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Abstract

Automatically generating medical reports from retinal
images is a difficult task in which an algorithm must gen-
erate semantically coherent descriptions for a given retinal
image. Existing methods mainly rely on the input image
to generate descriptions. However, many abstract medical
concepts or descriptions cannot be generated based on im-
age information only. In this work, we integrate additional
information to help solve this task; we observe that early in
the diagnosis process, ophthalmologists have usually writ-
ten down a small set of keywords denoting important infor-
mation. These keywords are then subsequently used to aid
the later creation of medical reports for a patient. Since
these keywords commonly exist and are useful for gener-
ating medical reports, we incorporate them into automatic
report generation. Since we have two types of inputs -
expert-defined unordered keywords and images - effectively
fusing features from these different modalities is challeng-
ing. To that end, we propose a new keyword-driven medical
report generation method based on a non-local attention-
based multi-modal feature fusion approach, TransFuser,
which is capable of fusing features from different types of
inputs based on such attention. Our experiments show the
proposed method successfully captures the mutual informa-
tion of keywords and image content. We further show our
proposed keyword-driven generation model reinforced by
the TransFuser is superior to baselines under the popular
text evaluation metrics BLEU, CIDEr, and ROUGE. Trans-
Fuser Github: https://github.com/Jhhuangkay/Non-local-Attention-Improves-

Description-Generation-for-Retinal-Images.

1. Introduction
Automatic medical report generation for retinal images

is a challenging computer vision task, falling within the
broader task domain of image captioning [43]. In this task,
long and semantically coherent medical descriptions for a
given image must be generated algorithmically [18, 16, 17,

15]. Several technical features of retinal image report gener-
ation [18] complicate this task when compared to the more
well-studied domain of natural image captioning, e.g., in
[3, 25]. One example is that retinal and natural images
have very different characteristics, both in objects’ sizes as
well as details [36, 18]. As such, existing methods, such as
[43, 22], which work well on natural image datasets often
do not generalize well to retinal images.

Recently, some methods [19, 28] have been proposed to
generate medical reports. These approaches are based on
the traditional natural image captioning model and conse-
quently work on image content only. However, many ab-
stract medical concepts or descriptions, [26, 19], cannot be
generated based on image information only. To tackle this
issue, the authors in [18] propose an average-based method
to exploit the expert-defined contextual information, in the
form of a keyword sequence, and image content to generate
better descriptions. Although the keyword-driven average-
based method from [18] improves the medical report gen-
eration model, how to effectively fuse the multi-modal in-
formation, i.e., expert-defined keywords and image, will be-
come another key issue. Using the average-based method to
fuse the multi-modal information in this case probably can-
not effectively capture mutual/interactive information be-
tween the keywords and image [18]. Losing such interactive
information can reduce the quality of the generated descrip-
tions [19, 2, 14, 10, 11]. To generate more accurate and
meaningful descriptions for retinal images, we will need a
specialized method which is capable of effectively fusing
the information of expert-defined keywords and image.

In this paper, we propose a new keyword-driven med-
ical report generation method equipped with a non-local
attention-based keyword-image encoder, called TransFuser,
illustrated in Figure 1 and Figure 2. In the TransFuser en-
coder, feature vectors of different modalities are fused to
perform the automatic medical report generation task. Gen-
erally speaking, it encodes unordered keyword sequences
with image content and draws different attention weights
on every individual keyword. The attention mechanism al-
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Figure 1: This figure shows the flowchart of our proposed keyword-driven medical report generation model reinforced by
our proposed TransFuser. It takes two inputs, a retinal image, and keywords. The purpose of keywords is to reinforce the
model to generate more accurate and meaningful descriptions for retinal images. “TransFuser” denotes our proposed multi-
modal feature fuser. In the TransFuser, “Concat” denotes concatenation, “LayerNorm” denotes layer normalization, “Linear”
denotes a fully-connected layer, and kfinal denotes an attention-based embedding vector. Q is a transformed image query,
K are key vectors, V denotes weight value vectors, ϕ(I) denotes an image feature vector, and Pi(Si, ϕ(I)) is a probability
distribution where i = 1, 2, ..., T .

lows the inputs to guide the different modalities to generate
more accurate results. Because of the non-local attention
mechanism [37], the proposed method is capable of effec-
tively capturing the mutual information between the image
and keywords.

The authors [18] have introduced a state of the art model
and a large-scale and unique dataset with expert-defined
keywords for medical report generation for retinal images.
So, we demonstrate the experimental results of our pro-
posed model based on their proposed dataset. We show
that our proposed keyword-driven generation model rein-
forced by the TransFuser is capable of creating more ac-
curate and meaningful descriptions/reports for retinal im-
ages than baseline models. This performance is shown in
several text evaluation metrics: BLEU-avg (+32%), CIDEr
(+2.5%), and ROUGE (+25.4%).

2. Related Work

In this section, we review the related image captioning
methods for natural and medical images and the existing
retinal image datasets.
2.1 Caption Generation for Natural Images

The encoder-decoder based network architecture, [39,
42, 21, 9, 8, 7], is the most popular method to perform im-
age captioning. In these networks, the convolution neural
network (CNN) is considered as an encoder and used to
extract global image features, and the recurrent neural net-
works (RNN) is regarded as a decoder and used to generate
a sequence of words. In [31], the authors introduce a text
generation method to generate a description for some spe-
cific object or region that is called referring expression [24].
The authors of [40] propose a bidirectional LSTM-based
method to generate captions. The method exploits past and
future information to learn long-term visual language inter-
actions. Attention-based models have shown good perfor-
mance in image captioning. The authors of [33] introduce
an area-based attention model for image captioning. The
model predicts the next word and corresponding regions of
the image in each RNN time step for generating image de-
scriptions. To the best of our knowledge, most of the ex-
isting natural image captioning methods mainly rely on a
single image to generate descriptions. However, some ab-
stract concepts or descriptions, [26, 19], cannot be gener-
ated based on image information only. So, in this work, we
exploit the expert-defined keywords sequence [18] to help
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models generate better descriptions.
2.2 Caption Generation for Medical Images

The authors of [28] introduce a Hybrid Retrieval-
Generation Reinforced Agent to incorporate human prior
knowledge with learning-based generation for medical im-
age captioning. The agent exploits a retrieval policy module
to decide between using a generation module to generate
sentences and retrieving specific sentences from the tem-
plate database, which is built based on prior human knowl-
edge. Based on hierarchical decision-making, it then se-
quentially generates multiple sentences. In [19], the au-
thors propose a multi-task learning framework to predict
tags and generate captions at the same time. Also, they
use an attention-based mechanism to localize regions which
contain abnormalities and generate long descriptions for
those regions via a hierarchical LSTM model. The above
works try to generate a medical report for radiology images
of the chest. The authors of [19] note that the generated
medical reports based on most of the existing methods are
fully-structured or semi-structured, e.g., have tags or use
templates. From the medical point of view, radiology im-
ages of the chest and retinal images have different proper-
ties, such as objects’ sizes and details [26, 36, 18]. From
the lower level feature perspective, such as color, radiology
images of the chest are mainly grey-scale [26] where reti-
nal images are mainly colorful [18]. Most of the methods
mentioned above mainly rely on image input to generate
captions. In this work, our proposed method starts from
the CNN-RNN based framework. To effectively fuse fea-
tures with different modalities, we introduce TransFuser to
reinforce our medical report generation model. Note that a
keywords sequence has an unordered nature which normal
sentences do not have. How to fuse the input image and
keywords with a minimum loss of information, in general,
remains an open question [18].
2.3 Retinal Dataset for Medical Report Generation

Since retinal disease research has a long history, many
retinal datasets, e.g., [5, 23, 4, 18, 44, 45, 30], have been
proposed for computer vision tasks. In [5], the authors have
proposed the STARE dataset which consists of 397 retinal
images. The dataset is mainly exploited to develop an auto-
matic system for diagnosing diseases of the human eye. In
[23], a dataset DIARETDB1 consisting of 89 color fundus
images has been introduced. In the DIARETDB1 dataset,
84 retinal images contain at least mild non-proliferative
signs of Diabetic Retinopathy (DR), and 5 images are con-
sidered normal, i.e., not containing any signs of the DR. The
authors of [4] have proposed a dataset MESSIDOR con-
taining 1200 fundus images. In the MESSIDOR dataset,
each image has a corresponding text-based clinical descrip-
tion. There is no manual annotation, e.g., of lesions con-
tours or position, on each image. According to [5, 23, 4],
the datasets of STARE, DIARETDB1, and MESSIDOR are

composed of retinal images and clinical descriptions, but
they do not contain expert-defined keywords. Hence, they
are suitable for the task of medical report generation but
not for the keyword-driven medical report generation task.
Note that the other existing retinal datasets only contain
retinal images and they are only used for a pure computer
vision task [18]. To validate the keyword-driven idea and
train a deep medical report generation model, the authors
of [18] have proposed a retinal dataset DeepEyeNet to per-
form the task of keyword-driven medical report generation.
The DeepEyeNet dataset is much larger than the aforemen-
tioned retinal datasets. It is composed of 15,709 retinal im-
ages. In the DeepEyeNet dataset, each image has the corre-
sponding expert-defined keyword sequence and text-based
clinical description. In this work, DeepEyeNet is a proper
dataset used to validate the effectiveness of the proposed
model. We summarize the aforementioned retinal datasets
in Table 1.

3. Methodology

Overview
In this section, we present our keyword-driven medical

report generation model reinforced by the TransFuser, re-
ferring to Figure 1, and illustrate methods to train the model
with supervised keyword knowledge. First, an image and a
number of keywords will be fed into modality-specific ex-
tractors to acquire an embedded image vector and an em-
bedded keyword vector for each. After this information ex-
traction, the vectors are fed into an encoder in order to ob-
tain a final attention-based embedding vector kfinal, fusing
information from images and keywords, referring to “Key-
word Encoder” subsection and “TransFuser Encoder for
Multi-modal Feature Fusion” subsection. Then, we use a
bidirectional LSTM-based model to serve as a decoder, re-
ferring to “Hybrid Feature Decoder” subsection, and sam-
ple output words to form medical descriptions. This LSTM-
based decoder would have the image vector extracted from
the image feature extractor, kfinal as mentioned, and a de-
coder output token from the last time step as inputs for the
final sentence generation, referring to Figure 1.
3.1 Keyword Encoder

In this subsection, we further explore the keyword’s ef-
fect and its mechanism in our proposed model for automatic
medical report generation. Keywords are meant to repre-
sent the important image content while subtly alludes to its
semantic relationship. Therefore, by treating an indefinite
numbers of keywords as a keyword sequence, we add their
contribution to the model by introducing a so-called key-
word encoder f(kn, I), which takes as inputs: N keywords
kn and an image I , referring to Equation (1). We name
this non-linear feature mapping procedure f(kn, I) “Trans-
Fuser”, which serves as an image-keyword hybrid approach
and will be further depicted in the next subsection.
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Table 1: Summary of retinal datasets. The DeepEyeNet dataset is unique and much larger than the other retinal datasets.
According to [18], most of the existing retinal dataset only contains image data, and the dataset size is not large. “ Text*”
denotes clinical descriptions and keywords. “ Text” denotes clinical descriptions only.

Name of Dataset Field of View Resolution Data Type Number of Images
STARE [5] ≈ 30◦ − 45◦ 700 ∗ 605 Image + Text 397

DIARETDB1 [23] 50◦ 1500 ∗ 1152 Image + Text 89
MESSIDOR [4] 45◦ 1440∗960−2304∗1536 Image + Text 1,200

DeepEyeNet [18] ≈ 30◦ − 60◦ various Image + Text* 15,709
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Figure 2: The structure shows in detail the TransFuser
mechanism. (a), image contents are treated as the query,
where keyword embedded vectors are respectively trans-
formed as key and value vector. (b), scaled dot-product at-
tention generates a final weighted embedded vector to rep-
resent keyword importance on the image vector. Finally,
the final keyword vector is generated after a fully-connected
layer and layer normalization.

kfinal = f(kn, I), n ∈ {0, ..., N} (1)

3.2 TransFuser Encoder for Multi-modal Feature Fu-
sion

Transformer structure [37, 46, 13, 35, 6] has been firmly

established as one of the state-of-the-art approaches in se-
quence modeling and transduction problems. Its attention
mechanism allows language modeling of global dependen-
cies between input and output, preventing the memory con-
straint limits of traditional recurrent models. Inspired by
its structure and in view of its parallelization for attention-
weighted positions, we deploy its nature to embed key-
word sequences with image content and put different atten-
tion weights on every individual keyword. The so-called
scaled dot-product attention mechanism is used for com-
puting keyword importance on the image embedded vector.
But instead of treating the last decoder output as the query in
an encoder-decoder attention cell, we use the image vector
directly. So, the detailed formulation for f(kn, I) depicted
in Equation-(1) can be interpreted as follows: mapping an
image query Q, derived from image I , and a set of keyword
key-value pairs (K,V ), derived from keywords kn, to an
output kfinal. We describe the full procedure as follows.

Q = Wt × ϕ(I) (2)

xn = Wekn, n ∈ {0, ..., N}
K = Wk ∗ xn + bk

V = Wv ∗ xn + bv

(3)

Z = Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

First, we adopt a CNN image embedder ϕ, [39, 19, 26,
28, 41, 20, 43, 3, 22] to extract image features. Then, we
map the image feature vector ϕ(I) with the embedding ma-
trix Wt ∈ RTH×F , as shown in Equation-(2). Here, F is
the image feature size and TH is the TransFuser hidden
size. The output Q will serve as an image query to inter-
act with the keyword vectors later. Then regardless of the
number of keywords, we map the keyword unordered se-
quence (a number of keywords) with the embedding matrix
by We ∈ RE×Vk . Here E denotes the word embedding
size and Vk indicates the number of all vocabulary used in
captions, including keywords. Then, we use two linear lay-
ers (Wk,Wv ∈ RTH×E) to generate keyword key and value
vectors, i.e., K and V , as shown in Equation-(3). The out-
put Z is computed as a weighted sum of the value vectors
V , where the assigned weight is every keyword’s impor-
tance calculated by dot-product attention on a single image
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query Q and the key K as shown in Equation-(4). We lever-
age the dot-product mechanism for much faster and more
space-efficient exploration of the keyword and image rela-
tionship. We skip the positional encoding trick, [37], since
we do not wish to include redundant sequential information
due to the keyword unordered nature [18].

ZNorm = LayerNorm(Q+ Z) (5)

kfinal = max(0,W1ZNorm + b1)W2 + b2 (6)

Finally, we introduce a residual shortcut with Q to add
on to attention output Z. Then the output ZNorm is ob-
tained after layer normalization and fed into position-wise
feed-forward networks similarly connected after the atten-
tion sub-layer, referring to Equation-(5). We can now con-
sistently use the final mixed vector, referring to Equation-
(6), to feed it back into our RNN model.

To better understand the TransFuser mechanism behind
this embedding trick, we refer to Figure 2 for detailed de-
scriptions. During the matrix multiplication QKT , im-
age query Q is respectively interacted/multiplied with ev-
ery keyword embedded vector denoted as K. Therefore, we
obtain every keyword weights on the image feature vector.
After the scaled and softmax operation, we get probability-
like weights for each keyword interpreted as their attention
or relationship with the current image. Finally, we multiply
the weights with the corresponding value V to denote their
hybrid importance in providing attention-weighted image-
keyword information.
3.3 Hybrid Feature Decoder

After obtaining the image-keyword hybrid vector kfinal,
we can render our complete image description/report gen-
eration model. Here we feed kfinal and image embedding
vector et in each time step of a subsequent bidirectional
LSTM decoder model, as well as preceding tokens as de-
fined by p(St|I, S0, ..., St−1), where we denote a true sen-
tence describing the image as S = (S0, ..., ST ). Note that in
each time step t ∈ {0, ..., T}, we have the same image em-
bedding vector et and image-keyword hybrid vector kfinal
inputs. We unroll the description generator as follows:

et = Wd × ϕ(I), t ∈ {0, ..., T} (7)

xt = WeSt, t ∈ {0, ..., T} (8)

Pt = BiLSTM([et, kfinal, xt]), t ∈ {0, ..., T} (9)

L(P |I, S) = ES∼PI
[logP (S, I)] (10)

In Equation-(7) and Equation-(8), we represent each
word as a bag-of-word id St. Then words S and image vec-
tor I are mapped to the same space: the image by using
an image encoder ϕ, i.e., a deep convolutional neural net-
work connected with a fully-connected layer Wd ∈ RE×F

and the words by word embedding We ∈ RE×V . Here E
represents the word embedding size, F is the image feature

size, and V is the number of all vocabulary in captions. In
Equation-(9), for each time step, we feed the network with
image contents et, image-keyword hybrid vector kfinal and
ground truth word vector xt to strengthen its memory of im-
ages. We also use dropout to alleviate the effect of noises
and overfitting. Finally, if we denote PI as the true medical
descriptions for I provided in the training set and P (S, I)
as the final probability distribution after one fully-connected
layer and softmax function, we have the overall likelihood
function L(P |I, S) depending on our medical descriptions
and the given image shown in Equation-(10). Then finally
we minimize the total loss calculated as the sum of the neg-
ative log-likelihood at each time step.

For inference, we use “Beam Search” [18] to generate
a sentence given an image. Instead of greedily choosing
the most likely next step as the sequence is constructed,
it expands all possible next steps and keeps the k most
likely sentences, where k is a user-specified parameter and
controls the number of beams or parallel searches through
the sequence of probabilities. That is, we consider the set
of k sentences up to time t to be candidates and generate
Pt+1. Then we keep maintaining the best k sentences with
the maximum overall probabilities. Multiple candidate se-
quences will increase the likelihood of better matching a
target sequence. However, this increased performance re-
sults in a decrease in decoding speed.

4. Experiments and Analysis
In this section, we will evaluate our proposed keyword-

driven medical report generation method based on the com-
monly used metrics to see whether our method is capable of
generating more accurate and meaningful descriptions for
retinal images. We will also analyze the effectiveness of the
proposed keyword-image encoder, i.e., TransFuser, based
on the same assumption, mentioned by [18, 19], that an ef-
fective deep model is helpful in practice.
4.1 Dataset and Performance Evaluation Metrics

To foster the retinal disease research, the authors [18]
introduce a new large-scale retinal image dataset, DEN
dataset, with unique keyword labels annotated by experi-
enced retina specialists and also propose a medical report
generation model based on the DEN dataset. The keywords
labels contain important information about potential dis-
eases and patients based on retinal image analysis and con-
versation with patients. In practice, keywords are valuable
for ophthalmologists to write medical reports for patients.
The DEN dataset contains two types of images, grey-scale
Fluorescein Angiography (FA) and colorful Color Fundus
Photography (CFP). The total amount of images is 15,709,
including 1,811 FA and 13,898 CFP. We follow the same
setup of the DEN dataset, i.e., 60%/20%/20% for train-
ing/validation/testing, respectively. In the DEN dataset,
each retinal image has two corresponding labels, i.e., key-
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Table 2: This table shows the evaluation results of our keyword-driven and non-keyword-driven medical report generation
models. We highlight the best scores of keyword-driven and non-keyword-driven models in each column, respectively. “w/o”
denotes non-keyword-driven baseline models, and “w/” denotes our proposed keyword-driven models. “BLEU-avg” denotes
the average score of BLEU-1, BLEU2, BLEU-3, and BLEU-4. Note that the model of [43] has the best performance among
all the non-keyword-driven models, and the keyword-driven model of [3] has the best performance among all the models. All
the keyword-driven models, based on the TransFuser, are superior to the non-keyword-driven models.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-avg CIDEr ROUGE

Vinyals et al. 2015 [39] w/o 0.054 0.018 0.002 0.001 0.019 0.056 0.083
w/ 0.208 0.124 0.070 0.032 0.109 0.319 0.254

Jing et al. 2018 [19] w/o 0.130 0.083 0.044 0.012 0.067 0.167 0.149
w/ 0.178 0.107 0.058 0.023 0.092 0.330 0.215

Laserson et al. 2018 [26] w/o 0.105 0.049 0.009 0.002 0.041 0.064 0.127
w/ 0.148 0.088 0.050 0.023 0.077 0.282 0.198

Li et al. 2018 [28] w/o 0.066 0.026 0.007 0.001 0.025 0.076 0.091
w/ 0.176 0.106 0.060 0.029 0.093 0.285 0.229

Wang et al. 2018 [41] w/o 0.081 0.031 0.009 0.004 0.031 0.117 0.134
w/ 0.233 0.152 0.095 0.052 0.133 0.369 0.282

Joshi et al. 2020 [20] w/o 0.111 0.060 0.026 0.006 0.051 0.066 0.129
w/ 0.166 0.097 0.049 0.023 0.084 0.304 0.199

Xu et al. 2015 [43] w/o 0.153 0.098 0.058 0.027 0.084 0.211 0.184
w/ 0.194 0.122 0.071 0.033 0.105 0.340 0.238

Cornia et al. 2019 [3] w/o 0.138 0.080 0.035 0.010 0.066 0.149 0.157
w/ 0.230 0.150 0.094 0.053 0.132 0.370 0.291

Karpathy et al. 2015 [22] w/o 0.067 0.029 0.005 0.002 0.026 0.031 0.085
w/ 0.200 0.126 0.079 0.041 0.112 0.296 0.244

words and clinical description. The word length in DEN is
mainly between 5 and 10 words. Note that we take image
and keywords labels as our inputs and clinical description as
our ground truth prediction. In our experiment, we exploit
the commonly used text evaluation metrics, [32, 29, 38],
from the medical report generation field, [18, 27], to evalu-
ate our generated descriptions for retinal images.

4.2 Experimental Settings

We adopt image feature extractors ϕ, pre-trained on Im-
ageNet, to extract our proposed retinal image dataset’s im-
age features. Note that in most of the cases [34, 1] includ-
ing ours, retinal images are mainly colorful which is similar
to ImageNet. So, from the lower level feature perspective,
such as color, pre-training on ImageNet can help models’
performances. For each, we first resize the image as the ap-
propriate size to feed into the model. And later on, the layer
before the last fully-connected layer is used for embedding
features ready to feed into the main LSTM model. To pro-
cess the annotations and keywords in the dataset, we remove
non-alphabet characters, convert all remaining characters to
lower-case, and replace all the words that appear only once
with a special token < UNK >. As a result, our vocab-
ulary size V = 4007 and vocabulary size, including key-
words Vk = 4292. All sentences are truncated or padded
with a max length of 50. For the word embedding layer, we
use an embedding size of E = 300 to encode words, and

we use a hidden layer size HLSTM = 256. Subsequently
first in training, for each image feature set extracted from
ϕ, we feed them with word embedded vectors simultane-
ously in an LSTM. Later on, we start to include keywords
fused from our embedded model. In our TransFuser model,
we use hidden size TH = 64 for representation learning.
For every model, we set the mini-batch size to 64 and the
learning rate to 0.001 to train the model with two epochs.

4.3 Effectiveness Analysis

Keywords. Since the characteristics of medical images are
different from general images, and different CNN mod-
els have different capabilities to capture the character of
the image, we exploit different CNN architectures without
and with keywords to demonstrate the effectiveness of our
keyword-driven method. In our experiment, we have two
types of models, the keyword-driven, and non-keyword-
driven. According to Table 2, the model of [43] has the
best performance among all the non-keyword-driven mod-
els, and the keyword-driven model of [3] has the best per-
formance among all the models. Based on Table 2, we no-
tice that all the keyword-driven models are superior to the
non-keyword-driven models. Also, we discover that dif-
ferent CNN architectures do have different capabilities to
capture the characteristics of the image, especially in the
case of our retinal images. Generally speaking, the best
keyword-driven model performance, comparing to the best
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[gender] patient, 
best family. 

Left fundus of a [age] year old [gender] 
with bilateral retinitis pigmentosa. 

[gender] has progressive visual 
complaints starting at age [age], and is the 
offspring of a consanguineous marriage. 

Marked disc pallor, retinal arteriolar 
attenuation, pigment disturbance and 

macular degeneration are classic features. 

Autosomal dominant 
retinitis pigmentosa. 

Figure 3: In this figure, we randomly show some generated medical reports based on the keyword-driven and non-keyword-
driven models. Based on this figure, we see that the keyword-driven models are capable of generating more accurate descrip-
tions of important characteristics for retinal images. The blue color is to denote the keywords understanding of our proposed
model. Please refer to the “Discussion” section and “Qualitative Results and Analysis” subsection for more details and the
explanation of the [age] and [gender].

Table 3: This table is to show that our proposed TransFuser performs better than the baseline models under the “Image +
Keywords” situation. Note that “mul” denotes element-wise multiplication, and “sum” denotes summation. The results are
based on the best keyword-driven model [3] in Table 2.

Fusing method BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-avg CIDEr ROUGE
Baseline-1 (sum) 0.014 0.002 0.001 0.000 0.004 0.019 0.023
Baseline-2 (mul) 0.077 0.031 0.004 0.001 0.028 0.042 0.102
DeepOpht [18] 0.184 0.114 0.068 0.032 0.100 0.361 0.232

Ours (TransFuser) 0.230 0.150 0.094 0.053 0.132 0.370 0.291

Table 4: The table is to show that the proposed TransFuser is capable of capturing not only the original information of
keywords and image but also the interactive information between them. The results are based on the best keyword-driven
model [3] in Table 2.

Input BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-avg CIDEr ROUGE
Keywords 0.057 0.029 0.017 0.005 0.027 0.168 0.091

Image 0.153 0.098 0.058 0.027 0.084 0.211 0.184
Image + Keywords 0.230 0.150 0.094 0.053 0.132 0.370 0.291

non-keyword-driven model, increases about 58% in BLEU-
avg, 75% in CIDEr, and 58% in ROUGE, respectively. The
reason is that keywords are meant to represent the important
content of the image while subtly alluding to its semantic re-
lationship. So, in the above case, we can consider keywords
as extra information for the models. Our experimental re-
sults show that the proposed keyword-driven method is su-
perior to the non-keyword-driven method in the sense of the

commonly used metrics, referring to Table 2.
TransFuser. Since our keywords have an unordered na-
ture, the intuitive ways to fuse the keywords and image fea-
tures are summation and element-wise multiplication. The
authors [18] have proposed another average method, i.e.,
DeepOpht, to fuse the keywords and image features. Ac-
cording to Table 3, we can see that our proposed Trans-
Fuser beats the summation and element-wise multiplica-
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tion baselines and DeepOpht. We discover that Trans-
Fuser and DeepOpht perform much better than the summa-
tion and element-wise multiplication baselines. The rea-
son is that since a keyword sequence is unordered, summa-
tion and element-wise multiplication feature fusion meth-
ods probably capture the input order of words which could
be a wrong/fake order, i.e., bias information. TransFuser
and DeepOpht are less affected by such bias information.
Moreover, our TransFuser performs better than DeepOpht.
Based on Table 3, the performance increases about 32% in
BLEU-avg, 2.5% in CIDEr, and 25.4% in ROUGE, respec-
tively. The reason is that our TransFuser captures better
mutual/interactive information between keywords and im-
age. See the next subsection.
Interaction between keywords and image. According to
Table 4, the performance of “Image”-only and “Keywords”-
only baselines are worse than the “Image + Keywords”
method. It implies the interaction between keywords and
image is crucial for medical report generation and our pro-
posed TransFuser is capable of capturing this interaction,
i.e., the relation between keywords and image. Note that
again the result is based on the best model [3] in Table 2.
4.4 Qualitative Results and Analysis

We present some qualitative results generated by our
medical report generation model in Figure 3. Although our
models cannot create correct “age” or “gender” as these are
not present in the content, the models are capable of gen-
erating correct descriptions of important characteristics for
retinal images. Note that, ideally, “age” and “gender” would
be part of the dataset and that a system should make it part
of the description by post-processing or slot filling [18].
4.5 Evaluation with Retinal Specialists

We use 5-level report/description quality evaluation, i.e.,
from 1 to 5, the higher the better. Since our research re-
source is limited, we are only able to randomly select 100
samples from our model-generated reports and the corre-
sponding ground-truth report. Note that the ground-truth re-
ports are generated by ophthalmologists. We ask the other
five different retinal specialists to score the quality of the
model-generated report and the corresponding ground-truth
report, respectively. Note that these five retinal specialists
do not know whether a report is model-generated or expert-
generated. Finally, we get an average score of 3.6/5.0
for our model-generated reports and an average score of
4.5/5.0 for the ground-truth reports. Since the ground-truth
reports are defined by ophthalmologists, the above results
show that the proposed model obtains competitive perfor-
mance against the human expert baseline.

5. Discussion

Reasoning ability. According to Figure 3, we see the non-
keyword-driven model sometimes cannot generate a long

and correct conceptual description for retinal images. Also,
Figure 3 shows the proposed keyword-driven model could
have better reasoning ability than the non-keyword-driven
one since it can create a long and conceptually correct med-
ical report for retinal images.

Does our model fully understand input keywords? The
answer probably is no. However, based on Figure 3, our
proposed keywords-driven model is capable of partially un-
derstanding input keywords. For example, in the fourth ex-
ample of Figure 3, our proposed model generates “acute
decrease” in the description based on the understanding of
the keyword “degeneration”. Similarly, the first example of
Figure 3 demonstrates some keyword understanding ability
of our model. It implies that our proposed method brings
us closer to the goal of automatic medical report generation
for retinal images.

Are features from deeper models good in our task?
Based on our experimental result in Table 2 and [12, 18],
we see image features extracted by deeper networks do not
imply better performance in a task with multi-modal inputs,
even though they are good in most of the pure computer
vision tasks such as object detection and activity recogni-
tion. We conjecture that the description generation in an
LSTM unit still needs other transformations based on im-
age features, so it probably hurts the final performance of
the medical report generation task even when the best im-
age features extracted by deeper networks are used.

6. Conclusion and Future Work

To sum up, we propose a new keyword-driven medi-
cal report generation method for automatic report genera-
tion for retinal images. The proposed method is equipped
with a non-local attention-based mechanism, called Trans-
Fuser, which is capable of effectively fusing features with
different modalities. Our experiments show that the pro-
posed model can generate more accurate and meaningful
descriptions/reports for retinal images, and the performance
increases about 32% in BLEU-avg, 2.5% in CIDEr, and
25.4% in ROUGE. Our experiments also show that the
proposed keyword-driven method, reinforced by the Trans-
Fuser, is superior to the non-keyword-driven one. Since
TransFuser is a multi-modal feature fuser, applying it to
other different combinations of modalities, such as image
and speech, will be interesting future work.
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