
Single Image Object Counting and Localizing using Active-Learning

Inbar Huberman-Spiegelglas Raanan Fattal
{inbar.huberman1, raanan.fattal}@mail.huji.ac.il

School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Abstract

The need to count and localize repeating objects in an
image arises in different scenarios, such as biological mi-
croscopy studies, production-lines inspection, and surveil-
lance recordings analysis. The use of supervised Convo-
lutional Neural Networks (CNNs) achieves accurate object
detection when trained over large class-specific datasets.
The labeling effort in this approach does not pay-off when
the counting is required over few images of a unique object
class.

We present a new method for counting and localizing re-
peating objects in single-image scenarios, assuming no pre-
trained classifier is available. Our method trains a CNN
over a small set of labels carefully collected from the input
image in few active-learning iterations. At each iteration,
the latent space of the network is analyzed to extract a min-
imal number of user-queries that strives to both sample the
in-class manifold as thoroughly as possible as well as avoid
redundant labels.

Compared with existing user-assisted counting methods,
our active-learning iterations achieve state-of-the-art per-
formance in terms of counting and localizing accuracy,
number of user mouse clicks, and running-time. This evalu-
ation was performed through a large user study over a wide
range of image classes with diverse conditions of illumina-
tion and occlusions.

1. Introduction
Localizing and counting repeating objects is useful for

various purposes, such as counting cells under the micro-
scope, inspecting products in production-lines, and tracking
objects in surveillance cameras. These tasks typically re-
quire a considerable amount of repetitive human labor, and
in many cases, a high degree of attention in identifying the
object of interest despite variations in its appearance or a
cluttered background.

Traditional computerized approaches for detecting and
counting objects are based on handcrafted visual descriptors

which are either class-specific [7, 15] or assume the object
appearance is well-resolved [14]. While these methods are
efficient and require little or no training, they have a limited
ability to cope with the complicated visual variability that
real data may contain.

Convolutional Neural Networks (CNNs) achieve very
high accuracy in object recognition [11, 19] and detec-
tion tasks [13]. Nevertheless, this discriminatory power is
achieved at a non-trivial cost of collecting datasets con-
taining large numbers of manually-annotated images for
every image class. Such fully-supervised CNNs are used
for detecting and counting repeating objects in an im-
age [8, 12, 29]. This approach is practical only when the
networks are used extensively at inference time over the
same image class they were trained for. In cases where
there is a single image, containing several dozens up to few
hundreds of object appearances, a fully-supervised training
will require the same amount of manual effort as the count-
ing task itself. Hence, an alternative approach is needed for
utilizing CNNs in such scenarios.

In this paper, we describe a new network based method
that is applicable for single image object detection and
counting scenarios. The method collects a small number
of labels from the input image which allow it to cope and
specialize over novel objects of interest.

The method achieves accurate detection coordinates and
counting estimate despite the small number of training ex-
amples it uses by targeting highly informative training la-
bels. The latter are obtained using an iterative active-
learning scheme consisting of a query sampling step, a label
collection step that minimizes the user effort, and a network
re-training step that accounts for the newly labeled exam-
ples.

In order to minimize the number of labels and user ef-
fort, at every iteration, our query sampling strategy fol-
lows two basic principles: it targets regions where previ-
ously collected labels do not generalize well, as well as
avoids queries that are expected to receive a coupled clas-
sification. The key novel aspect of our construction is in
performing these steps and analyses over the activations in

1310

the network being trained. These neural responses pro-
vide a high-dimensional descriptors, known as visually-
meaningful cues [16, 20, 30]. Existing object counting ap-
proaches either rely on the scalar output of the classifier, or
do not follow any sampling strategy.

Specifically, by clustering these activations we obtain a
transitivity relation in the image which we use for detecting
regions (clusters) lacking a label as well as avoid multiple
queries over closely-related regions (same cluster). To fur-
ther minimize the user labeling effort, we present the query
windows along with a tentative classification, allowing the
user to mark only the misclassified cases.

We report the results of a user-study that demonstrates
the proposed method’s ability to achieve state-of-the-art
accuracy on real and synthetic benchmark images. The
images used in this study are diverse, span many object
classes, and contain challenging variations in shape, illu-
mination, and occlusion relations. Finally, we show that the
network can be trained on one image and used for counting
in other images of the same type and source.

2. Related Work
The problem of object counting and localization in im-

ages with repeating objects received a considerable atten-
tion, and a variety of visual models were suggested. Earlier
approaches tackled specific image classes, such as crowd,
cars, and cells, and used domain-specific features to per-
form the counting. Some examples of crowd counting ap-
proaches include the use of edge orientations and blobs
size histograms in [18], texture descriptors with frequency-
domain analysis in [15], and segmentation-based feature
extraction in [6]. Object localization in this context is de-
scribed in [7, 10, 26].

A more general approach, developed by Lempitsky and
Zisserman [22], estimates the objects density map in a class
non-specific manner. This method learns a density regres-
sion over a number of general features in a supervised fash-
ion. To alleviate the need for large annotated training sets,
Arteta et al. [1] proposed a system for counting and lo-
calizing objects where the user provides dot annotations
in an interactive session displaying the inferred counting.
While this method shows very good performance over di-
verse classes, the use of density estimation undermines the
localization accuracy. Huberman and Fattal [14] also lo-
calize and count objects by exploiting the repetitions in the
image to automatically fit a deformable-part model which is
fed into a user-guided classifier. This method is challenged
in cases where the repeating patches in the image do not
necessarily correspond to the repeating object. The work
of von Borstel et al. [3] also counts object repetitions us-
ing a fairly small number of region-level count labels. The
method models the object density using a Gaussian process
that applies non-linear kernels on various image features.

In contrast to our method, this approach does not provide
object localization.

More recent works employ the detection power of CNNs
for object counting. Ma et al. [25] extend the density map
approach of [22] to cope with small-instance scenes. In this
work integer programming over parts of the density map is
used to recover the object locations. Walach and Wolf [29]
improve the counting accuracy using network boosting and
selective sampling which reduce the effect of high error
samples by temporally muting them. Kang et al. [17] com-
pare crowd density maps, generated by several density esti-
mation methods, and their performance on visual tasks in-
cluding counting, detection and tracking. They also show
how the detection accuracy can be improved by computing
a full-resolution density map, as opposed to the reduced-
resolution maps used by some methods. Unlike these fully
supervised methods, we aim for a weakly-supervised solu-
tion which enables object localization and counting given a
single-image.

Seguı́ et al. [28], train a counting network and use its
deep features to derive a confidence map which they use
for detecting object occurrences. Dijkstra et al. [9] train a
network that outputs several channels which are fed into a
voting mechanism that estimates the object centers robustly.
Xie et al. [31] train a CNN to output a density map and use it
for cell localizing. Our network is trained to predict objects
occurrences using a sparse set of training coordinates.

Loy et al. [23] try to minimize the user input in the spe-
cific context of crowd videos by restricting the annotations
to the most informative frames. Cao et al., [4] also attempt
to reduce this manual effort by describing an annotation
scheme that alleviates the need to explicitly mark bounding
boxes over images videos of vehicles. Finally, Lu et al. [24]
reduce the amount training examples needed by using a pre-
trained general-purpose matching network, which can be
further refined for a specific object class given a smaller set
of examples. We minimize the user effort by requesting the
correction of a small set of highly-informative image win-
dows. The latter are presented to the user along with their
tentative classifications produced by our network during the
iterative active-learning procedure.

3. New Method
An image containing a repeating object, by its definition,

provides a small yet highly-relevant dataset for characteriz-
ing the object’s appearance. When the number of repetitions
is sufficiently large, compared to the complexity of its visual
variations, generalization is made possible. Our method op-
erates according to this observation and relies solely on the
input image as its training data. As we describe below, the
user is required to mark the object of interest in the image.

We use a fully-convolutional neural network to predict
the likeliness of an object occurrence at every image pixel.

1311

Figure 1. Method Overview. At each iteration the network is given
with the input image (people in a beach in this example) along with
the labels collected so far, and it is trained to predict this sparse set
of labels in its classification map C(x), as shown in (a). A non-
maximum suppression is applied over the positive values of this
map to obtain a list of potential object appearances W , as shown
in (b) by the purple dots. By analyzing the latent representation
of these locations we select a small number of informative query
windows. We use the network being trained in order to predict
tentative labels to present to the user, as shown in (c). Next, the
user corrections are obtained, shown in (d), and are added to the
labels training sets, P and N . The network is retrained on these
updated sets and the process repeats itself.

The network is trained in conjunction with collecting its
training labels via an iterative active-learning procedure
consisting of the following steps. We use the partially-
trained network to extract a list of potential object occur-
rences based on local maxima in its classification map. To
minimize the user effort in validating all these suspected lo-
cations, we extract highly-informative subset for hers/his in-
put. More specifically, our sampling strategy discards sim-
ilar regions as well as regions that appear close to ones al-
ready labeled by analyzing the latent representation of the
image in the network.

This small set of highly-informative queries are pre-
sented to the user along with tentative labels using color-
coded frames around the suspected pixels. Thus, the user
is not required to label all the windows but only click over
the ones requiring a label correction. Given these new la-
bels, additional training steps are applied until the network
conforms to all the labels collected. As we describe below,
the tentative labels are derived from the activations of the
network being trained.

Figure 1 illustrates this cycle, which repeats itself until
it is terminated by the user. We proceed by describing each
of these steps in detail, and start by the initialization of this
iterative procedure.

3.1. Initialization

As an input, we assume a single image containing mul-
tiple repetitions of the object of interest. In order to specify

the repeating object, the user is asked to mark a bounding-
window, B, and the image is then rescaled such that B be-
comes 21-by-21 pixels. In case of several repeating ob-
jects, the user is required to mark a window around each
object type and we rescale the input according to the largest
marked window. Being a fully-convolutional network, our
classifier can be applied over any image size. We denote the
input image by I(x), where x :=(x, y) are pixel coordinates.

As noted above, the procedure we apply is iterative and
assumes a partially-trained classifying network is available
at each iteration. We initialize the network by training it
over sets of positive P and negative Npixel labels derived
from the Normalized Cross-Correlation (NCC) function be-
tween the input image I and the user-provided window B.
Due to the limited ability of the correlation function to
achieve a reliable detection, we use it very conservatively
and set

P = {x : MaxSup
(
NCC(I,B)

)
(x) > 0.85}

N = {x : NCC(I,B)(x) < 0},
(1)

where MaxSup denotes a non-maximum suppression op-
erator computed within windows of 11-by-11 pixels (half
the bounding-window size). This suppression window size
is chosen in order to prevent extracting multiple detections
of the same object appearance, yet allows the identification
of partially occluded instances. The threshold of 0.85 was
found optimal in a hyper-parameters study we report in the
Appendix Section in the Supplemental Material accompa-
nying this submission. In the following active-learning it-
erations, more labels will be collected from the user and
added to these initial sets P and N .

While a single window is typically sufficient for this ini-
tialization, experiments show that at least 10 positive coor-
dinates in P are required (for each repeating object type)
for the classifier to properly initialize. Hence, if necessary,
the user is asked to provide additional bounding-windows
until 10 positive examples are obtained from their correla-
tion function. Finally, due to the immediate correspondence
between the suspected pixel coordinates and the windows
around them, we refer to both interchangeably.

At every iteration, including the initialization step, we
train the network to output a classification map C(x) with
positive values over the pixels in P and negative over N , by
minimizing the following label loss

Llabel =
∑
x∈P

(C(x)− 1)2

|P|
+

∑
x∈N

(C(x) + 1)2

|N |
. (2)

The minimization steps are applied until C(x) ≥ 0.95 over
x ∈ P and C(x) ≤ −0.95 over x ∈ N . This loss does not
pose any requirement over C at the rest of the image pixels.

Network Architecture and Training. In our implemen-
tation, we use an ADAM optimizer with a learning rate of

1312

10−3. As we report in Section 4, the use of MSE loss in
Eq. 2 provides better performance than a cross-entropy loss.
An example classification map C(x) is shown in Figure 2
along with its sparse sets of training points.

The classifying network we use consists of a fully-
convolutional neural network with two encoding layers of
convolution, bias and ReLU operators. A 2-by-2 max-
pooling operation is applied only at the second layer. These
layers are followed by another two decoding layers (with a
2-by-2 unpooing step in the first decoding layer) that pro-
duce the network’s output classification map, C(x), to have
the same resolution as the input image. The ReLU operator
is omitted from the last layer to permit negative classifica-
tion values. The max-pooling switches are kept and used
by the unpooling operator. Moreover, the number of fil-
ters (channels) in the network grows and then shrinks and
is given by cin → N → 2N → N → 1, where cin is the
number of input image color channels (typically, 1 or 3).
Figure 2 summarizes the network architecture used.

Since we want to minimize the number of training la-
bels, we carefully set the number of filters N based on the
visual complexity of the image. We estimate the latter by
defining an auto-encoder (AE) with an architecture similar
to our classification network, and search for the value of N
that achieves a sufficient degree of image reproduction.

More specifically, we add another 2-by-2 max-pooling
step at the end of the first layer of our classifying network,
and its corresponding unpooling step in the last decoding
hidden layer. Since the AE reconstructs the input image,
the number of filters in its output layer is set to cin. We start
this search with N = 8 and train the AE to minimize the
reconstruction loss, Erec = ∥AE(I) − I∥2. In case that
Erec > 10−2, means that the power of the network is not
enough for reconstruction, we increase N by 8 and repeat
this process.

3.2. Sampling User Queries

Given the input image and the partially trained network,
at each iteration of the active-learning process we sample a
new set of query windows and present them to the user for
correction. Unlike the standard approach, used in [14], we
do not carry out this query selection based on the classifier’s
output, but operate in the activation space of the network.

Since the set of positive labels P was initialized by
a fairly-conservative NCC threshold, we concentrate the
query extraction on collecting additional positive labels.
Thus, the queries are selected from a list of pixel locations,
W , where the network’s classification is positive (suspected
object occurrences), i.e., W = MaxSup(C(x)) ≥ 0,
where again a suppression window size of 11-by-11 pix-
els is applied. Clearly any previously labeled coordinate is
omitted from W . Figure 1 shows an example of such poten-
tial locations.

Finding the set of query windows from W that will be
most informative for further network training is the key for
minimizing the user effort involved in this process. Hence,
to efficiently sample the in-class manifold, we: (i) target the
search toward windows that appear to the network least sim-
ilar to ones that were already labeled, as well as (ii) avoid
querying, at the same round of user feedback, multiple win-
dows which the network finds similar and are likely to re-
ceive a dependent classification.

Recent studies show that the latent representation of clas-
sification CNNs can be used to provide visually meaningful
metric spaces [16, 32]. In addition, Caron et al. [5] show
that this representation is an effective space for proximity
measure even at the early stages of the training, including
the initialization. Consequently, during training we carry
out both these proximity considerations over the deepest en-
coding layer, C2, which correspond to a high-dimensional
feature extraction. We proceed with detailed description of
these query sampling steps.

Avoid Redundant Queries. Being a continuous func-
tion, coordinates with close latent vectors are likely to ob-
tain a similar classification by the subsequent decoding lay-
ers. Hence, we cluster the pixel coordinates in W , by com-
puting a k-means clustering, {Θi}ki=1, using L2 norm over
their corresponding latent vectors. Note that the spatial res-
olution of C2 differs from the input resolution by one 2-by-2
pooling step. However, this does not undermine the one-to-
one correspondence between the coordinates in W and the
latent vectors due to the non-maximum suppression that en-
sures a sufficient spacing inside W . We use the resulting
clusters in order to avoid redundant queries by limiting se-
lection from W to no more than one coordinate from the
same cluster.

Obtaining Informative Queries. Moreover, we use this
clustering to avoid querying windows which are similar to
ones already labeled, and by that explore novel and poorly-
generalized regions in the in-class manifold. This is done
by computing the L2 distance dw between the latent vectors
of every potential coordinate w ∈ W and its closest labeled
window in P ∪ N . Then, at each cluster Θi we extract
the window qi that is farthest from any user-provided label
window, by picking qi = argmaxw∈Θi

dw.
Targeting the Separation Margin. As aimed, this

choice results in a single, poorly-generalized, query from
each cluster. Recall also that all these queries are derived
from W and receive a positive classification from the net-
work, i.e., C(x) > 0,∀x ∈ W . As noted above, this allows
us to target and enrich the set of positive labels P . How-
ever, during the training process the network classification
is unreliable and some of the coordinates in W are likely to
be false-positives.

The user-provided labels for these queries is meant to
resolve these errors, nevertheless we aim for a weak user

1313

Figure 2. The classification network consists of three hidden layers where the latent representation vectors are taken from its deepest layer,
C2. Left to right are: the input image with two query windows from WPand two from WN shown with their appropriate colored frames.
The latent vectors of the query windows are shown next to the deepest layer, where the restriction to the positive and negatives sub-spaces
is apparent. At the right we see the current classification map C(x), where the labels obtained are circled. Note that in this example no
user correction is needed.

Figure 3. This example shows three clusters, two from WPand
one from WN , computed over the activations of the image in the
network. Each cluster consists of similar visual windows.

supervision. Therefore, we follow the strategy in [27] and
better target the query selection towards the separation mar-
gin between the true- and false-positive in W .

We use this space to split W into WPand WN based on
their proximity to labeled pixels in P or N respectively, i.e.,
a point in W will be inserted to WP if it has a closer point
(in the latent space) in P than in N , and vice versa.

Finally, we apply the process described above over
WPand WN separately, i.e., we compute k-means cluster-
ing over each set, then extract a single poorly-generalized
window from each cluster, and present the user with the five
top scoring ones (based on their dw) from WPand another
five from WN . In order to obtain five meaningful positive
and negative queries, we extract twice this number of clus-
ters, i.e., compute the k-means with k = 10 over each set.
Figures 3 shows example clusters extracted in this process.
These clusters were computed right after the initialization
step, showing the visual-meaningful metric space of the ac-
tivations at the very beginning of the training process. Com-
pared to a random query selection (from WPand WN), our
clustering-based query retrieval reduces the average error
percentage by 12.9% as shown in the ablation study we re-
port in the Appendix Section in the Supplemental Material
accompanying this submission.

Sub-Space Separation in Latent Space. The query ex-
traction procedure described above assumes the L2 distance
in latent space provides a reliable visual proximity measure.
We further conform the latent space representation with this
metric by introducing a disjoint sub-space constraint.

Specifically, we add an additional loss term, on top of the

label loss in Eq. 2, that restricts the latent representation of
the positive and negative windows to be mapped to disjoint
sub-spaces, by

Lsub =
∑
x∈P

∥C2(x)[1 :m]∥22 +
∑
x∈N

∥∥C2(x)
[
(m+ 1):2N

]∥∥2
2
,

such that ∥C2(x)∥2 = 1 at every point x,
(3)

where C2 denotes the deepest latent activation vectors and
[·] denotes their channels. This loss attempts to map the
negative windows through the first m channels of the latent
vectors (by minimizing the rest), and the positive windows
through the last 2N−m channels. The unit-norm constraint
ensures no trivial solution is reached, and is carried out by
a simple normalization layer coded into the network graph.
Note that the choice of which channels are associated with
which group (positive or negative) is arbitrary and has no
effect over this separation.

We evaluate the effect of m in the ablation study and
show it has a little influence. We opted for m = N in our
implementation. Figure 2 shows example activation vectors
revealing the restrictions produced by this sub-space term.
We also report in the ablation study the effect of this loss
term addition, which contributes a 13.7% reduction in aver-
age percentage counting error.

3.3. User Input

Given the extracted query windows, we incorporate the
user interaction scheme in [14] to obtain their true labels,
such that the user’s visual effort and number of mouse-
clicks is minimized. In this scheme, the query windows are
highlighted by a green or a red frame (as shown in Figure 1),
depending on a tentative label obtained from the classifier
being trained. The user is therefore only required to click
inside the misclassified windows.

Due to the high degree of visual complexity that we ex-
pect, we further add a right-mouse click for signaling a
“cannot determine” user input to avoid the acquisition of
incorrect labels. Note that this scheme does not require the

1314

user to inspect all the object occurrences in the image in or-
der to identify misclassifications, and it allows the number
of mouse clicks to be significantly lower than the number
of labels collected. In theory, if all the tentative labels are
found to be correct, no mouse click is needed. The labels
acquired in this step (excluding the rare cases of undeter-
mined windows) are added to the training sets P and N .

Recall that the queries presented to the user are derived
from WPand WN which correspond to two sets of queries,
one associated with positive previously-labeled queries, and
the second with negative previously-labeled queries respec-
tively. We use this association to derive the tentative labels
that we present.

As reported in the ablation study, this choice reduces
the average number of user mouse clicks (corrections) by
25.4% compared to using an all-positive query labeling.
The latter would have been the case if the labels were de-
rived from network’s classification, C(x), on these win-
dows.

3.4. Classifier Update

At the last step of each active-learning iteration we fur-
ther train the network to learn all the labels collected. This is
done by performing additional ADAM minimization steps
over the combined loss, Ltotal = Llabel + α ∗ Lsub, until
the labeling conditions are met, i.e., the classifications of the
network are ≥ 0.95 at the coordinates in P , and ≤ −0.95 at
N . Our hyper-parameters study shows that α = 1 achieves
the best results. An example of the resulting network clas-
sification map, C(x), is shown in figures 1 and 2.

Final Object Detection. Similarly to other user-assisted
counting methods, such as [1], the decision when to ter-
minate the active-learning iterations is left to the user. As
future work, we intend to explore the option of terminating
the process once very few or no user corrections are needed.

The list of object occurrences outputted by our algorithm
consists of all the positive non-maximum suppressed pixels
in the final classification map C(x) of the trained network.

Our method’s pseudo-code can be found in the Appendix
of this submission.

4. Results
We implemented our algorithm in Tensorflow and evalu-

ated it on an Nvidia GTX 1080Ti GPU. The network archi-
tecture and other algorithm parameters are all listed in Sec-
tion 3. The set of test images used for evaluating our method
consists of 47 images which we collected from a range of
sources and classes. Specifically, this set includes synthetic
and real fluorescence microscopy cell images from [2, 21],
crowd images taken from the Shanghaitech dataset [33], im-
ages from the Small Object dataset [25], as well as ones col-
lected from the Web. The latter contains different types of
repeating objects, such as cars, animal flocks, drink cans,

food items, and people. The number of repeating instances
varies considerably and ranges between 33 up to 877. Fi-
nally, the images were cropped such that all the objects are
within the image boundaries, i.e., the images do not contain
partial instances. These images, along with our results, can
be found in the Supplemental Material of this submission.

We report here the results of a thorough user-study that
we conducted in order to evaluate our method against ex-
isting state-of-the-art user-assisted methods. Moreover,
we run automated hyper-parameter search to optimize the
method’s performance as well as an ablation study to eval-
uate the contribution of the different method’s components
(as noted above, these tests can be found in the Appendix
Section). While we do not operate in a labels-rich regime,
we also compare our method against fully-supervised net-
works on a few images taken from their dataset.

User-Study. We evaluated our method against the user-
assisted methods of Arteta et al. [1] and Huberman and Fat-
tal [14] via a user-study consisting of 30 participants over
33 images. The users are novice with respect to using our
method, but are accustomed to use computers on a daily
basis. Before performing their task, the users received a
two-minutes demonstration on how to use the interface of
each method, and were instructed to perform five interac-
tive iterations. The study was designed to produce five ex-
periments for each method on each image in our test set.
We made sure that the same user does not repeat the same
experiment (image and method). Finally, the experiments
were conducted in a random ordering of the methods and
images, and the users were unaware as to which method
is ours. To the best of our knowledge, this is the largest
study reported for evaluating interactive counting methods
for single-image scenarios.

Table 1 presents the results obtained by this study, and
includes the counting error, two measures of localization
error, the number of user mouse-clicks and the overall ses-
sion time for each method and test image. Note that F-score
measures accuracy hence higher is better. A more compre-
hensive table is provided in the Appendix Section. In order
to evaluate the localization, we carefully prepared ground-
truth maps where each object appearance is recorded at its
center of its mass. The predicted location of an object is
considered to be correct if its surrounding 21-by-21 pixels
window contains an entry in the ground-truth map.

On average, the counting error percentage indicates that
our method achieves a greater counting accuracy compared
to the methods of Arteta et al. [1] and Huberman and Fat-
tal [14], and stands on 5.6%, 11.9% and 11.5% respec-
tively. Huberman and Fattal’s method appears to fail on
cases where the object of interest, due to its high complex-
ity, does not consist of many repeating patches or they do
not show sufficient spatial correlation. These images are
omitted from Table 1. The standard deviation of the er-

1315

Arteta et al. Huberman and Fattal Ours

Image Cnt. Er.
[%]

Loc. Er.
[%]

F1
[%]

Time
[sec]

Clicks Cnt. Er.
[%]

Loc. Er.
[%]

F1
[%]

Time
[sec]

Clicks Cnt. Er.
[%]

Loc. Er.
[%]

F1
[%]

Time
[sec]

Clicks

Antarctica 24.9 74.1 51.9 177.4 14.6 – – – – – 7.3 27.3 86.6 210.4 22.0
Beach 7.8 33.3 77.1 186.5 20.3 4.7 18.2 90.6 263.8 25.0 5.7 12.2 94.0 178.0 18.0
Beer 8.7 22.6 88.1 174.3 19.7 0.5 5.3 97.3 53.5 3.0 0.9 1.3 99.4 96.3 10.4
Bees 19.3 74.3 54.1 261.0 16.5 – – – – – 8.3 38.0 80.4 225.7 16.0
Birds 9.2 23.2 87.0 206.4 24.8 29.0 47.5 76.0 290.7 34.0 10.9 19.1 90.4 205.7 20.8
Birds002 11.6 38.3 76.7 267.4 29.2 28.9 33.7 80.3 319.7 36.0 10.9 16.4 91.4 281.5 18.4
Candles 5.6 60.3 59.1 165.2 22.8 7.1 19.9 20.6 72.7 9.0 5.1 7.7 96.1 87.8 11.5
Cars 12.9 40.3 72.2 148.9 18.6 19.0 52.4 75.2 124.3 35.7 3.3 5.9 97.1 123.6 18.8
CarsBg 26.7 60.3 57.3 288.0 27.7 3.5 11.0 94.6 371.6 25.7 4.3 6.0 97.1 191.5 22.5
CellLrg 10.9 13.4 92.7 209.0 18.4 0.4 0.4 99.4 61.9 9.5 0.1 0.1 100.0 79.0 8.8
CellSml 3.1 11.9 94.9 163.0 19.5 0.4 1.3 99.4 85.2 6.0 0.3 0.3 99.8 100.8 9.4
Chairs 4.6 19.5 89.0 192.4 28.6 14.9 25.6 86.0 264.9 27.7 0.6 0.8 99.6 120.8 12.0
CokeDiet 8.0 79.5 50.9 180.0 12.0 – – – – – 6.3 9.3 95.2 112.3 7.8
CokeReg 8.8 43.0 74.4 160.8 12.0 – – – – – 2.4 2.4 98.9 77.7 3.4
Cookies 5.8 56.2 64.0 157.8 20.0 4.3 9.2 95.2 83.0 26.5 1.8 4.9 97.5 103.4 13.4
Crabs 4.3 8.7 94.2 210.3 14.5 27.8 74.7 62.0 231.9 37.3 2.4 3.0 98.5 131.8 15.2
Crowd 6.7 53.7 66.5 183.0 26.6 16.6 70.5 61.5 233.4 37.0 8.1 33.9 82.5 172.3 20.6
Discussion 24.5 112.3 39.3 187.1 16.9 – – – – – 8.9 53.3 73.0 262.3 21.2
Fish097 6.0 29.9 83.8 116.0 13.7 10.3 25.9 86.7 70.2 12.0 10.0 16.9 92.0 137.5 15.8
Fish107 14.1 21.0 88.7 144.5 16.5 10.3 16.2 92.3 76.5 8.0 2.6 4.8 97.7 75.6 9.8
Flowers 18.2 54.0 63.3 173.0 25.0 18.5 71.9 64.6 278.1 36.2 20.2 30.2 83.2 149.7 13.8
Hats 8.1 36.3 78.9 224.3 19.8 26.9 81.0 60.1 293.5 31.8 2.8 17.0 91.5 142.4 18.8
Logs 9.8 47.0 69.1 154.0 20.9 5.6 6.1 97.0 142.8 13.0 2.2 5.0 97.5 107.5 22.4
Matches 4.9 28.0 83.5 194.6 31.8 0.5 0.8 99.6 32.0 9.5 0.2 0.2 99.9 86.7 8.8
Oranges 11.7 32.8 82.0 197.6 19.6 20.2 55.8 69.2 292.6 26.8 5.9 15.7 92.2 108.9 20.6
Parasol 13.6 59.5 68.4 155.0 12.5 12.0 17.0 92.5 192.0 9.3 5.6 11.2 94.5 93.9 12.2
Peas 24.5 56.5 60.3 153.6 21.2 16.3 29.5 86.4 174.3 30.0 15.5 20.0 89.1 123.8 14.3
Pills 6.7 5.2 97.3 153.8 19.6 1.1 3.3 98.3 60.0 19.5 0.2 0.2 99.9 73.0 8.8
RealCells 6.0 32.4 80.5 139.8 21.8 0.6 5.8 97.1 95.0 12.5 0.8 3.8 97.5 175.2 14.4
Sheep 10.0 51.5 66.8 236.2 24.7 15.1 57.7 73.3 227.5 31.3 9.6 26.0 87.4 262.5 21.5
Soldiers 28.6 72.9 47.4 167.2 24.4 18.4 57.8 68.2 193.2 23.0 12.7 46.4 75.6 140.6 22.6
Wall 14.7 73.3 46.2 155.8 22.4 7.3 15.5 92.4 93.1 16.0 7.0 12.7 93.8 100.5 19.2
Water 10.9 12.6 93.0 174.4 17.2 1.5 2.3 98.9 51.9 11.0 0.3 0.3 99.9 95.8 6.2
Average 11.9 43.6 72.7 183.6 20.4 11.5 29.2 82.7 168.9 21.5 5.6 13.7 93.0 140.4 15.1

Table 1. User-Study Results. The columns report (left-to-right): the average counting error percentage, localization error percentage (false-
positives plus false-negatives), F-score, interactive session time and the number of user mouse-clicks. This is repeated for each method.
The most accurate counting and localization estimates are marked in bold. The rows list the images used. Images Birds002, Fish097,
Fish107, and Bees were taken from the Small Objects dataset [25], CellLrg and CellSml from [21], Soldiers from [33] and RealCells
from [2].

ror percentages in both Arteta et al.’s and our methods (as
shown in the full table), which stand on 7.1% and 4.8%
respectively, imply a fair amount of consistency by these
methods.

We emphasize that in these tests our method was trained
and tested over a single image, assuming no prior knowl-
edge about the object type. The set of images used in-
cludes a wide range of image categories that demonstrate
the method’s flexibility and applicability.

Our improved counting accuracy stems from a consider-
able reduction in the localization error. When summing the

false-positives and false-negatives predictions, our methods
stands on 13.7% average error compared to 43.6% by Arteta
el al.’s method, and 29.2% by Huberman and Fattal’s. As
shown in the more comprehensive comparison table, Arteta
el al.’s average error precision is fairly high (89.3%) but
their recall is considerably lower (63.5%), which suggests
that their method misses many object appearances. This
large error is inconsistent with the lower false-negative er-
ror implied by their counting error. Indeed, this method per-
forms its counting and localization estimates independently.
Figure 4 shows example object localizations produced by

1316

Figure 4. Localization Example. The results of Arteta et al. [1],
Huberman and Fattal [14], and our methods are shown on the
Flowers and Crabs images.

the three methods. Our output appears to be well-correlated
with the object’s appearances.

In terms of average session times, our method compares
favorably, where the results discussed above were achieved
by our method in an average session time of 140 seconds,
by Arteta et al.’s method 183 seconds, and in Huberman
and Fattal’s 168 seconds. These session times reported in-
clude the initialization time, interaction time of five itera-
tions as well as training time of each iteration. It should
be noted that our method uses a richer visual model, but
this is compensated by its GPU implementation as well as
the user-friendly interface borrowed from [14] for collect-
ing the user feedback. These improved session time also
correlate with the number of recorded mouse-clicks, where
the users performed 15.1 clicks on average when using our
method, 20.4 clicks when using Arteta et al., and 21.5 when
using Huberman and Fattal’s.

Some of the images belong to the same source (scene)
and allow us to evaluate the performance of a model, trained
on one image, over the rest of the images. Specifically, train
models over the CellSml, Birds002 and Bees (from the user-
study above) and test them over different 7 cells images, 2
birds images and 5 bees images respectively. The result-
ing average counting error and F-score are: 0.4 and 99.7 on
CellSml images, 11 and 91.5 over the Birds, and 7.74 and
84.3 for the Bees. These results show our method general-
izes well over images from the same source, and provides
an attractive solution for such a scenario.

Finally, let us note that CokeReg and CokeDiet in Table 1
correspond to the same image containing two types of cans.
Based on the user’s input bounding-windows and labelings,
our network successfully counts one type or the other.

While the method of von Borstel et al. [3] does not pro-
vide object localization, it relies on a fairly small number
of labels to perform object counting. On the fluorescence
microscopy cell dataset [22], von Borstel et al. report a
counting average error of 6.7 cells given 70 user-provided
labels, where our method resulted in an average error of
6.06 cells, or 4.6% average counting error percentage, us-
ing the same number of labels. Moreover, our localization

error percentage and F-score average are 13.2% and 93.2%
respectively, which is consistent with the errors reported in
Table 1. These values are unavailable for the method of von
Borstel et al. as it does not localize the objects.

Supervised Methods. While our method operates in
a different training setting and targets a different practical
scenario, we provide a partial comparison to several fully-
supervised counting networks trained on large datasets.

The method in [33] estimates the number of people in
crowd scenes and was trained over a few hundreds of im-
ages. We included in our dataset one such image, titled
Crowd, on which we applied this method. The counting
error produced by this network is 14.1%, while our weakly-
supervised approach results in 8.1% on average. We believe
this supports the claim that the extra effort in running an in-
teractive approach pays off when the counting is required
only over a small number of images of a particular class.

The network in [25] is used for counting and localizing
small objects, and was trained independently over four dif-
ferent classes (fish, bees, flies and seagull). Our dataset con-
tains some images from this dataset, namely, Bees, Fish097,
Fish107 and Birds002. When training over about 300 train-
ing labels, Ma et al. [25] obtain an average F-measure of
84.1% over the bees images, and an average of 87.7% over
the fish images. Our method achieves averages of 80% and
93% on these image types respectively. In the case of the
seagull class (Birds002 in our set), they use about 930 labels
and obtain an F-measure average of 88.6%, where our aver-
age is 91%. The average number of mouse-clicks provided
by our users is 15.

In order to avoid training a classifier for specific object
classes, Lu et al. [24] train a generic matching network,
combine it with an adapter module that specializes on the
input class given a small number of labels. They report an
average counting error of 3.56±0.27 over cells images con-
taining between 74 and 317 occurrences, implying an aver-
age percentage error of at least 0.78% to 3.35% which is
×2.6 to ×11 higher than ours.

5. Conclusions
We presented a new weakly-supervised CNN training for

localizing and counting repeating objects applicable for sin-
gle image scenarios. This is made practical using an itera-
tive active-learning procedure that minimizes the number
of labels collected by analyzing the latent representations
of the network in order to avoid querying closely-related
windows and ones which are already labeled.

Evaluation against existing user-assisted counting meth-
ods demonstrates the network ability to achieve state-of-
the-art performance both in terms of counting and localiza-
tion accuracy. We conducted a user-study that demonstrated
the method’s superior performance on a wide range of im-
age classes and visual levels of complexity.

1317

References
[1] Carlos Arteta, Victor S. Lempitsky, J. Alison Noble, and An-

drew Zisserman. Interactive object counting. In Proceedings
of the European Conference on Computer Vision (ECCV),
pages 504–518, 2014.

[2] Elena Bernardis and Stella Yu. Pop out many small struc-
tures from a very large microscopic image. Medical image
analysis, 15:690–707, 2011.

[3] M. V. Borstel, M. Kandemir, Philip Schmidt, Madhavi K.
Rao, K. Rajamani, and F. Hamprecht. Gaussian process den-
sity counting from weak supervision. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
365–380, 2016.

[4] Liujuan Cao, Feng Luo, Li Chen, Yihan Sheng, Haibin
Wang, Cheng Wang, and Rongrong Ji. Weakly supervised
vehicle detection in satellite images via multi-instance dis-
criminative learning. International Conference on Pattern
Recognition (ICPR), 64:417–424, 2017.

[5] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In Proceedings of the European Con-
ference on Computer Vision (ECCV), volume 11218, pages
139–156, 2018.

[6] Antoni B. Chan, Zhang-Sheng John Liang, and Nuno Vas-
concelos. Privacy preserving crowd monitoring: Counting
people without people models or tracking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2008.

[7] Ke Chen, Chen Change Loy, Shaogang Gong, and Tony Xi-
ang. Feature mining for localised crowd counting. In The
British Machine Vision Conference (BMVC), pages 21.1–
21.11, 2012.

[8] Joseph Paul Cohen, G. Boucher, Craig A. Glastonbury,
Henry Z. Lo, and Yoshua Bengio. Count-ception: Count-
ing by fully convolutional redundant counting. Proceedings
of the IEEE International Conference on Computer Vision
(ICCV) Workshops, 2017.

[9] Klaas Dijkstra, Jaap van de Loosdrecht, L. R. B. Schomaker,
and Marco A. Wiering. Centroidnet: A deep neural network
for joint object localization and counting. In European Con-
ference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML-PKDD), pages
585–601, 2018.

[10] Lan Dong, Vasu Parameswaran, Visvanathan Ramesh, and
Imad Zoghlami. Fast crowd segmentation using shape in-
dexing. Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2007.

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 580–587, 2014.

[12] Meng-Ru Hsieh, Yen-Liang Lin, and Winston H. Hsu.
Drone-based object counting by spatially regularized re-
gional proposal networks. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), pages
4145–4153, 2017.

[13] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7132–7141,
2018.

[14] Inbar Huberman and Raanan Fattal. Detecting repeating ob-
jects using patch correlation analysis. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), volume 34, 2016.

[15] Haroon Idrees, Imran Saleemi, Cody Seibert, and Mubarak
Shah. Multi-source multi-scale counting in extremely dense
crowd images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

[16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 2016.

[17] Di Kang, Zheng Ma, and Antoni Chan. Beyond count-
ing: Comparisons of density maps for crowd analysis tasks
- counting, detection, and tracking. IEEE Transactions on
Circuits and Systems for Video Technology (TCSVT), 2017.

[18] Dan Kong, Doug Gray, and Hai Tao. A viewpoint invariant
approach for crowd counting. In International Conference
on Pattern Recognition (ICPR), volume 3, 2006.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 1097–1105, 2012.

[20] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J.
Matas. Deblurgan: Blind motion deblurring using condi-
tional adversarial networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8183–8192, 2018.

[21] Antti Lehmussola, Pekka Ruusuvuori, Jyrki Selinummi,
Heikki Huttunen, and Olli Yli-Harja. Computational frame-
work for simulating fluorescence microscope images with
cell populations. IEEE Transactions on Medical Imaging,
26(7):1010–1016, 2007.

[22] Victor Lempitsky and Andrew Zisserman. Learning to count
objects in images. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), volume 23, pages 1324–1332,
2010.

[23] Chen Change Loy, Shaogang Gong, and Tao Xiang. From
semi-supervised to transfer counting of crowds. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion (ICCV), pages 2256–2263, 2013.

[24] E. Lu, W. Xie, and A. Zisserman. Class-agnostic counting.
In Asian Conference on Computer Vision (ACCV), 2018.

[25] Z. Ma, Lei Yu, and A. B. Chan. Small instance detection by
integer programming on object density maps. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3689–3697, 2015.

[26] David Ryan, Simon Denman, Clinton B. Fookes, and Sridha
Sridharan. Crowd counting using multiple local features.
In Digital Image Computing : Techniques and Applications
(DICTA), 2009.

[27] Tobias Scheffer, Christian Decomain, and Stefan Wrobel.
Active hidden markov models for information extraction. In

1318

Proceedings of International Conference on Advances in In-
telligent Data Analysis, pages 309–318, 2001.

[28] S. Seguı́, O. Pujol, and J. Vitrià. Learning to count with
deep object features. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 90–96, 2015.

[29] Elad Walach and Lior Wolf. Learning to count with cnn
boosting. In Proceedings of the European Conference on
Computer Vision (ECCV), 2016.

[30] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu,
Andrew Tao, Jan Kautz, and Bryan Catanzaro. Video-to-
video synthesis. In Advances in Neural Information Pro-
cessing Systems (NeurIPS), 2018.

[31] W. Xie, J. A. Noble, and A. Zisserman. Microscopy cell
counting and detection with fully convolutional regression
networks. Computer Methods in Biomechanics and Biomedi-
cal Engineering: Imaging & Visualization, 6:283–292, 2016.

[32] Richard Zhang, Phillip Isola, Alexei Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 586–595, 2018.

[33] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao,
and Yi Ma. Single-image crowd counting via multi-column
convolutional neural network. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 589–597, 2016.

1319

