip-
pet v with two-stream features, which are often used to ana-
lyze video-related tasks, e.g., [25, 39, 53], and comprise one
200-D appearance vector and one 200-D motion vector. To
account for videos of various lengths, we follow BSN [26]
to sample single-stream features over the temporal dimen-
sion to consistently obtain T snippets per video sequence.
Precisely, each video sequence X is represented by an ap-
pearance feature tensor A ∈ RC×T and a motion feature
tensor M ∈ RC×T , where the channel number C = 200.

Long-range attention. The step of long-range attention
aims at adjusting the snippet-level representation over the
temporal dimension and channel dimension. We use co-
attention & co-excitation operations in CoAE [20] to carry
out the feature adjusting over temporal dimension T . The
operations yield snippet-level feature correlations of size
T × T to perform feature re-weighting by conditioning on
the other feature. The operations enable our model to em-
phasize the temporal correlations of human-action descrip-
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tions between the appearance and motion cues. We use
squeeze-and-excitation operations in SENet [21] to carry
out the feature adjusting over channel dimension C. The
operations yield channel-level scales of size C to re-weight
each feature channel and further highlight the important
channel of the appearance and motion cues. We refer the
readers to [20, 21] or the supplementary material for further
details about our long-range attention step.

Inception. This step aims at collecting the multi-scale
temporal contexts to correlate the neighboring snippets. We
first define a basic convolutional layer φ by

φ(X; f, o) = ReLU(WX + b) , (1)

where X denotes the input feature maps, f specifies the fil-
ter size, o gives the number of the output filters, and ReLU
is the activation function. W and b respectively denote the
weights and bias of φ. In our inception-like operation, we
employ φ with two kinds of filter sizes to represent each of
the two-stream features and hence retrieve multiple tempo-
ral contexts as A1 = φ(A; 1× 3, C), A2 = φ(A; 1× 5, C),
M1 = φ(M ; 1 × 3, C), and M2 = φ(M ; 1 × 5, C). We
then concatenate all features followed by another convolu-
tion layer to unify them as the video’s snippet-level feature

F = φ(A1 ‖A2 ‖M1 ‖M2; 1× 3, C ′) ∈ RC′×T , (2)

where the notation ‖ means concatenation over the channel
dimension and the channel number C ′ = 400.

3.2. Boundary scoring

Our boundary scoring mechanism employs multiple
RNNs to calculate the various snippet-level probabilities
and then associates these probabilities for discriminating
the potential action-instance proposals. In experiments, we
show that the high-quality proposals can be retrieved by
scoring the potential proposals based on these probabili-
ties. The main idea of our RNN-based boundary scoring
is to employ the recurrent neural networks as the temporal
context collector, which accumulates information from var-
ious temporal video segments among snippets. In this way,
we could estimate the snippet-level boundary probabilities
concerning flexible temporal duration. The right part of Fig-
ure 2 sketches the boundary scoring mechanism.

Context collection. To begin with, we express an RNN
as function −→η r, where the arrow → above η denotes the
forward (← for backward) sequential order while collect-
ing temporal context, and the superscript r ∈ {a, b, c} is to
specify that the RNN is used to encode the video segment
features for representing a: actionness, b: background, or c:
confidence.

The RNNs can be used to generate all sorts of features
for each snippet. For example, considering the snippet vi,
its snippet-level forward actionness feature can be gener-
ated by the ith hidden state

−→
h a

1i of −→η a, and similarly, its
backward actionness feature as

←−
h a

Ti of←−η a. That is,

−→
h a

1i = −→η a(F[1 : i]) ∈ RC×1 , (3)
←−
h a

Ti =←−η a(F[T : i]) ∈ RC×1 , (4)

where the F[i : j] denotes the sequential representations
from the ith snippet to the jth snippet, the pair subscript of
a hidden state indicates the encoding order and the snip-
pet segment of the integrated two-stream features within
RNN. Analogously, we can extract the forward and back-
ward background features:

−→
h b

1i and
←−
h b

T i using the RNNs
−→η b and←−η b, respectively.

With an additional convolution layer, each of the above
four kinds of RNN hidden states can be designed and
learned to predict the probability of actionness or back-
ground. Take, for example, the forward actionness proba-
bilities −→p a and our formulation yields

−→p a = φ(
−→
h a; 1× 3, 1) ∈ R1×T , (5)

where
−→
h a ∈ RC×T includes all the hidden states of run-

ning −→η a over the sequence of T snippets, and φ denotes a
convolutional layer as in (1) yet uses the sigmoid activation
for probability output.

Finally, the confidence RNN −→η c aims to tackle the
proposal-level features. Given a proposal starting from the
ith snippet to the jth snippet, −→η c sequentially collects the
snippet-level integrated two-stream features ranging from i
to j as follows:

−→
h c

ij = −→η c(F[i : j]) ∈ RC×1 . (6)

Note that (6) implies that
−→
h c

ij adopts the final hidden-state
of −→η c(F[i : j]).

Score calculation. The score calculation employs the
context-collected features for scoring each potential pro-
posal. We explore the retrieved hidden-state features for as-
sessing the goodness of each potential proposal via evaluat-
ing various probabilities. It is worth mentioning that in pre-
dicting the boundaries of an action proposal, most existing
techniques use independent snippet-level features; by con-
trast, our method considers the snippet-level features ma-
nipulated by RNN, and thus concerning the other snippet-
level features sequentially. As we will demonstrate in the
experimental results, the difference would lead to better
boundary prediction accuracy. Namely, reducing the pre-
dicted false-positive boundaries.
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Figure 3: Illustration of our boundary scoring mechanism. In context collection step, {−→η a,−→η b} and {←−η a,←−η b} are re-
spectively forward and backward RNNs for actionness and background. The drastic increasing of actionness probability
predicted by←−η a and the decreasing of background probability by −→η b support a high starting probability ps at snippet v, and
analogously, a high ending probability pe at snippet v′.

Intuitively, a snippet vi could be an action starting
boundary if its previous snippet vi−1 is considered as a
background, and its subsequent snippet vi+1 is likely as
an action instance. On the other hand, a snippet vi could
be an action ending boundary if vi−1 is also as an action
instance, and vi+1 is likely as a background. Bearing these
observations in mind, we are now ready to predict the action
starting probability ps and the action ending probability pe

over all snippets with two convolution layers by

hs = φ(
−→
h b ‖

←−
h a; 1× 3, C) ∈ RC×T , (7)

he = φ(
−→
h a ‖

←−
h b; 1× 3, C) ∈ RC×T , (8)

ps = φ(hs; 1× 1, 1) ∈ R1×T , (9)

pe = φ(he; 1× 1, 1) ∈ R1×T , (10)

where
−→
h a,
−→
h b,
←−
h a,
←−
h b ∈ RC×T denote all the collected

snippet-level hidden states, hs and he respectively denote
the intermediate results of the action starting hidden states
and the action ending hidden states, and the notation ‖
means the concatenation over the channel-dimension. In
Figure 3, we illustrate the described RNN-based reason-
ing about when a snippet instance is likely to be a starting
boundary of an action and analogously, the case for being
an ending boundary.

Besides the snippet-level probabilities ps and pe, we fur-
ther consider the proposal-level probabilities. Given a pro-
posal starting from the ith snippet to the jth snippet, we
predict the confidence probability pc and boundary-relation
probability pse as

pc = φ(
−→
h c; 1× 3× 3, 1) ∈ R1×T×T , (11)

pse = φ(h; 1× 3× 3, 1) ∈ R1×T×T , (12)

where each φ in (11) and (12) again denotes a convolu-
tional layer with the sigmoid activation,

−→
h c ∈ RC×T×T in-

cludes all the hidden states for all potential proposals, and h
means all the pairwise concatenation of action starting hid-
den states hs and the action ending hidden states he. Note

that we calculate the probabilities in (11) and (12) by using
the filter of size 3× 3 to consider the neighboring proposals
for smoothing the predictions.

Finally, given an action proposal (i, j) starting from ith
snippet the the jth snippet, we empirically define its score
pi,j with the probabilities mentioned above as:

pi,j = psi × pej × psei,j × pci,j (13)

In our implementation, we follow BSN [26] to collect the
potential proposals using the snippet-level probabilities of
action-staring ps and action-ending pe. We then score each
proposal by (13) followed by the soft non-maximum sup-
pression for retrieving the top-scored proposals.

3.3. Optimization

The overall loss function for training is formulated as a
multi-task objective that comprises context collection loss
(Lcon) and scoring calculation loss (Lscr):

L = Lcon + λLscr , (14)

where the weighting factor λ is set to 0.5, Lcon is used for
training the four probabilities −→p a, −→p b, ←−p a,←−p b, and Lscr

is designed for learning the remaining probabilities ps, pe,
pc, and pse. The context collection loss Lcon encourages
each RNN to collect all its hidden states for predicting the
probabilities of action-instance or background, and the scor-
ing calculation loss Lscr encourages all RNNs to correlate
their collected states for ranking the proposals. Both the
loss terms in (14) employ the binary logistic regression loss
as:

loss =
∑

i
[yi · log(pi) + (1− yi) · log(1− pi)] , (15)

where i denotes the bin index of each probability as men-
tioned earlier, yi and pi respectively denote the ground-truth
probability and the predicted probability.
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4. Experiments
Datasets and metrics. We conduct experiments on
ActivityNet-1.3 [18] dataset and THUMOS-14 [22] dataset.
The ActivityNet-1.3 is a large-scale action understanding
dataset, which is available for evaluating the tasks of pro-
posal generation, action recognition, temporal detection,
and dense captioning. There are 19,994 temporal annotated
untrimmed videos comprising 200 action categories. The
THUMOS-14 dataset contains 1,010 validation videos and
1,574 testing videos of 20 action categories. There are 200
validation videos, and 212 testing videos contain temporal
action annotations. We use the validation set for training
and use the testing set for evaluating. There are two kinds of
metrics to evaluate the proposal quality. i) AR@AN, which
evaluates the relation between Average Recall (AR), that
calculated with multiple specified IoU thresholds, and Aver-
age Number of proposals (AN). ii) AUC, which denotes the
area under the AR vs. AN curve. Due to the limited space
allowed, more detailed experimental results, including car-
rying out the temporal action detection task, are provided in
the supplementary material.

Implementation details. We use the two-stream features
via the two-stream network [43] pre-trained on the training
set of ActivityNet-1.3 with the same parameter settings as
[14, 26]. To form a snippet, we set 16 frames per snippet
in ActivityNet-1.3 and 5 frames per snippet in THUMOS-
14. Further, we sample the snippets with T = 100 via lin-
ear interpolation in ActivityNet-1.3 and with T = 128 via
truncation and overlapped sliding windows in THUMOS-
14. All the snippet manipulations are the same as [25, 26].
Our model employs Gated Recurrent Unit (GRU) to carry
out the recurrent association phase. For the setting of
soft-NMS, we respectively use threshold 0.8 and 0.65 for
ActivityNet-1.3 and THUMOS-14, and the same decay pa-
rameter 0.85 for both datasets. We train our model using
Adam optimizer with batch size 16 and learning rate 10−3

for 10 epochs.

4.1. Comparison with state-of-the-arts

Table 1 summarizes the comparison of our approach
against state-of-the-art TAP methods. Our model signif-
icantly outperforms other TAP methods on all metrics of
both datasets. Specially, we improve AR@100 and AUC
of ActivityNet-1.3 validation split by 0.93% and 1.21%,
respectively. On the ActivityNet-1.3 testing split, we fur-
ther improve AUC by 1.54%. On the THUMOS-14 testing
splits, our improvements range from 0.61% to 1.4% among
AR@200, AR@500, and AR@1000, besides the AR@50
and AR@100. In sum, the comparison demonstrates that
our temporal action proposal model achieves state-of-the-
art performance.

4.2. Ablation study

We carry out a comprehensive ablation study on the
ActivityNet-1.3 validation split to assess the importance of
each design component of our model for action localization.
Table 2 and Table 3 summarize the results of our ablation
study. Be reminded that when investigating the effect of a
particular component in our ablation evaluation, the mech-
anisms based on all the other components of the proposed
model are included in the respective implementation.

Feature enhancing. Table 2 compares the components
within the feature enhancing mechanism. The first row, i.e.,
baseline-FE, serves as the baseline that directly concate-
nates the two-stream features over the channel dimensions
for the subsequent proposal generation. The comparisons in
Table 2 show that all components, i.e., long-range attention
and inception block, contribute positively. Precisely, con-
sidering long-range attention over both temporal and chan-
nel dimensions improves AUC by 0.91%, and using the
inception block improves AUC by 0.96%. The complete
feature enhancing mechanism can further improve AUC by
1.96%. The results demonstrate that enhancing the two-
stream features with the long-range attention over temporal-
channel dimensions and with the inception-like multi-scale
temporal contexts collection is beneficial.

Boundary scoring. Table 3 compares the various proba-
bilities within the boundary scoring mechanism. The first
row, i.e., baseline-BS, serves as the baseline that directly
predicts the probabilities of ps and pe from enhanced fea-
ture F without using RNNs. Here we carry out the boundary
prediction as BSN. The other rows are RNN-based predic-
tions by contrast. The second row predicts the probabili-
ties of ps and pe via RNNs concerning the temporal context
of actionness. The third row predicts the same probabili-
ties of ps and pe via RNNs concerning the temporal con-
texts of actionness and background. The result comparing
the second row with the third row shows the 1.2% AUC
performance gain, demonstrating that the extra background
branch in RNNs helps accurate boundary prediction. In the
third row, the snippet-level boundary prediction ps and pe

improve AUC by 2.58% compared with the baseline-BS.
The proposal-level predictions of pse and pc can further
respectively improve AUC by 3.25% and 3.21%, and the
complete boundary scoring mechanism improves AUC by
3.84%. In sum, the results in Table 3 show that both the pre-
dictions on snippet-level, i.e., ps and pe, and proposal-level,
i.e., pse and pc, contribute positively. These ablation results
demonstrate that it is beneficial to retrieve action proposals
concerning the relationship between the mentioned proba-
bilities, and our RNN-based approach fulfills the goal with
noticeable performance gain.
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Method Reference
ActivityNet-1.3 THUMOS-14

AR@100 (val) AUC (val) AUC (test) AR@50 AR@100 AR@200 AR@500 AR@1000

CTAP [12] ECCV’18 73.17 65.72 - 32.49 42.61 51.97 - -

BSN [26] ECCV’18 74.16 66.17 66.26 37.46 46.06 53.21 60.64 64.52

*GTAN [29] CVPR’19 74.80 67.10 67.40 - - 54.30 - -

MGG [28] CVPR’19 74.54 66.43 66.47 39.93 47.75 54.65 61.36 64.06

BMN [25] ICCV’19 75.01 67.10 67.19 39.36 47.72 54.70 62.07 65.49

RapNet [13] AAAI’20 76.71 67.63 67.72 40.35 48.23 54.92 61.41 64.47

DBG [24] AAAI’20 76.65 68.23 68.57 37.32 46.67 54.50 62.21 66.40

Zhao’s model [52] ECCV’20 75.27 66.51 - 44.23 50.67 55.74 - -

BC-GNN [3] ECCV’20 76.73 68.05 - 40.50 49.60 56.33 62.80 66.57

Gao’s model [15] PR’20 74.49 66.02 66.40 45.19 51.67 56.45 - -

BSN++ [34] AAAI’21 76.52 68.26 - 42.44 49.84 57.61 65.17 66.83

TCANet [30] CVPR’21 76.08 68.08 - 42.05 50.48 57.13 63.61 66.88

SSTAP [41] CVPR’21 75.54 67.53 - 41.01 50.12 56.69 - 68.81

BMN + *BSP [46] ICCV’21 75.50 67.61 - - - - - -

RTD-Net [37] ICCV’21 73.21 65.78 - 41.52 49.32 56.41 62.91 -

CPN 77.66 69.47 70.11 39.90 49.98 58.22 66.47 70.21

Table 1: Comparison of the state-of-the-art methods on ActivityNet-1.3 validation and testing split and on THUMOS-14
testing split. Notation “*” indicates the model using non-two-stream features.

Component Feature Enhancing (FE)

Long-range Inception AUC PG AR@30 AR@50 AR@80 AR@100

baseline-FE 67.51 - 66.54 71.02 74.47 75.86

TD - - 67.91 +0.40 67.11 71.40 74.81 76.24

TD CD - 68.42 +0.91 67.52 71.92 75.23 76.55

- - 3 68.47 +0.96 67.64 72.03 75.57 76.91

TD CD 3 69.47 +1.96 68.74 73.26 76.27 77.66

Table 2: Ablation study of feature enhancing mechanism
on ActivityNet-1.3 validation split. The meanings of abbre-
viations are TD: temporal dimension; CD: channel dimen-
sion; PG: performance gain on AUC; baseline-FE: concate-
nating the two-stream features directly.

Visualization. Figure 4 visualizes the effects of employ-
ing our boundary scoring module. The top row images cor-
respond to the centered frames derived from local peaks of
the boundary predictions. The bottom four charts show the
estimated boundary probabilities of the BSN and our model.
Compared with BSN, we estimate the probabilities using
RNN-based boundary scoring of the snippet-level probabil-
ities ps and pe, and the proposal-level probabilities pse and
pc. The results show that our model contributes to estimat-
ing the more accurate proposal boundaries and less false
positive estimations, which again demonstrate the effective-
ness of our RNN-based boundary scoring model, i.e., CPN.

4.3. Action detection with our proposals

For assessing the quality of our proposals for helping
an action classifier, we feed our proposals into the state-

Component Boundary Scoring (BS)

ps, pe pse pc AUC PG AR@30 AR@50 AR@80 AR@100

baseline-BS 65.63 - 64.74 69.13 72.50 73.85

A - - 67.01 +1.38 65.94 70.49 74.12 75.70

A+B - - 68.21 +2.58 67.58 71.56 74.93 76.28

A+B 3 - 68.88 +3.25 68.26 72.37 75.68 77.12

A+B - 3 68.84 +3.21 68.34 72.31 75.33 76.51

A+B 3 3 69.47 +3.84 68.74 73.26 76.27 77.66

Table 3: Ablation study of boundary scoring mechanism
on ActivityNet-1.3 validation split. The meanings of ab-
breviations are PG: performance gain on AUC; baseline-
BS: boundary prediction without using RNNs; A: boundary
prediction with the temporal context of actionness; A+B:
boundary prediction with the temporal contexts of action-
ness and background.

of-the-art action classifier, i.e., P-GCN [50] 1. After ob-
taining the returned P-GCN classifying result per-proposal,
we score that proposal as the multiplication of the P-GCN
classification score and our proposal score in (13). Table 4
shows the detection performance compared to the state-of-
the-art methods on the THUMOS-14 testing split. Note that
the original P-GCN adopts the proposals generated by BSN
[26]. When replacing with our proposals, “CPN+P-GCN”
achieves 5% performance gains at mAP@0.5 and 2.5% im-
provements in comparison to “G-TAD+P-GCN,” which ap-
plies the same action classifier. The experiment shows the

1P-GCN source: https://github.com/Alvin-Zeng/PGCN
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Figure 4: Effect visualization of our model on video id “IDVWoE02zjM.” The top images are centered frames of correspond-
ing snippets on the video of Polishing Shoes action. The bottom four charts, which plot the predicted boundary probabilities
(y-axis) ps and pe over the snippet dimension (x-axis), show the false positive reduction of our method.

Method Reference mAP@0.1 mAP@0.2 mAP@0.3 mAP@0.4 mAP@0.5 mAP@0.6 mAP@0.7 Average

CTAP [12] ECCV’18 - - - - 29.9 - - -

BSN [26] ECCV’18 - - 53.5 45.0 36.9 28.4 20.0 -

TAL-Net [6] CVPR’18 59.8 57.1 53.2 48.5 42.8 33.8 20.8 45.1

MGG [28] CVPR’19 - - 53.9 46.8 37.4 29.5 21.3 -

GTAN [29] CVPR’19 69.1 63.7 57.8 47.2 38.8 - - -

BMN [25] ICCV’19 - - 56.0 47.4 38.8 29.7 20.5 -

P-GCN [50] ICCV’19 69.5 67.8 63.6 57.8 49.1 - - -

DBS [16] AAAI’19 56.7 54.7 50.6 43.1 34.3 24.4 14.7 39.8

DBG [24] AAAI’20 - - 57.8 49.4 39.8 30.2 21.7 -

FC-AGCN-P-C3D [23] AAAI’20 59.3 59.6 57.1 51.6 38.6 28.9 17.0 44.6

PBRNet [27] AAAI’20 - - 58.5 54.6 51.3 41.8 29.5 -

G-TAD [47] CVPR’20 - - 54.5 47.6 40.2 30.8 23.4 -

G-TAD [47]+P-GCN CVPR’20 - - 66.4 60.4 51.6 37.6 22.9 -

CPN+P-GCN - 74.0 71.8 68.2 62.1 54.1 41.5 28.0 57.1

Table 4: Temporal action detection results on THUMOS-14 testing split.

advantage of our proposals to action classifier for address-
ing the action detection task.

5. Conclusions
We have shown that the proposed CPN model, which

is composed of the feature enhancing mechanism and the
boundary scoring mechanism, better addresses the temporal
action proposal generation task and achieves state-of-the-art
performance. The extensive experiments show that the per-
formance gain is derived from not only the feature enhanc-
ing mechanism, which captures the contextual information

over the dimensions of snippets and feature channels for
generating a robust snippet-level representation, but also the
boundary scoring mechanism, which associates the various
scoring probabilities that are obtained by leveraging mul-
tiple recurrent neural networks. As a result, the resulting
temporal action proposals, therefore, lead to state-of-the-art
performances on two challenging datasets.
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