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Abstract

Deep learning-based object detection methods have
shown promising results in various fields ranging from au-
tonomous driving to video surveillance where input images
have relatively high signal-to-noise ratios (SNR). On low
SNR images such as biological electron microscopy (EM)
data, however, the performance of these algorithms is sig-
nificantly lower. Moreover, biological data typically lacks
standardized annotations further complicating the training
of detection algorithms. Accurate identification of proteins
from EM images is a critical task, as the detected posi-
tions serve as inputs for the downstream 3D structure de-
termination process. To overcome the low SNR and lack of
image annotations, we propose a joint weakly-supervised
learning framework that performs image denoising while
detecting objects of interest. By leveraging per-pixel soft
segmentation and consistency regularization, our frame-
work denoises images without the need of clean images and
is able to detect particles of interest even when less than
0.5% of the data are labeled. We validate our approach on
real single-particle cryo-EM and cryo-electron tomography
(ET) images which are known to suffer from extremely low
SNR, and show that our strategy outperforms existing state-
of-the-art (SofA) methods used in the cryo-EM field by a
significant margin. We also evaluate the performance of our
algorithm under decreasing SNR conditions and show that
our method is more robust to noise than competing methods.

1. Introduction

Deep learning based-algorithms for object detection
have witnessed a dramatic improvement over the past few
years. Given sufficient amounts of data, a network can eas-
ily learn to identify different subjects in images or perform
tracking in video sequences. Most of these applications,
however, rely on the availability of images that have rela-
tively high signal-to-noise ratios (SNR). Cryo-electron mi-

croscopy (EM) is a popular technique for structure determi-
nation that can produce 3D reconstructions of proteins by
back-projecting a large number of 2D protein projections
taken from different orientations. This requires the detec-
tion of individual molecular images from large electron mi-
crographs, a process commonly referred to as particle pick-
ing. The low SNR typical of cryo-EM images is caused by
the limited electron doses used during acquisition to pre-
vent radiation damage, making the detection problem very
challenging. Recent efforts to tackle particle picking have
focused on either improving SNR using image denoising
or other pre-processing strategies, followed by automatic or
semi-automatic detection algorithms. Under very low SNR
conditions, however, the performance of these algorithms is
sub-optimal and can result in many missed particles, thus
limiting the quality of the downstream 3D reconstructions.

In this paper, we propose a framework that performs im-
age denoising and particle segmentation and identification
simultaneously. The information learned from these tasks is
complementary and therefore by enabling information shar-
ing, we are able to improve the performance of both tasks.
Since noiseless images do not exist in cryo-EM and labeling
is very time consuming (a normal dataset usually contains
up to millions of particles), we adopt a strategy that does not
require any information on clean images and learns to seg-
ment particles when only the center pixels of a small frac-
tion of particles are labeled. We validate our approach on
three challenging cryo-EM datasets: one from single parti-
cle cryo-EM and two from cryo-ET. We show that under in-
creasingly challenging SNR conditions, our method is able
to outperform the state-of-the-art by a significant margin.
To our knowledge, this is the first example of a method that
is able to perform both image denoising and particle seg-
mentation and detection at the same time without the need
of ground-truth clean images for denoising and per-pixel la-
beling for segmentation.

The paper is organized as follows: we present related
work in Section 2 and describe our proposed method in Sec-
tion 3. In Section 3.1, we first present the theoretical frame-
work for joint learning and then detail how we transform
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our hypothesis into a neural network setting that learns to
denoise and segment without clean images or per-pixel la-
beling. In Section 3.2, we give implementation details of
our approach, and in Section 4 we present experimental re-
sults on three real cryo-EM datasets and compare the perfor-
mance of our approach against two commonly used particle
picking methods.

2. Related Work
Recent developments in deep learning have led to break-

through performance in tasks such as image enhancement,
object detection and segmentation. In this section, we in-
troduce relevant recent work, including denoising without
clean images, semi-supervised object detection and weakly
supervised segmentation, and multi-task learning.

2.1. Denoising without clean images

Unlike denoising algorithms based on supervised learn-
ing that are trained using noisy-clean image pairs, blind
image denoising is usually achieved by leveraging internal
data statistics. Traditional methods based on internal statis-
tics include Non-Local Means (NLM) which predicts clean
pixel values based on similar local neighborhoods [7], and
Block-Matching 3D (BM3D) which similarly relies on data
repetitiveness [8]. More recent denoising methods based on
convolutional neural networks include: Deep Image Prior
which trains a neural network to learn the prior distribu-
tion of data from pure noise [46], Noise2Noise that learns
to denoise using pairs of independently corrupted train-
ing images that share the same underlying signal [25], and
Noise2Void that assumes independence of noise corruption
for each pixel and trains the denoising network only using
the single input noisy image by masking the central pixel
[22]. Built on Noise2Void, a more generalized formula-
tion was proposed in [2] and was further improved by in-
corporating Bayesian statistics in [23]. In addition, a num-
ber of related methods have been proposed in the literature
[24, 16, 35, 17, 34]. For the case of cryo-EM images, imple-
mentations of Noise2Noise have been successfully applied
to low SNR biological samples in [3, 31].

2.2. Semi-supervised object detection and weakly
supervised segmentation

The majority of existing semi-supervised object de-
tection methods are either built upon one-stage detectors
[39, 29] or two-stage detectors [12, 40]. Most of the semi-
supervised learning frameworks incorporate the use of un-
labeled data through the use of consistency regularization
[51, 54, 44], along with supervised learning of labeled
data. Self-supervised sample mining stitches high confi-
dence unlabeled data patches to labeled data and maximizes
the consistency of proposed regions [49]. Data augmenta-
tion is widely applied in consistency learning, including ap-

proaches that maximize consistency between detection and
classification outputs of labeled/unlabeled images and their
augmented pairs [18], and algorithms that use labeled data
to first train a teacher model and then update the model by
maximizing the consistency between output pseudo-labels
of unlabeled data and strongly augmented pairs [45]. In
the cryo-EM field, several deep learning-based object detec-
tion methods [4, 48, 1, 47] have been used successfully for
particle detection. Topaz [4] is a semi-supervised particle
picking method based on positive-unlabeled learning. crY-
OLO [47] is a fully supervised picking method built upon
the popular YOLO model [38]

Unlike fully supervised segmentation methods which
use per-pixel supervision, weakly supervised segmenta-
tion usually uses weak labels such as bounding box an-
notations [9, 36, 30], scribbles [26], or image-level labels
[21, 10, 33, 50]. Segmentation using image-level labels usu-
ally involves training a classifier from which class saliency
map or class activation map (CAM) [53] can be obtained.
For instance, [10] uses a conditional random field (CRF) to
post-process the saliency map for segmentation, and [50]
utilizes equivariance constraints to generate a CAM.

2.3. Multi-task learning

Multi-task learning (MTL) which leverages information
shared between related tasks to improve the performance of
the original task has been widely applied in various image
processing tasks [42, 19, 11, 52, 28, 37, 27]. Specific appli-
cations of MTL in object detection include Mask-RCNN
which simultaneously performs image segmentation and
detection [14], joint detection of objects while estimating
distance between them [6], learning of segmentation maps
as attention to aid detection [32], denoising, segmentation
and detection through a cascaded network in a supervised
manner [13], and denoising and segmentation of florescence
microscopy images [5]. All of these strategies, however, op-
erate on images with relatively high SNRs. Building on the
success of these methods, here, we extend their applicabil-
ity to lower SNR datasets such as those routinely used in
cryo-EM.

3. Proposed Method
The overall architecture of our framework is shown in

Figure 1. The cascaded network, which includes image de-
noising and per-pixel labeling, is able to leverage comple-
mentary information from these two tasks leading to mutual
improvements. The denoising branch estimates the mean
and covariance of the underlying noiseless data distribution
from noisy inputs and feeds the estimated data statistics into
the detection branch. The detection branch identifies parti-
cle locations by performing pixel-wise segmentation of the
input and in return improves the denoising output as seg-
mentation accuracy increases. Segmentation is performed
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Figure 1: Overall architecture of our framework for simultaneous image denoising and detection. A) Network train-
ing branch: patches that contain particles are cropped from noisy images serving as input to the network. The denoising
branch first outputs relative statistics of the estimated clean image. The desnoised sampled image and its augmented pair
are fed into the segmentation branch and a segmentation mask is produced. An auxiliary classifier is used to classify fore-
ground/background images based on the segmentation mask. Segmentation is guided by the classifier. Consistency regu-
larization using augmented pair has two components: mask and classification consistency. B) Network evaluation branch:
during inference, the entire image is fed into the network. The network outputs the denoised posterior mean and a segmenta-
tion mask of the entire image. The segmentation mask is used to identify particle locations.

in a weakly supervised fashion: only the center location
of the particle is provided. We hypothesize that a particle-
containing patch can be separated into foreground (which
contains the particle) and background (which excludes the
particle). To guide the segmentation, we add a classifier to
the segmentation module which learns to discriminate be-
tween foreground and background based on the assumption
that accurate segmentation leads to the correct classification
of images. The framework eventually predicts the location
of particles based on the segmentation results. We describe
the training procedure and details of the framework in the
following sections.

3.1. Joint denoising and detection

Consider the prediction of the clean value x and its cor-
responding label l for a noisy pixel y. As pixels in an im-
age are not independent, we assume that the clean value
depends not only on the noisy measurement y, but also on
the neighboring context Ωy . We also assume that the label
l of the pixel depends only on its clean value x. From this,
performing denoising and detection jointly can be thought
of as statistical inference on the probability distribution
p(x, l|y,Ωy) over the clean pixel value x and its label l,
conditioned on the noisy input y and its context Ωy . In cryo-
EM applications, the noise is usually modeled as a Gaussian
distribution [43]. We therefore bring in this extra informa-
tion on the noise corruption so that p(y|x) can be modeled

explicitly. With this, we can connect the observed marginal
distribution of the noisy labeled training data to the unob-
served distribution of the clean data:

p(y, l|Ωy)︸ ︷︷ ︸
training data

=

∫
p(y, l, |Ωy, x)p(x|Ωy)dx

=

∫
p(y|x)︸ ︷︷ ︸

noise model

p(l|x)︸ ︷︷ ︸
label model

p(x|Ωy)︸ ︷︷ ︸
unobserved

dx.

(1)

This relationship suggests that even though we only observe
corrupted training data, we are able to use the known noise
model for the prediction of p(x|Ωy) and its label based on
the prediction p(l|x). Specifically, we can model p(x|Ωy)
as a multivariate Gaussian N (µx,Σx). Following this as-
sumption, we can train a network to map the context Ωy to
the mean µx and convariance Σx, and subsequently map the
estimated statistics to the label l by maximizing the likeli-
hood under Equation (1).
Information of the noisy measurement y can be included
through Bayesian reasoning. Specifically, the posterior
probability of the clean value x and its label l, given the
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noisy y, its surrounding Ωy , is:

p(x, l|y,Ωy)︸ ︷︷ ︸
posterior

∝ p(l|x,Ωy, y)︸ ︷︷ ︸
predicted label

p(x,Ωy, y)︸ ︷︷ ︸
joint signal model

∝ p(y|x)︸ ︷︷ ︸
noise model

p(x|Ωy)︸ ︷︷ ︸
prior

p(l|x)︸ ︷︷ ︸
label model

.
(2)

From this point of view, the prior distribution p(x|Ωy) en-
codes our belief of x based on the neighborhood informa-
tion before observing y. In addition, our belief of x is di-
rectly related to its label l. A more accurate belief in x leads
to a better estimation of its label l. We therefore perform
joint learning through maximization of this posterior distri-
bution. Specifically, the denoising branch of our proposed
framework corresponds to the first two terms in Equation
(2) and the detection branch corresponds to the label model
term.

Self-Supervised Denoising Branch. The denoising
branch is based upon a blindspot convolutional neural
network proposed in [23] that learns the underlying clean
signal by maximizing the posterior likelihood in Equation
(2), which includes maximization of the observed noise
model p(y|x) subject to prior belief p(x|Ωy) ∼ N (µx,Σx)
and its label (we discuss segmentation in the following sec-
tion). Assuming that y is corrupted by zero-mean Gaussian
noise, we have p(y|x) ∼ N (µy,Σy), where µy = µx and
Σy = Σx + σ2I, with σ2 being the noise variance. Since
maximizing p(y|x) is equivalent to minimizing its negative
log-likelihood, we can write the denoise loss as:

Ldn =
1

2
[(y − µy)

TΣ−1
y (y − µy)] +

1

2
log |Σy|+ C, (3)

where C is a constant that can be discarded. Since σ2 is
unknown, an auxiliary network is used to estimate its value.
The output of the denoising branch consists of µx and Σx.
The posterior distribution for x is calculated by multiplying
the noise model and the prior Gaussian distribution param-
eterized by µx and Σx, which also follows a Gaussian dis-
tribution with E(p(x|y,Ωy) = (Σ−1

x + σ−2I)−1(Σ−1
x µx +

σ−2y). The mean of the posterior distribution is the final
denoised output.

Weakly-Supervised Detection Branch. As the outputs
of the denoising branch are the mean µx and covariance
Σx of the prior belief p(x|Ωy), to obtain a tractable approx-
imation of p(x|Ωy), input to the detection branch is sam-
pled from this prior. In order to backpropagate the gradi-
ent through Σx, we adopt the re-parameterization trick pro-
posed in [20] such that the sampled image xI = µx+Σx⊙
N (0, I) where ⊙ is the element-wise multiplication. The
detection branch models p(l|x), which assigns a label based

on each pixel value. Therefore, the detection branch detects
particles by doing binary segmentation. For a sampled input
image I containing particles, the detection branch outputs a
saliency map, M , which segments the image into two re-
gions: particle (foreground) and background. To simulate
binary hard thresholding while preserving differentiability,
we add a modified sigmoid layer to the output saliency map:

M̃ =
1

1 + exp [−C(M − t)]
, (4)

where C is a constant and t is a threshold value. Segmen-
tation is guided by an auxiliary classifier. If the image is
segmented correctly, the classifier will be able to classify
segmented images into their corresponding category. To do
this, we multiply the sampled image I by M̃ and its com-
plement to get two segmented images:

F = M̃I, B = (1− M̃)I, (5)

where F represents the foreground containing the particles
and B represents the background. Both F and B are fed
into the classifier g and the classifier outputs the probability
of the input containing a particle. We adopt the hinge loss
to train this classifier:

Lf = min [0,−1 + g(F )]

Lb = min [0,−1− g(B)],
(6)

where Lf is the loss for the foreground and Lb is the loss
for the background. We also incorporate consistency con-
straints to further regularize the detection branch. For each
I , we randomly apply horizontal and vertical flipping to
generate its augmented pair A(I), where A(·) denotes the
applied transformation. The augmented image is fed into
the same network and the network outputs the segmentation
map MA(I) and the classification probabilities g(FA(I)))
and g(BA(I)). We assume equivariance in segmentation,
i.e. MA(I) = A(MI), and rotation invariance in classifi-
cation, i.e. g(FA(I))) = g(FI) and g(BA(I)) = g(BI).
Therefore, to impose consistency regularization, we define
the consistency loss as:

Lcons =
∥∥MA(I), A(MI)

∥∥2
2
+

∥∥g(FA(I))), g(FI)
∥∥2
2

+
∥∥g(BA(I)), g(BI)

∥∥2
2
,

(7)

where ∥·∥22 denotes the squared L2 norm error.
In summary, the final loss function for our joint training

framework is defined as:

L = αLdn + (1− α)(Lf + Lb) + λLcons, (8)

where α represents the assigned weights for each task and
λ is the weight for the consistency regularization term. Ldn

is used to denoise the input noisy images, Lf and Lb are
used to guide the segmentation, and Lcons is used to further
refine the segmentation result.
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3.2. Implementation

We now provide details about the architecture of the dif-
ferent components of our network and its training proce-
dure. We adopt a U-Net [41] based structure for the de-
noising branch that uses a shifted convolutional layer as in
[23] instead of a normal convolutional layer. The segmen-
tation module of our detection branch is composed of four
convolutional layers with two upsampling layers in between
and a final max-pooling layer. The auxiliary classifier is
composed of three residual blocks [15] and a final convo-
lutional layer. The estimation of the noise variance is also
performed using a normal U-Net architecture. During train-
ing, only patches that contain particles of interest are fed
into the framework. Typically, particles are located at the
center of the patch. We use 64 × 64 for the patch size.
The detection branch outputs a segmentation map. Fore-
ground and background images are generated based on the
segmentation map and the classifier outputs the probabil-
ity of a foreground/background image containing a parti-
cle. For the modified sigmoid layer in Equation (4), we use
C = 7 and t = 0.5. During the inference process, the entire
image is fed into the framework. The auxiliary classifier
is removed and the segmentation map of the entire image
is used to identify particle locations. The center location
for each particle is obtained by applying non-max suppres-
sion to the segmentation map. The model is trained on a
single NVIDIA Tesla V100 GPU with 32G of RAM. We
use a batch size of 32 and a cosine decay learning rate for
the scheduler with initial learning rate of 0.001. We adopt
the ADAM optimizer and use α = 0.75 and λ = 0.1 for
all experiments. Training with 240, 000 iterations takes less
than an hour. Inference on a single image takes less than a
second.

4. Experiments
4.1. Datasets

In this section, we evaluate our methods on real cryo-EM
images of ribosomes, including one single-particle dataset
and two cryo-ET datasets available from the Electron
Microscopy Public Image Archive (EMPIAR), EMPIAR-
10304 and EMPIAR-10499. For the single-particle dataset,
2D projections of the 3D protein sample are collected
in movie format, consisting of multiple dose fractionated
frames. Particle picking in this case is normally performed
on the average of all the frames. In cryo-ET datasets, 2D
projections of a 3D protein sample are collected at different
rotation angles. These images taken at various projection
angles are called tilt series. Tilt series have much lower
SNR than single-particle frame averages making the task
of particle detection more challenging. Among all three
datasets, single particle ribosome has the highest SNR, and
EMPIAR 10499 has the lowest SNR. All images are single-

channel gray-scale. All datasets are only partially labeled.
For each labeled particle, its center location (x, y coordi-
nates) is annotated. Note that we do not include bounding
box size in the annotation.

Single-particle cryo-EM ribosome dataset. This dataset
contains 1000 movies, each cropped to size 4096 × 4096,
with defocus values ranging from 0.8 µm to 3.0 µm. The
pixel size is 1.08 Å. Each movie contains 60 frames. Since
the ribosome is a relatively large particle, frame averages
of this dataset have relatively high SNR compared to most
other proteins. We therefore treat the average of all 60
frames as the ground-truth images. Similarly, particles
picked on these frame averages are treated as the ground-
truth annotations. To simulate increasingly lower SNR con-
ditions, such as those observed for lower molecular weight
proteins and lower defocus datasets, we use partial averages
calculated from 10%, 20% and 60%and of the total number
of frames (6, 12, 36 frames). Among these 1000 low SNR
partial frame averages, 16 images are used as the training
set and the remaining ones are used for testing. All images
are further down-sampled by a factor of 8 to size 512×512.
Training images are only partially labeled, with 15 to 25
particles identified on each. The entire training set is com-
posed of 500 labeled particles from 16 images, which ac-
counts for around 0.04% of the total number of particles in
the entire dataset.

EMPIAR-10304. This dataset consists of 12 tilt-series
from a sample of purified ribosomes. Each tilt series is com-
posed of 41 projection images ranging from -60 degree to
+ 60 degree. A single tilt image has size of 4096 × 5760,
with a pixel size of 2.1 Å. We evaluate our framework on
the zero-degree tilt images of each tilt series. From the total
of 12 zero-degree tilt images, 3 images are used for training
and the remaining ones are the testing set. We also down-
sampled each image by a factor of 8 to size 512 × 720.
Training images are partially labeled as well, with 40 to 60
particles identified on each. The entire training set is com-
posed of 200 labeled particles, which accounts for around
4% of all particles in the entire dataset. We use manually
labeled particle locations as ground truth.

EMPIAR-10499. This is a cryo-ET dataset of ribosomes
imaged within cells. This dataset is challenging because
particles are observed within a crowded context that in-
cludes cell membranes and other sub-cellular components.
We use a subset of the entire dataset which consists of 65
tilt series. Each tilt series is composed of 41 projection im-
ages ranging from -60 degree to +60 degree. A single tilt
image has size of 3838×3710, with pixel size of 1.7 Å. We
also evaluate our framework on the zero-degree tilt images.
Of the 65 tilt images, 7 are used for training. Each image is
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Figure 2: Visualization of improvement in denoising performance on three real cryo-EM datasets compared to Topaz
denoise and DivNoising. A) single particle ribosome image denoised using topaz and our method. B) EMPIAR-10304
image denoised using DivNoising and our method. C) EMPIAR-10499 denoised using DivNoising and our method. Our
method helps to visualize particles better, especially for zoomed in views of 10304 and 10499.

down-sampled by a factor of 8 to 480×464. Partial-labeling
is performed and a total of 90 particles are identified, which
accounts for less than 1% of all particles in the dataset. We
use manually labeled particle locations as ground truth.

4.2. Results

We use PSNR values to evaluate denoising performance.
We only calculate PSNR values for the single-particle ri-
bosome dataset as we are able to treat full dose frame av-
erages as ground truth. As full dosage micrographs can
still be noisy, we apply a low-pass filter to remove poten-
tial high-frequency noise. The average PSNR values for
the dataset are shown in Table 1. PSNR1 is calculated
against the full dose micrographs and PSNR2 is calculated
against low pass-filtered ones. Since low-pass filtering in-

Method PSNR1 PSNR2
Topaz denoise 16.79 19.49

Ours w/o segmentation 19.18 19.33
Ours joint 19.78 21.62

Table 1: Denoising performance on single-particle cryo-
EM images of ribosomes. Comparison of PSNR values be-
tween topaz, our approach w/o segmentation, and new joint
strategy. PSNR1 is obtained using full dose as a reference
ans PSNR2 is obtained using low pass-filtered full dose as
reference.

troduces image blurring, we expect the actual PSNR value
to lie in between the two reported values. Our joint learning
framework is able to achieve significantly higher PSNR val-
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Table 2: Detection performance measured on averages using 10% of frames compared against particles detected in full dose
micrographs.

Topaz Pick
w/o Denoise

Topaz Denoise
+ Pick

CrYOLO Ours w/o
Consistency

Ours w/
Consistency

single-
particle
ribosome

Precision 0.615 0.656 0.501 0.681 0.735
Recall 0.525 0.645 0.211 0.702 0.825
F1 0.567 0.648 0.290 0.693 0.778

EMPIAR-
10304

Precision 0.56 N/A 0.259 0.605 0.618
Recall 0.448 N/A 0.146 0.443 0.683
F1 0.497 N/A 0.184 0.510 0.648

EMPIAR-
10499

Precision 0.289 N/A 0.102 0.216 0.356
Recall 0.217 N/A 0.016 0.235 0.326
F1 0.248 N/A 0.026 0.225 0.341

ues. For the other two cryo-ET datasets, we are not able to
provide quantitative measurements of performance because
clean images do not exist. We therefore provide visualiza-
tion of denoised images obtained using our approach. In
addition, since Topaz requires pairs of noisy images, we
compare the performance of our method against DivNois-
ing [34]1, which is a self-supervised denoising method that
has been proven to perform well on high-contrast fluores-
cence microscopy images. More qualitative visualizations
are provided in the supplementary material.

Even though we perform particle detection through seg-
mentation, our main focus is on the detection task, not on
segmentation. In addition, since the bounding box for each
particle used for downstream processing is usually much
larger than the particle size, we do not use intersection over
union (IoU) as evaluation criteria. Instead, we calculate pre-
cision, recall and F1 values. True positive, false negative
and false positive values are obtained by comparing against
particles detected on full-dose images (single-particle ribo-
some dataset) and manually labeled particles (EMPIAR-
10304 and 10499). To account for small variations in the
detected particle centers, instead of looking at a single pixel,
we also look at pixels located within a certain radius from
the center. If the detected particle position is within a cer-
tain radius of a ground truth particle position, we consider
it as a true positive match. Similarly, if there is no ground
truth particle within a certain radius of a detected particle
position, we consider it as a false positive. We use a radius
of 5. With this, precision and recall scores are calculated as:

Precision =
# of TP/matches

# of predicted particles

Recall =
# of TP/matches

# of target particles

(9)

Results are presented in Table 2. We compare the per-
1https://github.com/juglab/DivNoising

formance of our method against two of the most commonly
used particle picking methods in cryo-EM: topaz [4]2 and
crYOLO [47]3. Topaz is a semi-supervised particle pick-
ing method and crYOLO uses a fully supervised approach.
For both Topaz and crYOLO, we use the code provided by
the authors and we adjusted hyper-parameters to get the
best possible results. Training of Topaz is performed us-
ing the same training set as our approach. crYOLO has a
generalized pre-trained model and we further fine-tune it
with the same training set. For all three datasets, our joint
framework is able to obtain higher precision, recall and F1
values than topaz and crYOLO. We also perform an abla-
tion study on the effectiveness of consistency regulariza-
tion and show that our framework is able to perform sig-
nificantly better with the addition of the consistency loss
term. Notably, the improvement is more significant under
lower SNR conditions. Visualization of our particle pick-
ing results is presented in Figure 3. Since detection is based
on the segmentation output, we also show the soft segmen-
tation map (before the modified sigmoid layer). Segmen-
tation maps show a clear distinction between particles of
interest and the background. The background/foreground
contrast is less obvious on EMPIAR-10499 as this dataset
has the lowest SNR among all three. However, regions
with particles still have brighter values than the surrounding
background, which enabled us to perform the subsequent
particle-picking step. In addition, regions corresponding to
contamination and gold beads (small black circles) have ei-
ther extremely high or low pixel values, which allow us to
avoid these regions during the picking step. Our method
shows significant improvement in picking performance un-
der low SNR conditions when compared to current state-
of-the-art methods (Topaz and crYOLO). We provide more
examples and choice of parameters in supplementary mate-

2https://github.com/tbepler/topaz
3https://cryolo.readthedocs.io/en/stable/installation.html
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Figure 3: Visualization of particle detection results on the three datasets. Detected particles are circled in blue. The first
row is an example of detection results for the single-particle dataset. The second row is the result for EMPIAR-10304 and
the last row is for EMPIAR-10499. We show both, the soft segmentation map (2nd column) and the detection output based
on this segmentation (3rd column), obtained using our proposed method. We also show results obtained using Topaz picking
(without denoise), and crYOLO in the next two columns, respectively. The last column shows the ground truth. Note that for
the single-particle dataset, ground truth was obtained using the Topaz particle picking method on the full dose micrograph.
Ground truth for EMPIAR-10304 and 10499 were obtained using manual picking.

rials.
Overall, our method is able to show a significant perfor-

mance under challenging SNR conditions. When SNR is
relatively higher, the improvement is less significant. Cur-
rently, our model only works on images that are corrupted
by Gaussian noise (or can be approximated by Gaussian).
We will leave the extension to other noise types to future
work. When SNR is so low that it is almost impossible to
separate signal from noise (e.g. SNR < 0.0001), our model
will mostly likely fail, which is why we did not try denois-
ing single frame. It is theoretically impossible to denoise
such images.

5. Conclusion
In this paper, we present a novel joint training framework

that performs image denoising and segmentation simulta-
neously without the need of noiseless images or per-pixel
annotated datasets. We show that the complementary infor-
mation shared between the two tasks allows us to improve

the performance of both tasks, especially under extremely
low SNR conditions. We validated our approach on real
single-particle cryo-EM and cryo-ET datasets and showed
that our model is able to outperform SotA methods. Our
future work will focus on handling more complex and di-
verse datasets, including datasets with multiple proteins of
interest. We will also extend the applicability of our work to
3-D data to enable protein identification on 3D tomograms.
We hope that our algorithm will facilitate structural analy-
sis of challenging biomedical targets such as low molecular
weight complexes or thick specimens imaged in their na-
tive environments using cryo-ET. In addition, our approach
could be applied to low SNR signals in other fields of study
such as astronomy imaging to improve object recognition.
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[53] Bolei Zhou, A. Khosla, À. Lapedriza, A. Oliva, and A. Tor-
ralba. Learning deep features for discriminative localiza-
tion. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2921–2929, 2016.

[54] Dengyong Zhou, O. Bousquet, T. N. Lal, J. Weston, and B.
Schölkopf. Learning with local and global consistency. In
NIPS, 2003.

3255


