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Abstract

Despite significant progress in the past few years, ma-
chine learning systems are still often viewed as “black
boxes,” which lack the ability to explain their output de-
cisions. In high-stakes situations such as healthcare, there
is a need for explainable AI (XAI) tools that can help open
up this black box. In contrast to approaches which largely
tackle classification problems in the medical imaging do-
main, we address the less-studied problem of explainable
image retrieval. We test our approach on a COVID-19 chest
X-ray dataset and the ISIC 2017 skin lesion dataset, show-
ing that saliency maps help reveal the image features used
by models to determine image similarity. We evaluated three
different saliency algorithms, which were either occlusion-
based, attention-based, or relied on a form of activation
mapping. We also develop quantitative evaluation metrics
that allow us to go beyond simple qualitative comparisons
of the different saliency algorithms. Our results have the
potential to aid clinicians when viewing medical images
and addresses an urgent need for interventional tools in re-
sponse to COVID-19. The source code is publicly available
at: https://gitlab.kitware.com/brianhhu/x-mir.

1. Introduction
Machine learning has made significant progress in the

past few years, particularly in the area of deep learning, with
increasing adoption in the medical imaging domain [37, 54,
20]. Deep learning has the potential to help human experts
in the interpretation of medical images, a process which can
be time-consuming, expensive, and prone to errors due to
visual fatigue. Despite the success of deep learning sys-
tems, their “black box” lack of interpretability is a serious
barrier for use in high-stakes situations such as healthcare,
criminal justice, and autonomous driving [25, 17, 50]. For
computer vision models, various saliency algorithms have
been proposed as forms of explainable AI (XAI) which
can highlight regions of the input image responsible for the
model’s output decision [68, 47, 53, 22]. A classic exam-

ple is when saliency maps helped reveal that an algorithm
used stray radiologist scribbles instead of lung regions to
detect certain diseases in chest X-rays. Even so, extreme
care must be taken in the interpretation of saliency maps,
as several studies have questioned the usefulness of some
techniques [31, 2].

Here, we focus on the problem of medical image re-
trieval (Figure 1). Image retrieval refers to finding simi-
lar images in a large image archive given only a query im-
age. For example, this might correspond to finding rele-
vant medical images that contain the same disease pathol-
ogy. The retrieved images can facilitate case-based reason-
ing and discovery of underlying patterns in the data. We first
test our approach on a COVID-19 chest X-ray dataset [61].
COVID-19 can cause progressive respiratory failure in pa-
tients, leading to hospitalization and potential death [14].
While reverse transcriptase-polymerase chain reaction test-
ing is considered the gold standard for diagnosing COVID-
19 [62], early detection via radiography examination may
help prevent the spread of the disease and lead to better pa-
tient outcomes. In addition to COVID-19, we also apply our
approach to a skin lesion dataset which contains examples
of benign cases and cancerous melanoma [12]. This is also
an important problem, as the most prevalent form of cancer
in the United States is skin cancer, resulting in over 9,000
deaths a year [55]. As a result, computer-aided dermascopy
has the potential to help with early detection of melanoma
and improve patient outcomes.

Critically, an end user may not understand why a given
image is considered relevant and returned by the retrieval
system, motivating the need for explanations. These expla-
nations can be used to build model understanding and trust.
Research on visual explanations in the form of saliency
maps has largely focused on image classification prob-
lems. Here, we adapt saliency for image retrieval through
a similarity-based rather than classification-based formu-
lation. This straightforward change enables a user to see
which parts of a result image match the query image, i.e.
what an algorithm pays attention to during the image re-
trieval process. Despite the fact that multiple similarity-
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Figure 1. Using deep metric learning, we train a neural network on a large image archive (shown here as the COVID-19 chest X-ray dataset).
The learned embedding forces different classes to cluster into different regions of the latent space, shown with a t-SNE visualization. For
each class, we show the closest image in the dataset to the class centroid (marked with stars). We use the trained model for image retrieval
(light blue box) and leverage explainable AI (XAI) to reason about the model’s decisions. We use multiple types of similarity-based
saliency maps to highlight regions in a result image which are most similar to the query image (blue boxes). To quantitatively evaluate the
generated saliency maps, we use the causal metrics of insertion and deletion (purple box).

based saliency algorithms have been proposed [16, 70, 57,
71], there is a lack of existing benchmarks and quantitative
metrics to compare these different methods.

In our paper, we make the following contributions:
(1) We develop a benchmark for image retrieval on two dif-
ferent publicly available medical imaging datasets embody-
ing different problems.
(2) We apply similarity-based saliency maps to the medi-
cal imaging domain, providing visual explanations for deep
metric learning models trained on medical images.
(3) We adapt a set of causal metrics to image similarity
models to quantitatively evaluate different saliency algo-
rithms on image retrieval.
(4) We show a form of self-similarity and differential
saliency which can highlight regions of images responsible
for different disease conditions.

2. Related Work
2.1. Medical imaging with deep learning

Deep learning has shown remarkable success on im-
age recognition tasks, which largely involve natural image

datasets such as ImageNet [51]. Deep learning is now also
increasingly being used in the medical imaging domain,
with applications to radiology [33, 26], dermatology [19],
opthalmology [15], and pathology [8]. With increasing
amounts of data, deep learning allows computers to auto-
matically learn patterns in the data that can be useful for
prediction and diagnosis. Developing deep learning models
for healthcare has also become easier, taking advantage of
techniques such as transfer learning [10, 46].

For the specific problem of COVID-19 detection, both
chest X-rays (CXR) [61, 4] and computed tomography
(CT) [69, 23] have emerged as leading candidates for early
detection. While CT can produce 3D volumetric data with
greater image resolution, CXR also provides many advan-
tages, including rapid triaging, availability and accessibil-
ity, and portability [61]. Numerous open-source COVID-19
datasets with crowd-sourced images or images scraped from
medical papers online are now available [13, 59]. How-
ever, care should be taken when using these datasets, as sev-
eral biases in the dataset have been found which can impact
study conclusions [38, 58, 48]. This is a good use case of
XAI which may help identify situations when the model is
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actually “right for the right reasons” [34].
For automated skin lesion classification, the application

of deep convolutional neural networks has already shown
great success [19, 56]. Using an Inceptionv3 architecture
pretrained on ImageNet and a large annotated dataset of
clinical images, [19] demonstrated dermatologist-level per-
formance on melanoma classification. Recently, more at-
tention has been paid to deploying skin lesion classifica-
tion models on mobile devices, which can aid diagnosis
in resource-limited environments [56]. Despite these suc-
cesses, a recent study has shown that deep neural networks
may actually rely on the presence of surgical skin markers
in dermascopic images to make their predictions [65]. This
is yet again another example of how XAI may help iden-
tify unintended biases when the model is displaying “Clever
Hans”-like abilities [34].

Traditionally, medical image retrieval involved match-
ing local features computed densely across images [36, 39].
More recently, deep neural networks have emerged as
strong baselines for generating semantically rich features at
multiple levels [45, 3]. Recent work has also studied univer-
sal image retrieval from multiple domains [21] and tools for
human-machine teaming on image retrieval tasks [24, 7].

2.2. Explainable artificial intelligence (XAI)

XAI is the field of machine learning that tries to make
deep learning models more interpretable [52, 1, 5, 60]. Al-
though several different taxonomies of explanation methods
have been proposed, explanations generally fall into differ-
ent categories based on their scope and mechanism. Lo-
cal explanations provide interpretations of individual data
points (e.g. images), while global explanations try to sum-
marize models at the dataset level. Explanations can either
be white-box or black-box, depending on the amount of ac-
cess to the model the explanation requires. Black-box meth-
ods are model agnostic and can be applied more generally,
while white-box methods often require the computation of
model gradients. As an alternative to post-hoc explanation
methods, models can be made to be interpretable in the first
place [17, 50]. Along these lines, several methods have tried
to learn “prototypes,” or representative examples that cap-
ture information about the underlying data distribution. Re-
cent techniques include prototypical part networks [10] and
concept bottleneck networks [32], where models are made
more interpretable via specialized loss functions.

2.3. Saliency maps as visual explanations

We focus specifically on the use of visual explanations
in the form of saliency maps, which attempt to provide in-
sight into which image regions a model uses to arrive at
its output prediction. Most similar to our work, saliency
maps have been used to visualize the image features used
by COVID-19 classification models [11] or joint classifi-

cation and segmentation models [66] on chest CT images.
While most XAI techniques involving saliency have been
developed for classification tasks [68, 47, 53, 22], there has
been an increasing push to create explanations for other im-
age understanding tasks, including object detection [43] and
image similarity [16, 57, 71, 64, 18, 9]. Dong et al. [16] pro-
posed a black-box method for computing similarity-based
saliency maps using occlusion. In contrast, methods based
on similarity activation mapping use the last convolutional
feature map before pooling to compute point-wise similar-
ity maps [57, 71]. Zheng et al. [70] extended Grad-CAM to
image similarity models by using a triplet-like loss, show-
ing that this form of similarity attention can also be used to
regularize models during training. Similarly, Chen et al. [9]
proposed a more efficient extension of this method using
weight-transfer. Other works use layer-wise relevance prop-
agation for image similarity [18] or incorporate explainabil-
ity for face recognition and matching tasks [64].

3. Methods
The core of our approach is comprised of deep metric

learning, image retrieval, and saliency map computation
(Figure 1). We describe these in the following sections, but
first we introduce the two datasets used in order to provide
examples and motivation for the approach.

3.1. COVID-19 chest X-ray dataset

We use the COVIDx dataset [61], a publicly available
COVID-19 chest X-ray dataset. The dataset consists of
images and other associated metadata, including patients’
ages, gender, hospitalization status, etc. The dataset con-
tains approximately 14,000 training images across three
classes: normal, pneumonia, and COVID-19 cases. We ig-
nore the fine-grained differences between different causes
of pneumonia (e.g. bacterial vs. viral). The dataset is highly
unbalanced, with about only 500 COVID-19 cases. Exam-
ple images from the dataset are shown in Figure 2. For ease
of comparison, we use the same train and test splits as the
original authors.

3.2. ISIC 2017 skin lesion dataset

The International Skin Imaging Collaboration (ISIC) re-
leases data every year for machine learning challenges cen-
tered around skin lesion analysis [12]. These challenges
focus on skin lesion segmentation, feature extraction, and
classification. We use data from the 2017 version of the
ISIC challenge, focused specifically on lesion classifica-
tion [12]. Images belong to one of three categories: be-
nign nevi, sebborheic keratosis, and melanoma (Figure 2).
The first two conditions are benign, while the last is cancer-
ous. There are a total of 2000 training images in the dataset,
which is again highly unbalanced with fewer cases of ker-
atosis and melanoma. To create a balanced test set, we ran-
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Figure 2. (A) Example images from the COVID-19 chest X-ray dataset which includes normal (top row), pneumonia (middle row), and
COVID-19 (bottom row). (B) Example images from the ISIC 2017 skin lesion dataset which includes benign nevi (top row), seborrheic
keratosis (middle row), and melanoma (bottom row).

domly subselected 90 examples of nevi and melanoma to
match the number of available keratosis test examples.

3.3. Deep metric learning and image retrieval

We use a deep metric learning framework, which is a
supervised learning approach where the model learns to
embed images of the same class closer together in a low-
dimensional latent space and further away from images not
of the same class [40, 49]. Details about the exact training
and testing procedure used are provided in the Supplement.
Training results in a generalizable latent space where dif-
ferent classes are well separated (see Supplement). For the
COVIDx dataset, we started with a pretrained DenseNet-
121 model1, which has been shown to perform well on the
classification of different pathologies in chest X-rays [29].
We also tried training the model with either ImageNet pre-
trained weights or randomly initialized weights, but these
runs yielded poorer results so we did not pursue them any
further. We used a triplet loss with a margin of 0.2, using all
possible image pairs in a given batch. We sampled triplets
for each batch using a 16-3 strategy (16 samples randomly
from each of 3 classes). We used standard data augmenta-
tion (i.e. resize to 256 pixels, center or random resized crop
to 224×224 pixels, and random horizontal flip). All em-
beddings were L2 normalized. We also explored adding a
256-dimension linear layer for the final embedding (linear
layers of other dimensions did not produce better results).
We trained our models for 20 epochs, using the Adam op-
timizer with default beta values (0.9, 0.999) and a learning
rate of 1e − 4. We did not use weight decay or any other
forms of regularization.

For the ISIC 2017 dataset, we found that the DenseNet-
121 architecture also performed well. Given the size of the

1https://github.com/arnoweng/CheXNet

dataset, training models with more parameters (e.g. ResNet-
50) yielded poorer performance. We initialized the model
with ImageNet pre-trained weights as models pre-trained
on skin lesion classification were not publicly available.
Unless otherwise stated, we used the same set of hyper-
parameters as for the COVID-19 experiments. We did not
overly-optimize for best model performance, as our study is
more concerned with explaining models rather than obtain-
ing state-of-the-art results on the given datasets.

Given an input image x, the learned embedding network
extracts an embedding feature vector f(x). In the image
retrieval context, this is done for each query image q and
each retrieved image r, resulting in feature vectors fq and
fr, respectively, which are both D-dimensional vectors. To
rank the retrieved images, a similarity score s between fq
and fr is used. The similarity score s is calculated using
cosine similarity as

s(fq, fr) =
fq · fr

∥fq∥∥fr∥
. (1)

The similarity score s indicates how similar each re-
trieved image is to the query image.

3.4. Similarity-based saliency maps

We explored three types of similarity-based saliency
maps in the current work: occlusion-based [16], attention-
based [70], and a form of activation mapping [57, 71].
These methods take as input a query image and a retrieved
image, and indicate which regions of the retrieved image
are most similar to the query image. The occlusion-based
method is a black-box approach in which a small box is
moved across the retrieved image to occlude parts of the im-
age [16]. We measure the distance between the query em-
bedding and the image embedding as a result of the occlu-
sion. Occluded image regions which cause a large increase
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Figure 3. Metrics for quantifying similarity-based saliency maps. The retrieved image r (top) and query image q (middle) are passed
through a network with shared weights (denoted by blue bars) to compute feature embeddings fr and fq , respectively. These feature
embeddings (gray bars) are first used to compute a saliency map (left). The saliency map indicates important image regions in the retrieved
image, which are then used to perturb the retrieved image (r̂) and generate perturbed feature embeddings (fr̂). For each level of perturbation
(in this example, deletion using a constant gray value), a similarity score s(fq, fr̂) is calculated and used to compute the final AUC metric.

in distance are important for the computation of image sim-
ilarity, while regions which do not change the distance are
less important. This can be converted into a heat map rep-
resenting saliency. We used a window size of 24×24 pixels
with a stride of 5 pixels. We also explored a white-box,
gradient-based method which uses the triplet loss to com-
pute a form of similarity attention [70]. This method can
take as input image triplets and explain why a set of im-
ages are either similar or dissimilar. The authors showed
that the generated saliency maps can be used during train-
ing as a form of regularization to improve generalization
performance. Finally, we tested a saliency method that re-
quires access to features from the last convolutional layer
of the model [57, 71]. In contrast to the occlusion-based
method, where feature vectors are obtained after pooling,
these methods compute similarity between unpooled fea-
tures at each of the spatial locations in the last convolu-
tional layer (7×7 spatial grid for most architectures). To
compute this point-wise similarity, a single point in one
feature map can be chosen, and the similarity is averaged
across all other locations in the other feature map. To en-
sure the validity of the computed saliency methods, we also
performed a model randomization test as proposed in [2],
where we randomly re-initialized the weights of the model
and re-computed saliency maps. We found that all methods
passed this sanity check (see Supplement).

We also developed a form of self-similarity saliency,
where we computed the similarity of an image with respect
to itself. This is equivalent to applying one of the similarity-
based saliency algorithms described above where the query
image and the retrieved image are purposefully chosen to

be the same. The resulting saliency map indicates which re-
gions of the image are important for the computation of its
associated feature embedding. This provides an unbiased
method to evaluate saliency which is not dependent on the
exact choice of query image or retrieved images. We show
example average self-similarity saliency maps in Figure 6.

3.5. Insertion and deletion metrics

To evaluate the quality of different saliency maps, we
adapted a set of causal metrics first introduced in [42]. In
the classification context, the insertion and deletion met-
rics measure the increase or decrease in output classification
probability as a result of changes to the input image. Here,
we instead measure changes in image similarity as a result
of changes to the input image (Figure 3). Deletion measures
the drop in image similarity to the query image as more im-
age pixels are removed from the retrieved image. We grad-
ually mask out pixels on the retrieved image with a constant
gray value from highest relevance to lowest based on the
computed saliency map and measure the cosine similarity
between the query image and the masked images. In con-
trast, insertion measures the increase in image similarity as
more pixels are gradually introduced to the retrieved image.
Starting from a blurred version of the original retrieved im-
age, we gradually reveal high-resolution pixels from highest
to lowest relevance and again measure the cosine similarity
between the query image and unmasked images.

We compute the similarity score s between the query im-
age q and perturbed versions of the retrieved image r̂. As
stated above, perturbations are either in the form of inser-
tion onto a blurred image or deletion using a constant gray
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value. Extending Equation 1, the similarity score s is calcu-
lated using cosine similarity as

s(fq, fr̂) = max(0,
fq · fr̂

∥fq∥∥fr̂∥
). (2)

To ensure non-negative outputs when using the cosine
similarity metric, we rectified all similarity values to a min-
imum value of zero. For both insertion and deletion, we
sweep over a range of perturbation values and use the area-
under-the-curve (AUC) as a measure of the ‘goodness’ of
the saliency maps, where higher AUC values are better for
insertion (i.e. the added pixels rapidly increase image simi-
larity) and lower AUC values are better for deletion (i.e. the
removed pixels rapidly decrease image similarity).

3.6. Implementation details

All models were trained using Pytorch [41]. Training
was done on a single Nvidia Titan Xp GPU, which was
part of a GPU cluster. The saliency map methods were ei-
ther implementations (if source code was unavailable) or
re-implementations of author-released public versions. To
ensure the robustness of our results, all reported results are
the average over three random initializations.

4. Experimental Results
4.1. Image retrieval results

Using the deep metric learning framework, the learned
embeddings generally separate into different clusters corre-
sponding to the different classes in the COVID-19 dataset
(Figure 1, inset). The centroids associated with each class
also highlight the key differences between the different
classes, with normal cases showing relatively clear (dark)
lung regions, and pneumonia and COVID-19 cases show-
ing more cloudy lung regions. We report our image retrieval
results in Table 1. We use the standard image retrieval met-
rics of mean average precision (mAP) and mean precision
(P@K) with K = 1, 5. We used DenseNet-121 [27] as our
baseline model. RR refers to the use of random resizing data
augmentation during training. 256-d refers to the addition
of an extra 256-dimension linear projection layer. Both of
these techniques have been observed to help in deep met-
ric learning on other problem domains [49]. However, we
did not observe any clear trends in performance across the
different combinations of models and augmentation meth-
ods. We also observed that image retrieval performance was
higher on the COVID-19 dataset compared to the ISIC 2017
dataset, most likely due to use of a pretrained model and the
larger COVIDx dataset size.

4.2. Qualitative evaluation of saliency maps

We compare qualitative examples of similarity-based
saliency maps generated by three different algorithms: oc-
clusion [16], attention [70], and activation mapping [57,

Dataset Model mAP ↑ P@1 ↑ P@5 ↑

COVID-19

DenseNet-121 87.6 90.0 89.9
DenseNet-121+RR 86.6 89.4 88.8
DenseNet-121+256-d 88.4 90.8 90.3
DenseNet-121+RR+256-d 86.2 88.1 89.2

ISIC 2017

DenseNet-121 57.5 66.3 64.6
DenseNet-121+RR 61.6 69.6 69.2
DenseNet-121+256-d 56.0 64.7 62.4
DenseNet-121+RR+256-d 59.7 67.0 66.2

Table 1. Image retrieval results. For image retrieval, we used mAP
and P@1,5 metrics. RR: random resizing, 256-d: 256-dimension
linear projection layer.

71]. In Figure 4, we show example query images along with
their top-three retrieved images on the COVID-19 dataset.
In Figure 4A, we show examples where the model was cor-
rect, and in Figure 4B, we show examples where the model
failed to retrieve images of the correct class. We find that
for query images where the model was correct, saliency
was generally more focused on the lung regions. In con-
trast, when the model was incorrect, saliency revealed that
the model tended to focus more on non-lung regions such
as the shoulder blades or the heart. We also show simi-
lar qualitative results on the ISIC 2017 dataset (Figure 5).
Due to space constraints, other combinations of models and
saliency algorithms are shown in the Supplement.

In general, we found that occlusion-based saliency maps
are typically higher resolution, as the other saliency meth-
ods are computed based on the last convolutional layer,
which is typically a 32× downsampling of the original in-
put image size. We also note many counter-examples where
saliency is not well-localized even for correctly retrieved
results or well-localized despite retrieving incorrect results.
As a case in point, for the ISIC 2017 dataset, saliency seems
to always be focused on the lesion irregardless of whether
the returned image was of the correct class. This type of
qualitative evaluation of saliency maps (and usually only of
good examples, and not failure cases) is typically what is
presented in papers. As these qualitative results are often-
times misleading, we believe that quantitative measures of
saliency are needed, which are discussed in the next section.

4.3. Quantitative evaluation of saliency maps

We report our results as areas-under-the curve (AUC)
values for both the insertion and deletion metrics, where
AUC should be higher for insertion and lower for dele-
tion (Table 2). On the COVID-19 dataset, we found that
occlusion-based saliency had the lowest deletion scores,
while the attention-based and activation mapping saliency
methods had higher insertion scores. On the ISIC 2017
dataset, we found that occlusion-based saliency performed
the best on the insertion metric and the attention-based and
activation mapping saliency methods performed the best on
the deletion metric. As a control, using the saliency maps
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Figure 4. Example occlusion-based saliency maps [16] on the COVID-19 dataset, showing normal, pneumonia, and COVID-19 cases. (A)
Queries where the top-3 retrieved images are correct. (B) Queries where the top-3 retrieved images are incorrect. Query images are marked
in blue, correct results are marked in green, and incorrect results are marked in red.

Figure 5. Example activation-based saliency maps [57, 71] on the ISIC 2017 dataset, showing nevus, keratosis, and melanoma examples.
The same convention is used as in Figure 4.

Dataset Method Insertion ↑ Deletion ↓

COVID-19

Occlusion 83.2 64.8
Attention 85.4 67.6
Activation mapping 85.5 67.5
Occlusion (random) 78.0 71.6
Attention (random) 79.2 74.6
Activation mapping (random) 79.1 74.5

ISIC 2017

Occlusion 75.8 58.2
Attention 75.1 56.8
Activation mapping 75.2 56.6
Occlusion (random) 71.0 60.3
Attention (random) 72.1 61.4
Activation mapping (random) 72.1 61.1

Table 2. Quantitative evaluation of saliency maps using insertion
(higher score is better) and deletion (lower score is better). Ran-
dom refers to a model randomization test using randomly initial-
ized weights [2].

generated by models with randomly initialized weights (de-
noted as random in Table 2) resulted in lower insertion and
higher deletion scores on both datasets, indicating that the
random saliency maps did not pick up on salient image fea-
tures. This suggests that the proposed insertion and deletion
metrics adapted to image similarity are appropriate for eval-

uating saliency maps as they capture differences between al-
gorithms and are sensitive to trained and untrained models.
We also note that the attention-based and activation map-
ping methods produced nearly identical saliency maps and
associated insertion and deletion scores. This suggests a
possible connection between these two methods which has
not been shown before previously in the literature.

4.4. Self-similarity and differential saliency

Average images are often used to visualize the salient
features associated with each class within a dataset [44].
We extend this approach by averaging the self-similarity
saliency maps computed for each class. These saliency
maps reveal image features used by the model to compute
the learned feature embeddings. As a result, this approach
highlights class-specific features in saliency space instead
of image space, and can be viewed as a form of global
explanation as it operates over the entire dataset (split by
class), instead of individual data examples. In addition, we
used a form of differential saliency to highlight which im-
age features were more likely to correspond to the different
conditions. The differential saliency maps were computed
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Figure 6. Self-similarity and differential saliency to distinguish between different conditions. (A) COVID-19 chest X-ray dataset. The
average images (top row), average self-similarity saliency maps (middle row), and differential saliency maps are shown (bottom row). P:
pneumonia, C: COVID-19, N: normal. (B) Same analysis for the ISIC 2017 skin lesion dataset. K: keratosis, M: melanoma, N: nevus.

by taking differences in the self-similarity saliency maps
corresponding to the different conditions (e.g. COVID-19
- normal or C - N). In Figure 6, we show the average im-
ages, average self-similarity saliency maps, and differential
saliency maps for each dataset. For the COVID-19 dataset,
we find that both pneumonia and COVID-19 show slightly
brighter lung regions in the average images. The COVID-19
cases also show zoomed in radiographs on average, which
appears as differential saliency towards the image bound-
aries. On the ISIC 2017 dataset, the nevus examples have
the highest contrast and are more centrally localized. As a
result, the differential saliency maps show offsets for ker-
atosis and melanoma relative to the nevus examples. While
these results are preliminary, we believe this simple tool can
also be used to set more meaningful baselines in attribution
methods (e.g. comparing the sensitivity of saliency maps for
the top-1 and top-2 predictions).

5. Discussion
We have shown that deep neural networks can be used

for image retrieval on a COVID-19 chest X-ray dataset and
a skin lesion dataset. In the present work, we did not fo-
cus on achieving state-of-the-art for these tasks, but instead
demonstrate that it is possible to use different forms of
saliency maps as XAI techniques in the medical imaging
domain. In addition to qualitative comparisons, we also
proposed novel quantitative measures of similarity-based
saliency maps using the insertion and deletion metrics based
on the cosine similarity between feature embeddings. Fi-
nally, we used our differential saliency method to reveal
which image features were more likely to correspond to
COVID-19 (or melanoma), which warrants further inves-

tigation and validation.

To test our explainable image retrieval approach, we
would like to run user studies with radiologists or der-
matologists to understand whether the provided saliency
maps can improve their performance on image retrieval
tasks [67]. Future work should explore the combination of
saliency with other forms of explanations, e.g. textual ex-
planations or medical report generation [30, 35]. Saliency
maps could also be applied to other medical imaging prob-
lems, such as anomaly detection [63, 6, 28]. Our proposed
methods are also general in that they can be applied to other
datasets and models to study similar issues of using saliency
maps for image similarity, such as in the face verification or
person re-identification domains.
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[18] Oliver Eberle, Jochen Büttner, Florian Kräutli, Klaus-Robert
Müller, Matteo Valleriani, and Grégoire Montavon. Build-
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