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Abstract

In video data, busy motion details from moving regions
are conveyed within a specific frequency bandwidth in the
frequency domain. Meanwhile, the rest of the frequencies of
video data are encoded with quiet information with substan-
tial redundancy, which causes low processing efficiency in
existing video models that take as input raw RGB frames. In
this paper, we consider allocating intenser computation for
the processing of the important busy information and less
computation for that of the quiet information. We design a
trainable Motion Band-Pass Module (MBPM) for separat-
ing busy information from quiet information in raw video
data. By embedding the MBPM into a two-pathway CNN
architecture, we define a Busy-Quiet Net (BQN). The effi-
ciency of BQN is determined by avoiding redundancy in the
feature space processed by the two pathways: one operat-
ing on Quiet features of low-resolution, while the other pro-
cesses Busy features. The proposed BQN outperforms many
recent video processing models on Something-Something
V1, Kinetics400, UCF101 and HMDB51 datasets. The code
is available at: https://github.com/guoxih/busy-quiet-net.

1. Introduction

Video classification is a fundamental problem in many
video-based tasks. Applications such as autonomous driv-
ing technology, controlling drones and robots are driving
the demand for new video processing methods. An effective
way to extend the usage of Convolutional Neural Networks
(CNNs) from the image to the video domain is by expand-
ing the convolution kernels from 2D to 3D [3, 16, 40, 41].
Since the progress made by I3D [3], the main research ef-
fort in the video area has been directed towards designing
new 3D architectures. However, 3D CNNs are more com-
putationally intensive than 2D CNNs. Some recent works
[11, 29, 32, 42, 43, 48] increase the efficiency of 3D CNNs
by reducing the redundancy in the model parameters. How-
ever, these works have ignored another important factor that

MBPM

Figure 1: Motion Band-Pass Module (MBPM) distills busy
information from the frame sequences. For every three con-
secutive RGB frames, the MBPM generates a one-frame
output, which substantially reduces the redundancy.

causes the heavy computation in video processing: natural
video data contains substantial redundancy in the spatio-
temporal dimensions. In video data, busy information de-
scribes fast-changing motion happening in the boundaries
of moving regions which is crucial for defining movement
in video. Meanwhile, the quiet information, such as smooth
background textures whose information is shared by neigh-
boring locations, contains substantial redundancy. For ef-
ficient processing, we disentangle a video into busy and
quiet components. Subsequently, we would separately pro-
cess the busy and quiet components, by allocating high-
complexity processing for the busy information and low-
complexity processing for the quiet information.

In this study we propose a lightweight, end-to-end train-
able motion feature extraction mechanism called Motion
Band-Pass Module (MBPM), which can distill the motion
information conveyed within a specific frequency band-
width in the frequency domain. As illustrated in Figure 1,
by applying the MBPM to a video of 3 segments the number
of representative frames is reduced from 9 to 3 whilst re-
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taining the essential motion information. Our experiments
demonstrate that by simply replacing the RGB frame input
with the motion representation extracted by our MBPM, the
performance of existing video models can be boosted. Sec-
ondly, we design a two-pathway multi-scale architecture,
called the Busy-Quiet Net (BQN), the processing pipeline
of which is shown in Figure 2. One pathway, called Busy, is
responsible for processing the busy information distilled by
the MBPM. The other pathway, called Quiet, is devised to
process the quiet information encoded with global smooth
spatio-temporal structures. In order to fuse the informa-
tion from different pathways, we design the Band-Pass Lat-
eral Connection (BPLC) module, which is set up between
the Busy and Quiet pathways. During the experiments, we
demonstrate that the BPLC is the key factor to the overall
model optimization success.

Compared with the frame summarization approaches [1,
44], MBPM retains the strict temporal order of the frame
sequences, which is considered essential for long-term tem-
poral relation modeling. Compared with optical flow-based
motion representation methods [9, 22, 45, 50, 52], the mo-
tion representation captured by MBPM has a smaller tem-
poral size (e.g. for every 3 RGB frames, the MBPM en-
codes only one frame), and can be employed on the fly.
Meanwhile, efficient video models such as Octave Convo-
lution [5], bL-Net [4] and SlowFast networks [12] only re-
duce the input redundancy along either the spatial or tem-
poral dimensions. Instead, the proposed BQN reduces the
redundancy in the joint spatio-temporal space.

Our contributions can be summarized as follows:
• A novel Motion Band-Pass Module (MBPM) is pro-

posed for busy motion information distillation. The
new motion cue extracted by the MBPM is shown to
reduce temporal redundancy significantly.

• We design a two-pathway Busy-Quiet Net (BQN) that
separately processes the busy and quiet information
in videos. By separating the busy information using
MBPM, we can safely downsample the quiet informa-
tion to further reduce redundancy.

• Extensive experiments demonstrate the superior-
ity of the proposed BQN over a wide range
of models on four standard video benchmarks:
Kinetics400 [3], Something-Something V1 [15],
UCF101 [36], HMDB51 [26].

2. Related Work
Spatio-temporal Networks. Early works [7, 14, 34, 45, 49]
attempt to extend the success of 2D CNNs [18, 21, 25, 35,
38, 39] in the image domain to the video domain. Represen-
tatively, the two-stream model [34] and its variants [14, 45]
utilize optical flow as an auxiliary input modality for effec-
tive temporal modeling. Other works [3, 16, 40, 41], given

the progress in GPU performance, tend to exploit the com-
putationally intensive 3D convolution. Meanwhile, some
studies focus on improving the efficiency of 3D CNN, such
as P3D [32], R(2+1)D [43], S3D [48], TSM [29], CSN [42],
X3D [11]. Non-local Net [46] and its variants [2, 20] intro-
duce self-attention mechanisms to CNNs in order to learn
long-range dependencies in the spatio-temporal dimension.
Our study is complementary to these methods: our Busy-
Quiet Net (BQN) can benefit from the efficiency of these
CNNs by simply adopting them as backbones.
Motion Representation. Optical flow as a short-term mo-
tion representation has been widely used in many video ap-
plications. However, the optical flow estimation in large-
scale video datasets is inefficient. Some recent works use
deep learning to improve the optical flow estimation qual-
ity, such as FlowNet [8, 22]. Some other methods aim
to explore new end-to-end trainable motion cues, such as
OFF [37], TVNet [9], EMV [51], Flow-of-Flow [31], Dy-
namic Image [1], Squeezed Image [19] and PA [52]. Com-
pared with these approaches, our MBPM is rather as a basic
video architecture component which results in higher accu-
racy while requiring less computation.
Enforcing Low Information Redundancy. In the image
field, bL-Net [4] adopts a downsampling strategy that op-
erates at the block level aiming to reduce the spatial re-
dundancy of its feature maps. Octave Convolution [5] re-
places the convolutions in existing CNNs to decompose the
low and high-frequency components in images, represent-
ing the former with lower resolution. In the video field,
bLV-Net [10] extends the idea of bL-Net [4] to the temporal
dimension. SlowFast networks [12] introduce two pathways
for slow and fast motion decomposition along the temporal
dimension. However, the generalization of SlowFast to ex-
isting CNN architectures is poor, as it requires two specially
customized CNNs to be its backbones. Unlike the previous
methods, BQN reduces the feature redundancy in the joint
spatio-temporal space by using a predefined trainable filter
module, MBPM, to disentangle a video into busy and quiet
components. Unlike SlowFast, BQN architecture shows ex-
cellent generalization to existing CNNs.

3. Motion Band-Pass Module (MBPM)
Firstly, we introduce a 3D band-pass filter, which can

distill the video motion information conveyed within a spe-
cific spatio-temporal frequency bandwidth. A video clip of
T frames can be defined as a function with three arguments,
I(t)(x, y), where x, y indicate the spatial dimensions, while
t is the temporal dimension. The value of I(t)(x, y) corre-
sponds to the pixel value at position (x, y) in t-th frame of
an arbitrary channel in the video. When considering the
multi-channel case, we repeat the same procedure for each
color channel, which is omitted here for the sake of simpli-
fication. The output Γ of the 3D band-pass filter is given
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Figure 2: BQN is made up of two parallel pathways: Busy and Quiet. ‘lc’ indicates Band-Pass Lateral Connection. The
backbone networks from the two pathways respectively take as inputs two complementary data components (i.e. busy and
quiet), which are disentangled by the MBPM. The outputs of the two pathways are fused at various processing stages and the
final prediction is obtained by averaging the prediction scores across multiple segments.

by:

Γ(x, y, t) =
∂2

∂t2

[
I(t)(x, y) ∗ LoGσ(x, y)

]
,

≈
∑

t−1≤i≤t+1

h(i) · [I(i)(x, y) ∗ LoGσ(x, y)],

h(i) =

{
2
3 if i = t,

− 1
3 otherwise,

(1)
for t = 1, . . . , T and ‘∗’ represents the convolution oper-
ation. In equation (1), the second derivative with respect
to t is numerically approximated by finite differences, liter-
ally implemented by function h(i). Meanwhile, LoGσ(x, y)
is a two-dimensional Laplacian of Gaussian with the scale
parameter σ:

LoGσ(x, y) = ▽2Gσ(x, y) = −e−
x2+y2

2σ2

πσ4

[
1− x2 + y2

2σ2

]
.

(2)
From equations (1) and (2) we can observe that the 3D

filtering function is fully-differentiable. In order to make
the 3D band-pass filtering compatible with CNNs, we ap-
proximate it with two sequential channel-wise1 convolu-
tional layers [33], as shown in Figure 1. We name the dis-
crete approximation Motion Band-Pass Module (MBPM)
which can be expressed in an engineering form as follows:

Γ ≈ MBPM(I) = H3×1×1
s×1×1 (LoG

1×k×k
σ (I)), (3)

where LoG1×k×k
σ is referred to as a spatial channel-wise

convolutional layer [33] with a k × k kernel, each channel
1Also referred to as “depth-wise”. We use the term “channel-wise” to

avoid confusions with the network depth.

of which is initialized with a Laplacian of Gaussian distri-
bution with scale σ. The sum of kernel values is normal-
ized to 1. Meanwhile, H3×1×1

s×1×1 is referred to as a temporal
channel-wise convolutional layer with a temporal stride s.
In each channel, the kernel value of H3×1×1

s×1×1 is initialized
with [− 1

3 ,
2
3 ,−

1
3 ] , which is a high-pass filter. In order to let

the MBPM kernel parameters fine-tune on video streams,
we embed the MBPM within a CNN for end-to-end train-
ing, optimized with the video classification loss.

4. Busy-Quiet Net (BQN)

As illustrated in Figure 2, the BQN architecture con-
tains two pathways, Busy and Quiet, operating in paral-
lel on two distinct video data components, which are sep-
arated by the MBPM. The Busy and Quiet pathways are
bridged by multiple Band-Pass Lateral Connections (see
Section 4.2). These lateral connections enable information
fusion between the two processing pathways.

4.1. Busy and Quiet pathways

Busy pathway. The Busy pathway is designed to learn
fine-grained movement features. It takes as input the infor-
mation filtered by the MBPM, which contains critical mo-
tion information located at the boundaries of objects or re-
gions that have significant temporal change. The stride of
H3×1×1

s×1×1 from equation (3) is set to s = 3, which means
that for every three consecutive RGB frames, the MBPM
generates one-frame output. The MBPM output preserves
the temporal order of the video frames while significantly
reducing the redundant temporal information. We intend
to utilize larger spatial input sizes for the Busy pathway to
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extract more distinct textures.
Quiet pathway. The Quiet pathway focuses on processing
quiet information, representing the characteristics of large
regions of movement, such as the movement happening in
the plain-textured background regions. The input to the
Quiet pathway is considered to be the complementary of
the MBPM output:

2D-DownSamp(Avg3×1×1
3×1×1(I)− Γ), (4)

where Avg3×1×1
3×1×1 is a temporal average pooling with a stride

of 3. In the spatial dimensions, we perform bilinear down-
sampling (i.e. 2D-DownSamp) to reduce the redundant spa-
tial information shared by neighboring locations. In Sec-
tion 5.3, we explore the effect on performance when varying
the input size of the Quiet pathway.

4.2. Band-Pass Lateral Connection (BPLC)
In the proposed BQN, we include a novel Band-Pass Lat-

eral Connection (BPLC) module which has an MBPM em-
bedded. The BPLCs established between the two pathways,
Busy and Quiet, provide a mechanism for information ex-
change, enabling an optimal fusion of video information
characterized by different frequency bands. Different from
the lateral connections in [12, 13, 14, 30], the BPLC, en-
abled by MBPM, performs feature fusion and feature selec-
tion simultaneously, which shows higher performance than
other lateral connection designs, according to the experi-
mental results. We denote the two inputs of BPLC from
the i-th residual blocks in the Busy and Quiet pathways, as
xi
f and xi

c, respectively. For simplifying the notation, we
assume that xi

f and xi
c are of the same size. When their

sizes are different, we adopt bilinear interpolation to match
them in size. The output yi

f and yi
c for the Busy and Quiet,

respectively, is given by

yi
f =

{
BN(MBPM(xi

c)) + xi
f if mod(i, 2) = 0,

xi
f otherwise,

yi
c =

{
xi
c if mod(i, 2) = 0,

BN(ϕ(xi
f )) + xi

c otherwise,

i = 1, 2, . . . , B
(5)

where B denotes the number of residual blocks in the
backbone network (considered as the network with resid-
ual block designs in the experiments). ϕ(·) is the linear
transformation that can be implemented as a 1× 1× 1 con-
volution, or alternatively, when the channel number is very
large, as a bottleneck MLP for reducing computation. BN
indicates Batch Normalization [23], the weights of which
are initialized to zero. For the MBPM in BPLC, the convo-
lutional stride of H3×1×1

s×1×1 from equation (3) is set to s = 1,
maintaining the same temporal size.

The fusion direction of BPLC reverses back and forth,
as indicated in Figure 2, providing better communication
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Figure 3: Results on SS V1 when varying the scale σ and
kernel size k× k of the spatial channel-wise convolution in
MBPM. The results represent averages of multiple runs.

for the two pathways than the unidirectional lateral connec-
tions in [12, 30] whose information fusion direction is fixed
always fusing the information from a certain pathway to the
other. By default, we place a BPLC between the two path-
ways right after each pair of residual blocks. The MBPM
embedded in BPLC acts as a soft feature selection gate,
which allows only for the busy information from the Quiet
pathway to flow to the Busy pathway during the information
fusion process. The exploration of various lateral connec-
tion designs is provided in Section 5.3 and this setting is
shown to give the best performance in our experiments.

5. Experiments

In this section, we provide the results of the experiments
for the proposed MBPM and BQN. Then, we compare these
results with the state-of-the-art. Unless otherwise stated, we
use ResNet50 (R50) with TSM [29], as the backbone of our
model.

5.1. Datasets and Implementation Details

Datasets. We evaluate our approach on Something-
Something V1 [15], Kinetics400 [3], UCF101 [36] and
HMDB51 [26]. Most of the videos in Kinetics400 (K400),
UCF101 and HMDB51 can be accurately classified by only
considering their background scene information, while the
temporal relation between frames is not very important. In
Something-Something (SS) V1, many action categories are
symmetrical (e.g. “Pulling something from left to right”
and “Pulling something from right to left”). Discriminating
these symmetric actions requires models with strong tem-
poral modeling ability.
Training & Testing. Aside from X3D-M [11], the back-
bone networks are pretrained on ImageNet [6]. For training,
we utilize the dense sampling strategy [46] for Kinetics400.
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Figure 4: Videos and their MBPM outputs. The video clips (1)-(4) are from Kinetics, SS V1, UCF and HMDB, respectively.

Table 1: MBPM vs. other motion representation methods.
† denotes our reimplementation. The additional parameters
and the required computation (FLOPs) are reported.

Rep. Method Efficiency Metrics UCF101 SS V1 K400
FLOPs #Param.

RGB (baseline) - - 87.1 46.5 71.2
RGB Diff [45] - - 87.0 46.6 71.4
TV-L1 Flow [50] - - 88.5 37.4 55.7

DI† [1] - - 86.2 43.4 68.3
FlowNetC† [22] 444G 39.2M 87.3 26.3 -
FlowNetS† [22] 356G 38.7M 86.8 23.4 -
TVNet† [9] 3.3G 0.2K 88.6 45.2 58.5
PA [52] 2.8G 1.1K 89.5 45.1 57.3

MBPM 0.3G 0.2K 90.3 48.0 72.3

Table 2: Using different CNNs as backbones on SS V1.
ResNet50 and MobileNetV2 have TSM [29] embedded.

CNN backbone Modality pretrain Seg. (N ) Acc.

ResNet50 [18]

RGB

ImageNet 8

46.5
RGB+Flow 49.8

MBPM 48.0
RGB+MBPM 50.3

MobileNetV2 [33]
RGB

ImageNet 8
38.7

MBPM 39.8

X3D-M [11]
RGB

None 16
45.5

MBPM 46.9

As for the other datasets, we utilize the uniform sampling
strategy as shown in Figure 2, where a video is equally di-

vided into N segments, and 3 consecutive frames in each
segment are randomly sampled to constitute a video clip of
length T = 3N . Unless specified otherwise, a default video
clip is composed of N = 8 segments with a spatial size of
2242. During the tests, we sample a single clip per video
with center cropping for efficient inference [29], which is
used in our ablation studies. When pursuing high accuracy,
we consider sampling multiple clips&crops from the video
and averaging the prediction scores of multiple space-time
“views” (spatial crops×temporal clips) used in [12]. More
training details can be found in Appendix A.

5.2. Ablation Studies for MBPM

Instantiations and Settings. In the MBPM, the scale σ
from equation (2) and the kernel size of the spatial channel-
wise convolution LoG1×k×k

σ have a significant impact on
the performance. We vary the scale σ and the kernel size
to search for the optimal settings. Meanwhile, in order to
highlight the importance of the training for the MBPM, we
compare the performance when using trained MBPM with
that of untrained MBPM whose kernel weights are not op-
timized with the classification loss. The results on SS V1
are shown in Figure 3. We summarize two facts: 1) the
optimal value of σ for the MBPM changes when the ker-
nel size changes, and the MBPM with σ = 1.1 and a spa-
tial kernel size 9 × 9 gives the best performance within the
searching range. 2) optimizing the parameters of MBPM
with the video classification loss generally produces higher
prediction accuracy. In our preliminary work, we have ver-
ified that different datasets share the same optimal settings
of MBPM. More results on other datasets are provided in
Appendix B. In the following experiments, we set MBPM
in the Busy pathway as trainable with the scale σ = 1.1 and
the kernel size of 9× 9, unless specified otherwise.
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Table 3: Ablation Studies for BQN on Something-Something V1. We show top-1 and top-5 prediction accuracy (%), as well
as computational complexity measured in GFLOPs for a single crop & single clip.

Model Top-1 Top-5 GFLOPs

Quiet 46.5 75.3 32.8
Busy 48.0 76.8 32.8
Quiet+Busy 50.3 79.0 65.7
BQN 51.6 80.5 65.9

(a) Complementarity of Quiet and Busy.
“Quiet” and “Busy” refer to that the Quiet
and Busy pathways are trained separately.

# BPLC Top-1 Top-5 GFLOPs

0 49.6 78.9 65.7
4 50.2 79.2 65.8
8 50.7 79.7 65.8

16 51.6 80.5 65.9

(b) Effect of BPLCs. The BQN model
with more BPLCs has higher accuracy.

Fusion Method Position Top-1 Top-5

Average before fc 50.9 79.8
Average after fc 51.6 80.5
Max after fc 50.1 78.7
Concatenation before fc 51.3 80.2

(c) Fusion Strategies. The fully-connected
layers of the two pathways share the param-
eters.

Input size
for Quiet

Input size
for Busy Top-1 Top-5 GFLOPs

2242 × 8 2242 × 8 51.6 80.5 65.9
1602 × 8 2242 × 8 51.3 80.1 50.5
1602 × 8 2562 × 8 51.7 80.5 60.7
1602 × 6 2562 × 8 49.6 78.3 55.5

(d) Spatio-temporal input size. The input size is
formatted with (width2×time).

Design Top-1 Top-5

LC-A 50.9 79.8
LC-B 50.9 79.7
LC-C 51.5 80.2
BPLC 51.6 80.5
LC-E 51.3 79.9

(e) Various LC designs. 16
LCs are set in the BQN.

Stages # BPLC Top-1 Top-5

res2 1 49.8 79.1
res2,res3 2 50.1 78.7
res2,res3,res4 3 50.2 79.0
res2,res3,res4,res5 4 50.2 79.2

(f) Stage for adding BPLCs. In each stage, we
set one BPLC after its first residual block.

LC-IV (BPLC)

if Mod(i,2)=0 if Mod(i,2)=1

BN
MBPM

++

BN

LC-III

BN
MBPM

++

BN

LC-V

if Mod(i,2)=0 if Mod(i,2)=1

BN

++

BN

LC-I

BN
MBPM

+

LC-II

+

BN

Figure 5: Diagrams of various lateral connection (LC) designs. Bilinear interpolation is used for resizing the feature maps
when xi

c and xi
f do not have the same spatial size. i refers to the index of the residual block. Wϕ and W1 denote the weights

of the linear transformation.

Efficiency and Effectiveness of the MBPM. We draw an
apple-to-apple comparison between the proposed MBPM
and other motion representation methods [1, 9, 22, 45,
50, 52]. The comparison results are shown in Table 1.
The motion representations produced by these methods are
used as inputs to the backbone network. The prediction
scores are obtained by the average consensus of eight tem-
poral segments [45]. More details about the implementa-
tions can be found in Appendix C. The proposed MBPM
outperforms the other motion representation methods by
big margins, while its computation is nearly negligible,
which strongly demonstrates the high efficiency and effec-
tiveness of the MBPM. Moreover, the two-stream fusion
of “RGB+MBPM” has higher accuracy than the fusion of
“RGB+Flow”, according to the results in Table 2.
Generalization to different CNNs. The proposed MBPM
is a generic plug-and-play unit. The performance of existing
video models could be boosted by simply placing an MBPM

after their input layers. Table 2 show that MobileNetV2 [33]
and X3D-M [11] have steady performance improvement af-
ter being equipped with our MBPM.
Visualization Analysis. We provide the visualization re-
sults of four videos and their corresponding MBPM outputs
in the top and bottom rows from Figures 4 (1)-(4). From
these results it can be observed that the extracted representa-
tions are stable when jittering and other camera movements
are present. Also the results from Figures 4 (1)-(4) show
that MBPM not only suppresses the stationary informa-
tion and the background movement, but also highlights the
boundaries of moving objects, which are of vital importance
for action discrimination. For example, in the “spinning
poi” video, from Figure 4-(1), MBPM highlights the poi’s
movement rather than the movement of the background or
that of the performer. More visualization results and visual
comparison with other motion representation methods are
provided in Appendix D.
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Table 4: Results on Something V1. “N/A” indicates the numbers are not available. † denotes our reimplementation.

Method Pretrain Backbone Frames×Crops×Clips FLOPs #Param. Top-1 (%) Top-5 (%)

NL I3D GCN [47]

ImageNet

3D R50 32×3×2 303G×3×2 62.2M 46.1 76.8
TRNRGB+Flow [53] BNInception (8+48)×1×1 N/A 36.6M 42.0 -
TSMRGB+Flow [29] R50 (16+96)×1×1 N/A 48.6M 49.7 78.5
TEA [28] R50 16×3×10 70G×3×10 24.4M 52.3 81.9
bLVNet-TAM [10] bLR50 8×1×2 12G×1×2 25M 46.4 76.6
PANFull [52] TSM R50 40×1×2 67.7G×1×2 - 50.5 79.2
ir-CSN [42] None 3D R152 32×1×10 74G×1×10 29.7M 49.3 -

TSM R50 [29]

ImageNet

R50 16×1×1 65G×1×1 24.3M 47.2 77.1
BQN TSM R50 24×1×1 60G×1×1 47.4M 51.7 80.5
BQN TSM R50 24×3×2 60G×3×2 47.4M 53.3 82.0
BQN TSM R50 48×3×2 121G×3×2 47.4M 54.3 82.0
BQN TSM R101 48×3×2 231G×3×2 85.4M 54.9 81.7

X3D-M† [11] None - 16×3×2 6.4G×3×2 3.3M 46.7 75.5
BQN None X3D-M 48×3×2 9.7G×3×2 6.6M 50.6 79.2
BQN K400 X3D-M 48×3×2 9.7G×3×2 6.6M 53.7 81.8

BQNEn
ImageNet TSM R101

(48+48)×3×2 241G×3×2 92M 57.1 84.2
+ K400 +X3D-M

5.3. Ablation Studies for BQN

BQN vs. Quiet+Busy. In order to evaluate the effective-
ness of the proposed BQN architecture, we compare BQN
with the simple fusion (Quiet+Busy), which mimics the
two-stream model [34] by averaging the predictions of two
pathways trained separately. Table 3a shows that the sim-
ple fusion of two individual pathways (Quiet+Busy) gener-
ates higher top-1 accuracy (50.3%) than the individual path-
ways, which indicates that the features learned by the Quiet
pathway and by the Busy pathway are complementary. Sur-
prisingly, BQN has 51.6% top-1 accuracy, which is 1.3%
better than the Quiet+Busy fusion. The high-performance
gain strongly demonstrates the advantages of the proposed
BQN architecture.
Fusion strategies applied at the end of the Busy and Quiet
pathways also influence the performance of BQN. Table 3c
shows the results of different fusions. We observe that the
average fusion gives the best result among the listed meth-
ods, while the concatenation fusion is second only to the
averaging. Besides, placing the average fusion layer after
the fully-connected layer is better than placing it before.
Effectiveness of the BPLC. We can set a maximum of up
to 16 BPLCs in the BQN architecture when using TSM
R50 [29] as the backbone2. For the BPLCs in stage res2,
res3 and res4, we set the spatial kernel size of MBPM as
7 × 7, and the scale σ = 0.9. As for the stage res5, whose
feature size is relatively small, the kernel size is therefore
set to 3 × 3. Table 3f, illustrates that adding BPLCs to
all processing stages is helpful for improving performance.
From Table 3b, we can observe that the model performance

2ResNet50 contains four stages, named res2, res3, res4, res5, respec-
tively. These stages are composed of 3, 4, 6, 3 residual blocks, respectively.

improves gradually as the number of BPLCs increases. The
substantial performance gains demonstrate the importance
of using BPLCs for BQN.

Lateral Connection (LC) Designs. In order to illustrate
the rationality of the proposed BPLC design, we compare
it with other LC designs. The diagrams of different LC
designs are illustrated in Figure 5, where LC-I and LC-
II are unidirectional, and LC-III is bidirectional. The re-
sults from Table 3e show that the bidirectional design LC-
III has higher accuracy than the unidirectional designs LC-I
and LC-II. Among the listed designs, the proposed BPLC,
which reverses the information fusion direction back and
forth, provides the highest accuracy. We also compare the
BPLC with LC-V that does not contain an MBPM. As a
result, LC-V shows lower accuracy than the BPLC, which
demonstrates the importance of MBPM for the BPLC.

Spatial-temporal input size. In BQN, the Busy pathway
takes as input the MBPM output, which has the same spatial
size as the raw video clip, while the temporal size is one-
third of the raw video clip length. Meanwhile, the Quiet
pathway takes as input the complementary of the MBPM
output, given by equation (4). Table 3d shows that with
the same temporal size of 8 for the inputs, the spatial size
combination of 1602 and 2562 for the Quiet and Busy, re-
spectively, has slightly better top-1 accuracy (+0.1%) than
the combination of 2242 and 2242 but saves 5.2 GFLOPs in
computational cost. We also attempt to reduce the temporal
input size of the Quiet pathway. However, this would result
in a performance drop. One possible explanation is that due
to the temporal average pooling in the Quiet pathway, the
input’s temporal size is already reduced to one-third of the
raw video clip. An even smaller temporal size could fail to
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Table 5: Comparison results on Kinetics400. We report the
inference cost of multiple “views” (spatial crops × temporal
clips). † denotes our reimplementation.

Method Backbone Frames
× views FLOPs Top-1

(%)
Top-5
(%)

bLVNet-TAM [10] bLR50 16×9 561G 72.0 90.6
TSM [29] R50 16×30 2580G 74.7 -
STM [24] R50 16×30 2010G 73.7 91.6
X3D-M† [11] - 16×30 186G 75.1 92.2

SlowFast4×16 [12] 3D R50 32×30 1083G 75.6 92.1
ip-CSN [42] 3D R101 32×30 2490G 76.8 92.5
SmallBigNet [27] R101 32×12 6552G 77.4 93.3

PANFull TSM R50 40×2 176G 74.4 91.6
I3DRGB [3] Inc. V1 64×N/A N/A 71.1 89.3
Oct-I3D [5] - N/A×N/A N/A 74.6 -
NL I3D [46] 3D R101 128×30 10770G 77.7 93.3

BQN TSM R50 48×10 1210G 76.8 92.4
BQN TSM R50 72×10 1820G 77.3 93.2
BQN X3D-M 48×30 291G 77.1 92.5

preserve the correct temporal order of the video, and there-
fore harms the temporal relation modeling.

5.4. Comparisons with the State-of-the-Art

We compare BQN with current state-of-the-art methods
on the four datasets. In BQN, the Quiet and Busy pathways’
spatial input size is set to 1602 and 2562, respectively.
Results on Something-Something V1. Table 4 summa-
rizes the comprehensive comparison, including the infer-
ence protocols, corresponding computational costs (FLOPs)
and the prediction accuracy. Our method surpasses all
other methods by good margins. For example, the multi-
clip accuracy of BQN24f with TSM R50 is 7.2% higher
than NL I3D GCN32f [47] while requiring 5× fewer
FLOPs. Among the models based on ResNet50, BQN48f

has the highest top-1 accuracy (54.3%), which surpasses
the second-best, TEA16f [28], by a margin of +2%. Fur-
thermore, our signal-clip BQN24f has higher accuracy
(51.7%) than most other multi-clip models, requiring only
60 GFLOPs. By adopting a deeper backbone (TSM R101),
BQN48f has 54.9% top-1 accuracy, higher than any sin-
gle model. When using X3D-M as the backbone, BQN
achieves the ultimate efficiency, possessing very low redun-
dancy in both feature channel and spatio-temporal dimen-
sions. BQN with X3D-M processes 4× more video frames
than vanilla X3D-M, with only 50% additional FLOPs.
Compared with TSM R5016f , BQN with X3D-M trained
from scratch produces 3.4% higher top-1 accuracy with the
computation complexity of 14% of TSM R5016f . The en-
semble version BQNEn achieves the state-of-the-art top-1/5
accuracy (57.1%/84.2%).

Table 6: Results on HMDB51 and UCF101. We report the
mean class accuracy over the three official splits.

Method Backbone HMDB51 UCF101

StNet [17] R50 - 93.5
TSM [29] R50 73.5 95.9
STM [24] R50 72.2 96.2
TEA [28] R50 73.3 96.9
DI Four-Stream [1] ResNeXt101 72.5 95.5
TVNet [9] BNInception 71.0 94.5
TSNRGB+Flow [45] BNInception 68.5 94.0
I3DRGB+Flow [3] 3D Inception 80.7 98.0
PANFull [52] TSM R50 77.0 96.5

BQN TSM R50 77.6 97.6

Results on Kinetics400, UCF101 and HMDB51. Table 5
shows the comparison results on Kinetics400. For fair com-
parison, we only list the models with the spatial input size of
2562. BQN72f with TSM R50 achieves 77.3%/93.2% top-
1/5 accuracy, which is better than the 3D CNN-based ar-
chitecture, I3D [3], by a big margin of +6.2%/3.9%. When
BQN uses TSM R50 or X3D-M as the backbone, it consis-
tently shows higher accuracy than SlowFast4×16. Particu-
larly, BQN with X3D-M has 1.5% higher top-1 accuracy
than SlowFast4×16, while requiring 3.7× fewer FLOPs.
Meanwhile, BQN72f with TSM R50 is 2.7% better than
Oct-I3D [5] for top-1 accuracy. The results on two smaller
datasets, UCF101 and HMDB51, are shown in Table 6,
where we report the mean class accuracy over the three of-
ficial splits. We pretrain our model on Kinetics400 to avoid
overfitting. The accuracy of our method is obtained by the
inference protocol (3 crops×2 clips). BQN with TSM R50
outperforms most other methods except for I3DRGB+Flow,
which uses additional optical flow input modality.

6. Conclusion
This paper develops a novel video representation learn-

ing mechanism called Motion Band-Pass Module (MBPM).
The MBPM can distill important motion cues correspond-
ing to a set of band-pass spatio-temporal frequencies. We
design a spatio-temporal architecture called Bus-Quiet Net
(BQN), enabled by MBPM, to separately process busy and
quiet video data information. The busy-quiet disentangling
enables efficient video processing by allocating additional
resources to the Busy stream and less to the Quiet. Our
methods can also be used for video processing and analysis
in various applications.
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