Abstract

This paper presents a novel neural architecture search method, called LiDNAS, for generating lightweight monocular depth estimation models. Unlike previous neural architecture search (NAS) approaches, where finding optimized networks is computationally demanding, the introduced novel Assisted Tabu Search leads to efficient architecture exploration. Moreover, we construct the search space on a pre-defined backbone network to balance layer diversity and search space size. The LiDNAS method outperforms the state-of-the-art NAS approach, proposed for disparity and depth estimation, in terms of search efficiency and output model performance. The LiDNAS optimized models achieve results superior to compact depth estimation state-of-the-art on NYU-Depth-v2, KITTI, and ScanNet, while being 7%-500% more compact in size, i.e., the number of model parameters.

1. Introduction

Depth information is essential to numerous computer vision applications, including robotics, mixed reality, and scene understanding. Traditionally, accurate depth measurements are acquired using stereo or multi-view setups [23, 52] or active sensors such as ToF cameras, LiDARs. However, deploying such methods for resource-limited devices is costly or may even be infeasible in practice. Considering this, current advances in learning-based monocular depth estimation proffering them as viable alternatives to conventional approaches.

Recent deep neural networks (DNN) show compelling results on single image depth estimation by formulating apparent depth cues [3, 5, 13, 27, 28, 33, 35, 36, 44, 57] or estimating relative depth in unconstrained settings [4, 34, 45]. Moreover, self-supervised methods [15, 19] offered appealing solutions for single image depth estimation. Nevertheless, most studies focus on increasing accuracy at the expense of model complexity, making them infeasible in practice.

To tackle this problem, lightweight depth estimation methods [55] were proposed by utilizing small and straightforward architecture. Usually, such simple designs are unreliable and yield low-quality predictions. Other popular strategies include quantizing the weights of a network into low-precision fixed-point operations [22] or pruning by directly cutting off less important filters [58]. That being said, these methods depend on a baseline model, tend to degrade its performance afterward and incapable of exploring new combinations of DNN operations. Moreover, creating a
resource-constrained model is a non-trivial task requiring 1) expert knowledge to carefully balance accuracy and resource and 2) plenty of tedious trial-and-error work.

Neural architecture search (NAS), proposed recently [61, 62], exhibits compelling results, and more importantly, promises to relieve from the manual tweaking of deep neural architectures. Unfortunately, NAS methods mostly oblige thousands of training hours on hundreds of GPUs. To address this, recent NAS studies introduced various efficient increasing techniques, which include weight sharing [41], and network transformation [11]. These methods show promising results, but they are still expensive and mainly focus on classification and detection.

This paper introduces LiDNAS, an efficient model compactness-aware NAS framework, with the objective of searching for accurate and lightweight monocular depth estimation architectures. The approach is based on two main ideas. First, we observe that previous NAS methods essentially search for a few types of cells and then repeatedly accumulate the same cells to build the whole network. Although doing this simplifies the search process, it also restrains layer diversity that is important for computational efficiency. Instead, we construct a pre-defined backbone network that utilizes different layers striving for the right balance between flexibility and search space size. Secondly, we proposed the Assisted Tabu Search (ATS) for efficient neural architecture search. Inspired by the recent NAS study that suggests estimating network performance without training [40], we integrate this idea into our multi-objective search function to swiftly evaluate our candidate networks. This, in turn, reduces $\sim 90\%$ search time compared to state-of-the-art NAS-based disparity and depth estimation approaches [48].

Figure 1 summarizes a comparison between our LiDNAS models and other state-of-the-art lightweight approaches. Compared to PyD-Net [42], our method improves the REL, RMSE, and thresholded accuracy by 13.6%, 8.3%, and 3% with similar execution time on the Google Pixel 3a phone (see Table 4). Compared to FastDepth [55] and EDA [54], our model achieves higher accuracy with fewer parameters. To summarize, our work makes the following contributions:

- We propose a multi-objective exploration framework, LiDNAS, searching for accurate and lightweight monocular depth estimation architectures.
- We introduce a novel scheme called Assisted Tabu Search, enabling fast neural architecture search.
- We create a well-defined search space that allows computational flexibility and layer diversity.
- We achieve the state-of-the-art results compared to the lightweight baselines on NYU-Depth-v2, KITTI, and ScanNet while using less parameters.

The implementation of LiDNAS will be made publicly available upon publication of the paper.

2. Related work

Monocular depth estimation Learning-based single image depth estimation was first introduced by Saxena et al. [50]. Later studies improved accuracy by using large network architectures [5, 9, 10, 27, 32] or integrating semantic information [30] and surface normals [43]. Fu et al. [14] formulated depth estimation as an ordinal regression problem, while [4, 34] estimated relative instead of metric depth. Facil et al. [13] proposed to learn camera calibration from the images for depth estimation. Recent approaches further improve the performance by exploiting monocular priors such as planarity constraints [35, 36, 59, 28, 33] or occlusion [44]. Gonzalez and Kim [20] estimated depth by synthesizing stereo pairs from a single image, while [57] and [45] applied vision-transformer for depth prediction. However, these studies mostly focus on increasing accuracy at the cost of model complexity that is infeasible in resource-limited settings.

Lightweight depth estimation architectures For resource-limited hardware, it is more desirable to not only have a fast but also accurate model. One simple alternative is employing lightweight architectures such as MobileNet [24, 25, 49, 55], GhostNet [21], and FBNet [54]. One popular approach is utilizing network compression techniques, including quantization [22], network pruning [58], and knowledge distillation [60]. Other methods employ well-known pyramid networks or dynamic optimization schemes [1]. However, these tasks are tedious, require a lot of trial-and-error, and usually lead to architectures with low accuracy.

Neural Architecture Search There has been increasing interest in automating network design using neural architecture search. Most of these methods focus on searching high-performance architecture using reinforcement learning [2, 37, 41, 61, 62], evolutionary search [46], differentiable search [38], or other learning algorithms [39]. However, these methods are usually very slow and require huge resources for training. Other studies [8, 12, 26] also attempt to optimize multiple objectives like model size and accuracy. Nevertheless, their search process optimizes only on small tasks like CIFAR. In contrast, our proposed method targets real-world data such as NYU, KITTI and ScanNet.

3. LiDNAS

We propose the LiDNAS framework to search for accurate and lightweight monocular depth estimation architectures. The overview the our approach is presented in Figure 3. It takes in a dataset as input to search for the best possible model. This model can be deployed for depth estimation on hardware-limited devices. The first subsection defines the
Figure 2. The search space of our LiDNAS framework. Models are constructed from a pre-defined backbone network containing encoder, decoder, refine, downsample and upsample blocks (green). A block is formed by several identical layers (orange) that are generated from a pool of operations and connections. Layers within a block are the same while layers of different blocks can be different.

search space while the remaining two describe our multi-objective exploration and search algorithm.

3.1. Search Space

Previous neural architecture search (NAS) studies demonstrated the significance of designing a well-defined search space. A common choice of NAS is searching for a small set of complicated cells from a smaller dataset [62, 37, 46]. These cells are later replicated to construct the entire architecture that hindered layer diversity and suffered from domain differences [53]. On the other hand, unlike classification tasks, dense prediction problems involve mapping a feature representation in the encoder to predictions at larger spatial resolution in the decoder.

To this end, we build our search space upon a pre-defined backbone that is shown as the set of green blocks in Figure 2. The backbone is divided into multi-scale pyramid networks operating at different spatial resolutions. Each network scale consists of two encoder blocks, two decoder blocks, a refine block, a downsample and a upsample block (except for scale 1). Each block is constructed from a set of identical layers (marked as orange in Figure 2). Inspired by [53], we search for the layer from a pool of operations and connections, including:

- The number of layer for each block $N_{i,j}$.
- Convolutional operations (ConvOps): vanilla 2D convolution, depthwise convolution, and inverted bottleneck convolution.
- Convolutional kernel size (KSize): 3×3, 5×5.
- Squeeze and excitation ratio (SER): 0, 0.25.
- Skip connections (SOps): residual or no connection.
- The number of output channels: $F_{i,j}$.

where i indicates the resolution scale and j is the block index at the same resolution. Internal operations such as ConvOps, KSize, SER, SOps, $F_{i,j}$ are utilized to construct the layer while $N_{i,j}$ determines the number of layer that will be replicated for block i,j. In other words, as shown in Figure 2, layers within a block (e.g. layers 1 to $N_{1,2}$ of Encoder Block 1,2 are the same) are similar while layers of different blocks (e.g. Layer 1 in Refine Block 1,5 versus Layer 1 in Upsample Block S,7) can be different.

We also perform layer mutation to further diversifying the network structure during the architecture search process. The mutation operations include:

- Swapping operations of two random layers with compatibility check.
- Modifying a layer with a new valid layer from the pre-defined operations.

Moreover, we also set computational constraints to balance the kernel size with the number of output channels. Therefore, increasing the kernel size of one layer usually results in decreasing output channels of another layer.

Assuming we have a network of S scales, and each block has a sub-search space of size M then our total search space will be $M^{5+[(S-1)\times 7]}$. Supposedly, a standard case with $M = 192, S = 5$ will result in a search space of size $\sim 2 \times 10^{35}$.

Figure 3. Overview of the proposed approach.
number of parameters of model m is defined by

ccuracy and the number of parameter of a trained model. It
validation grade we monitor the both accurate and compact architectures. For this purpose,
We introduce a multi-objective search paradigm seeking for
3.2. Multi-Objective Exploration

Figure 4. Plots of the score at initialisation of untrained architec-
tures against evaluation metrics after training: (a), (b) accuracy (δ_i); (c), (d) mean absolute error of the inverse depth (iMAE); and (d), (e), (f) absolute relative error (REL). Plots from the first, second and third row are obtained from NYU-Depth-v2, KITTI and ScanNet dataset, respectively.

3.2. Multi-Objective Exploration

We introduce a multi-objective search paradigm seeking for
both accurate and compact architectures. For this purpose, we
monitor the validation grade G that formulates both ac-
curacy and the number of parameter of a trained model. It
is defined by

$$G(m) = \alpha \times A(m) + (1 - \alpha) \times \left[\frac{P}{P(m)} \right]^r$$ \hspace{1cm} (1)

where $A(m)$ and $P(m)$ are validation accuracy and the
number of parameters of model m. P is the target compactness, α is the balance coefficient, and r is an exponent

with $r = 0$ when $P(m) \leq P$ and otherwise $r = 1$. The

However, computing G requires training for every archi-
tecture candidate, resulting in considerable search time. To
mitigate this problem, Mellor et al. [40] suggested to score
an architecture at initialisation to predict its performance
before training. For a network f, the score(f) is defined as:

$$\text{score}(f) = \log|K_H|$$ \hspace{1cm} (2)

where K_H is the kernel matrix. Assume the mapping of
model f from a batch of data $X = \{x_i\}_{i=1}^N$ is $f(x_i)$. By
assigning binary indicators to every activation units in f, a
linear region x_i of data point i is represented by the binary
code c_i. The kernel matrix K_H is defined as:

$$K_H = \begin{pmatrix}
N_A - d_H(c_1, c_1) & \cdots & N_A - d_H(c_1, c_N) \\
\vdots & \ddots & \vdots \\
N_A - d_H(c_N, c_1) & \cdots & N_A - d_H(c_N, c_N)
\end{pmatrix}$$ \hspace{1cm} (3)

where N_A is the number of activation units, and $d_H(c_i, c_j)$
is the Hamming distance between two binary codes. In-
spired by this principle, we generate and train a set of dif-
ferent architectures on NYU, KITTI, and ScanNet. We eval-
uate the performance of these models and visualize the re-
results against the score that in our case is the mapping of
depth values within image batches. Plots in Figure 4 show
that models with higher score tend to yield better results.
Leveraging this observation, we 1) utilize the score in our
initial network ranking, and 2) define the mutation explo-
ration reward \mathcal{R} as:

$$\mathcal{R}(m_i, m_j) = \alpha \times \frac{\text{score}(m_j)}{\text{score}(m_i)} + (1 - \alpha) \times \left[\frac{P}{P(m_j)} \right]^r$$ \hspace{1cm} (4)

where m_j is a child network that is mutated from m_i archi-
tecture.

3.3. Search Algorithm

The flowchart of our architecture search is presented in Fig-
ure 5. We first randomly generate $60K$ unique parent mod-
els and create the initial network ranking based on the score
in Eq. 2. We then select six architectures in which three
are the highest-ranked while the other three have the high-
est score of the networks with the size closest to the target
compactness.

Starting from these initial networks, we strive for the best
possible model utilizing the Assisted Tabu Search (ATS).
Tabu search (TS) [18] is a high level procedure for solving
multicriteria optimization problems. It is an iterative al-
gorithm that starts from some initial feasible solutions and
aims to determine better solutions while being designed to avoid traps at local minima.

We propose ATS by applying Eq. 1 and 4 to TS to speed up the searching process. Specifically, we mutate numerous children models ($m_1, m_2, ..., m_n$) from the current architecture (m_c). The mutation exploration reward $R(m_c, m_i)$ is calculated using Eq. 4. ATS then chooses to train the mutation with the highest rewards (e.g., architecture m_i as demonstrated in Figure 5). The validation grade of this model $G(m_i)$ is calculated after the training. The performance of the chosen model is assessed by comparing $G(m_i)$ with $G(m_c)$. If $G(m_i)$ is larger than $G(m_c)$, then m_c is a good mutation, and we opt to build the next generation upon its structure. Otherwise, we swap to use the best option in the tabu list for the next mutation. The process stops when reaching a maximum number of iterations or achieving a terminal condition. The network ranking will be updated, and the search will continue for the remaining parent architectures. Further comparison between TS and ATS is provided in the supplementary material.

4. Performance analysis

In this section, we evaluate the performance of the proposed method and compare it with several baselines on the NYU-Depth-v2, KITTI, and ScanNet datasets.

4.1. Datasets

We evaluate the proposed method using NYU-Depth-v2 [51], ScanNet [7] and KITTI [16] datasets. NYU-Depth-v2 contains ~120K RGB-D images obtained from 464 indoor scenes. From the entire dataset, we use 50K images for training and the official test set of 654 images for evaluation. The ScanNet dataset comprises of 2.5 million RGB-D images acquired from 1517 scenes. For this dataset, we use the training subset of ~20K images provided by the Robust Vision Challenge 2018 [17] (ROB). In this paper, we report the results on the ScanNet official test set of 5310 images instead. KITTI is an outdoor driving dataset, where we use the standard Eigen split [9, 10] for training (39K images) and testing (697 images).

4.2. Evaluation metrics

The performance is assessed using the standard metrics provided for each dataset. That is, for NYU-Depth-v2 and KITTI we calculate the mean absolute relative error (REL), root mean square error (RMSE), and thresholded accuracy (δ_i). For the ScanNet dataset, we provide the mean absolute relative error (REL), mean square relative error (sqREL), scale-invariant mean squared error (SI), mean absolute error (iMAE), and root mean square error (iRMSE) of the inverse depth values.

4.3. Implementation Details

For searching, we directly perform our architecture exploration on the training samples of the target dataset. We set the target compactness parameter P using the previously published compact models as a guideline. We set the maximum number of exploration iteration to 100 and stop the exploration procedure if a better solution cannot be found after 10 iterations. The total search time required to find optimal architecture is ~4.3 GPU days.

For training, we use the Adam optimizer [31] with $(\beta_1, \beta_2, \epsilon) = (0.9, 0.999, 10^{-8})$. The initial learning rate is 7×10^{-4}, but from epoch 10 the learning is reduced by 5% per 5 epochs. We use batch size 256 and augment the input RGB and ground truth depth images using random rotation ([−5.0, +5.0] degrees), horizontal flip, rectangular window droppings, and colorization (RGB only).

4.4. Comparison with state-of-the-art

NYU-Depth-v2: We set the target compactness $P = 2M$ with the balance coefficient $\alpha = 0.6$ to search for the optimized model on NYU-Depth-v2. We then select the best performance model (LiDNAS-N) and compare its results with lightweight state-of-the-art methods [54, 55, 56, 60].
along with their numbers of parameters. As shown in Table 1, LiDNAS-N outperforms the baseline while containing the least amount of parameters. Comparing with the best-performing approach, the proposed model improves the REL, RMSE, and δ1 by 11.4%, 8.2%, and 6.8% while compressing the model size by 55%. Our method produces high-quality depth maps with sharper details as presented in Figure 9. However, we observe that all methods still struggle in challenging cases, such as the scene containing Lambertian surfaces as illustrated by the example in the third column of Figure 9. Moreover, the proposed method improves REL and RMSE by 22.3% and 18.7% while using only 3% of the model parameters comparing to the state-of-the-art NAS-based disparity and depth estimation approaches [48]. In addition, our method requires 90% less search time than [48].

KITTI: In the case of KITTI, we aim at the target compactness of \(P = 1.5M \) with \(\alpha = 0.55 \). We then train our candidate architectures with the same self-supervised procedure proposed by [19] and adopted by the state-of-the-art approaches [1, 6, 42, 55]. After the search, we pick the best architecture (LiDNAS-K) to compare with the baselines and report the performance figures in Table 2. The LiDNAS-K model yields competitive results with the baselines while also being the smallest model. We observe that our proposed method provides noticeable improvement from PyD-Net and EQPyD-Net. Examples from Figure 7 show that the predicted depth maps from LiDNAS-K are more accurate and contain fewer artifacts.

ScanNet: For ScanNet, we set the target compactness to 4.5 \(M \) with \(\alpha = 0.57 \) for searching. Despite of being compact, our best performance model (LiDNAS-S) produces competitive results compared with state-of-the-art methods, as shown in Table 3. More specifically, it requires only 20% of the number of parameters in comparison with the best performance baseline. We also observe that although SARPN [5] and Hu et al. [27] models are multiple times larger than DS-SIDENet [47] or DAV [28], the latter still yield better results, emphasizing the importance of optimal network structure. Furthermore, our model produces comparable depth maps as shown in Figure 10. Details of the generated architectures are provided in the supplementary material.

Runtime Measurement
We also compare the runtime of our models with state-of-the-art lightweight methods on an Android device using the app from the Mobile AI benchmark developed by Ignatov et al. [29]. To this end, we utilize the pre-trained models provided by the authors (Tensorflow [42], PyTorch [55]) and convert them to tflite. The results in Table 4 suggest that the proposed approaches produce competing performance, with the potential of running real-time on mobile devices with further optimization.

4.5. Ablation studies

Table 3. Evaluation results on ScanNet [7] dataset.

<table>
<thead>
<tr>
<th>Architecture</th>
<th>CPU(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SARPN [5]</td>
<td>210.3M</td>
</tr>
<tr>
<td>Hu et al. [27]</td>
<td>157.0M</td>
</tr>
<tr>
<td>DS-SIDENet [47]</td>
<td>49.8M</td>
</tr>
<tr>
<td>DAV [28]</td>
<td>25.1M</td>
</tr>
<tr>
<td>LiDNAS-S</td>
<td>5.2M</td>
</tr>
</tbody>
</table>

Table 4. Average runtime comparison of the proposed method and other lightweight models. Runtime values are measured using a Pixel 3a phone with input image resolution (640 × 480).

<table>
<thead>
<tr>
<th>Architecture</th>
<th>CPU(ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FastDepth [55]</td>
<td>458</td>
</tr>
<tr>
<td>Ef+FBNet [54, 56]</td>
<td>852</td>
</tr>
<tr>
<td>PyD-Net [42]</td>
<td>226</td>
</tr>
<tr>
<td>LiDNAS-K</td>
<td>205</td>
</tr>
<tr>
<td>LiDNAS-N</td>
<td>262</td>
</tr>
<tr>
<td>LiDNAS-S</td>
<td>380</td>
</tr>
</tbody>
</table>
Exploration Convergence: We experiment with various settings for the multi-objective balance coefficient (α) to assess its effect on the performance. For this purpose, we perform the architecture search with α set to 0.0, 0.4, 0.5, 0.6, and 1.0 while the target compactness $P = 2.0M$. Figure 6 presents the searching progress for accuracy (left), the number of parameters (center), and validation grade (right) from one parent architecture on NYU-Depth-v2. We observe that, scenario with $\alpha = 0.0$ quickly becomes saturated as it only gives reward to the smallest model. Searching with $\alpha = 0.4$ favors models with compact size but also with limited accuracy. The case with $\alpha = 0.5$ provides a more balanced option, but accuracy is hindered due to fluctuation during searching. The exploration with $\alpha = 1.0$ seeks for the network with the best accuracy yet producing significantly larger architecture while the case where $\alpha = 0.6$ achieves promising accuracy although with slightly bigger model than the target compactness.

Searching Scenarios: To further analyze the outcome of different searching scenarios, we perform architecture searches for six parent networks in five settings with $\alpha = 0.0, 0.4, 0.5, 0.6, 1.0$ and $P = 2.0M$ on NYU-Depth-v2. Results in Figure 8 show that best performance models in case $\alpha = 0.5$ are more spread out, while training instances with $\alpha = 0.6$ tend to produce both accurate and lightweight architectures. This, in turn, emphasizes the trade-off between validation accuracy and network size.

5. Conclusion

This paper proposed a novel NAS framework to construct lightweight monocular depth estimation architectures using Assisted Tabu Search and employing a well-defined search space for balancing layer diversity and search volume. The proposed method achieves competitive accuracy on three benchmark datasets while running faster on mobile devices and being more compact than state-of-the-art handcrafted and automatically generated models. Our work provides a potential approach towards optimizing the accuracy and the network size for dense depth estimation without the need for manual tweaking of deep neural architectures.
Figure 9. Comparison on the NYU test set. (a) input image, (b) ground truth, (c) LiDNAS-N, (d) Ef+FBNet [54, 56], and (e) FastDepth [55].

Figure 10. Comparison on the ScanNet test set. (a) input image, (b) ground truth, (c) LiDNAS-S, (d) DAV [28], and (e) SARPN [5].
References

[28] Lam Huynh, Phong Nguyen-Ha, Jiri Matas, Esa Rahtu, and Janne Heikkilä. Guiding monocular depth estimation using

Diana Wofk, Fangchang Ma, Tien-Ju Yang, Sertac Karaman, and Vivienne Sze. Fastdepth: Fast monocular depth esti-

