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Abstract

Panoptic segmentation, which is a novel task of unifying
instance segmentation and semantic segmentation, has at-
tracted a lot of attention lately. However, most of the previ-
ous methods are composed of multiple pathways with each
pathway specialized to a designated segmentation task. In
this paper, we propose to resolve panoptic segmentation in
single-shot by integrating the execution flows. With the in-
tegrated pathway, a unified feature map called Panoptic-
Feature is generated, which includes the information of
both things and stuffs. Panoptic-Feature becomes more so-
phisticated by auxiliary problems that guide to cluster pix-
els that belong to the same instance and differentiate be-
tween objects of different classes. A collection of convo-
lutional filters, where each filter represents either a thing
or stuff, is applied to Panoptic-Feature at once, materializ-
ing the single-shot panoptic segmentation. Taking the ad-
vantages of both top-down and bottom-up approaches, our
method, named SPINet, enjoys high efficiency and accuracy
on major panoptic segmentation benchmarks: COCO and
Cityscapes.

1. Introduction
Panoptic segmentation, first proposed by Kirillov et

al. [15], is a task with the goal of annotating each pixel to
the corresponding category. While semantic segmentation
limits the term ‘category’ to class labels, panoptic segmen-
tation extends the term to include the concept of instances.
An early solution for the task was to use completely sepa-
rate leading algorithms for instance and semantic segmen-
tation [15]. However, separating models for each task not
only conflicts with the motivation behind panoptic segmen-
tation but also doubles the computation and the model size.
As panoptic segmentation is based on the philosophy of uni-
fying two different tasks, an ideal solution for the problem
would be finding the best joint framework for both tasks.

To derive a joint solution for the new task, previous ap-
proaches started to adopt powerful instance or semantic seg-
mentation models as baselines. Most of currently leading
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Figure 1. Panoptic segmentation with SPINet. (a) Most panoptic
segmentation models tackle the task by separating the execution
flow into two: instance branch I , and semantic branch S. (b)
Intermediate predictions from I and S can generate better final
prediction by using an additional module M . (c) Explicit con-
nections between I and S alleviate the isolation of information.
(d) Our model integrates I and S, performing panoptic segmenta-
tion within a single feature map. Through this integration, we can
achieve improvement both in performance and efficiency.

panoptic segmentation models put their basis on either (top-
down) Mask R-CNN [11] or (bottom-up) DeepLab [4]. As
the baseline itself cannot fully perform panoptic segmen-
tation, additional modules become necessary: a semantic
branch for Mask R-CNN [14] and an instance branch for
DeepLab [43].

Efficiency-wise, the strategy of supplying additional
modules on top of the chosen basis was successful [7, 14,
26] (Fig. 1 (a)). Compared to executing two independent
networks, the concept of sharing backbone layers for both
instance and semantic branch led to a huge reduction of
computations. Further improvement in performance was
achieved by putting a connection between the two branches.

3328



For instance, by including an extra module that takes inter-
mediate predictions [17, 42] from the two branches resulted
in performance improvement (Fig. 1 (b)). Moreover, sup-
plying explicit connections between the branches [6, 18, 40]
as shown in Fig. 1 (c), also enhanced the predictions as each
branch complements from the information of their counter-
parts. However, these methods still have separate pathways
for instance and semantic segmentation, leaving room for
further structural unification.

In this paper, we propose SPINet with the goal of inte-
grating the branches of instance and semantic segmentation
(Fig. 1 (d)). By unifying two pathways, SPINet generates
a single feature map called Panoptic-Feature, used for seg-
menting both thing and stuff. In contrast to previous struc-
tures with separate branches, Panoptic-Feature holds the in-
formation of both thing and stuff, thus it bridges the gap
between the two without any explicit connections. Addi-
tionally, the computations necessary for capturing the con-
text at high-level while retaining low-level fine details can
be shared with the integrated pathway, making our model
highly efficient.

As we integrate the execution flow of thing and stuff al-
together, the panoptic segmentation task can be finalized in
single-shot by applying a unified convolution to Panoptic-
Feature. The weights of thing classes are generated dynam-
ically by reading the context of the input scene similar to
CondInst [31], and trainable parameters are used for the
weights of stuff classes. By collecting all the weights and
applying these to the Panoptic-Feature by the single-shot
convolution, SPINet can generate masks for every things
and stuffs in the scene at once.

The key to the success of the proposed method lies in the
representation power of the Panoptic-Feature. To strengthen
the Panoptic-Feature, we propose auxiliary tasks in order to
learn a better latent space. The auxiliary tasks are designed
to lead points in Panoptic-Feature to be clustered if they
belong to the same class and moreover the same instance.
Trained with additional guidance signals from the auxiliary
tasks, we show that the performance of our panoptic seg-
mentation gains further improvement.

SPINet achieves the state-of-the-art performance even
without using heavy modules such as ASPP [4] or de-
formable convolution [9]. Moreover, by integrating the
characteristics of both top-down and bottom-up, our model
resolves the quality imbalance issue of previous ap-
proaches; top-down based models acquiring high PQth but
comparatively low PQst1, and vice-versa. For the first time,
SPINet achieves comparable results to two-stage methods
on COCO [21] without the region proposal network. More-
over, our model delivers the state-of-the-art performance
while yielding huge efficiency on Cityscapes [8]. With
ResNet-50-FPN backbone, SPINet achieves 63.5% PQ on
Cityscapes val set, and 43.0% PQ on COCO val set.

2. Related Works

2.1. Panoptic Segmentation Approaches

Mask R-CNN Based. Mask R-CNN [11] is a well-
known instance segmentation model which detects in-
stances first, then searches for finer details for segmen-
tation. Panoptic-FPN [14] proposed using Mask R-CNN
for the new panoptic segmentation task with an additional
semantic segmentation branch. Numerous panoptic seg-
mentation models [6, 16, 17, 18, 22, 40, 42] are built on
top of Panoptic-FPN structure, increasing the performance
with additional enhancement techniques. Since ‘detect-
then-segment’ pipeline shows strength in capturing objects,
panoptic segmentation methods based on Mask R-CNN
show high PQth. However, as the models are not focused
on preserving pixel-level details, PQst is relatively low.

DeepLab Based. DeepLab [4] is a strong semantic seg-
mentation model, which focuses on fine-grained details by
taking encoder-decoder like structure to recover spatial res-
olution. Panoptic segmentation models that adopt DeepLab
[7, 43] not only generate pixel-level predictions for stuff but
also for thing. With the fine-grained predictions, formation
of instances is possible by a bottom-up methodology; ag-
gregating the pixels that have similar aspects. As opposed
to top-down models with Mask R-CNN, bottom-up panop-
tic segmentation models acquire high PQst, but low PQth.

DETR. Unifying thing and stuff classes altogether,
DETR [3] predicts which categories exist in the input. With
a number of attention heatmaps, generated per each pre-
dicted category by the transformer [33], mask logits cor-
responding to each category can be generated. The final
prediction of panoptic segmentation can be done by a single
pixel-wise argmax on the predicted mask logits. Though
the methodology is noticeably simple, DETR requires an
extremely large computing resource as it needs to decode
the attention heatmaps for every instances separately in ad-
dition to the heavy base computation from the use of the
transformer.

SPINet shows aspects of bottom-up as each point of
Panoptic-Feature retains information about which class and
instance they originate from. Meanwhile, the generation of
dynamic filters catches the context of instances [31], hence
our model can also be viewed as top-down. Similar to
DETR, SPINet integrates the execution flow of thing and
stuff by treating the both equally, but lighter as SPINet re-
quires less steps to generate predictions. Taking the advan-
tages of top-down, bottom-up, and unified execution flow,
SPINet resolves the performance imbalance issue, showing
competitive results on both COCO and Cityscapes with ef-
ficiency.

1PQth and PQst are panoptic quality (PQ) averaged over thing classes
and stuff classes respectively. [15]
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Figure 2. Overall execution flow of our proposed SPINet. The architecture is mainly composed of three modules: FPN, filter sampling
module and Panoptic-Feature generator (Fig. 3). The three modules harmonize their use by the single-shot convolution, which generates
masks for both instance and semantic segmentation at once.

2.2. One-stage Instance Segmentation

Latest object detection and instance segmentation mod-
els can be categorized by the existence of region pro-
posal network (RPN) [28]: one-stage [20, 24, 27] and two-
stage [2, 11, 28]. After the emergence of Mask-RCNN [11],
the majority of instance segmentation models is built on
top of two-stage detectors, hence improvement in object
detection spontaneously led to performance gain in in-
stance segmentation. RPN shows substantial performance,
yet the extraction of regional features remains as a bot-
tleneck. To overcome the issue, there has been a lot of
improvement on one-stage detectors such as YOLO [27],
and FCOS [32]. Many one-stage methods for instance seg-
mentation [31, 35, 36] are now showing comparable perfor-
mance to that of two-stage based methods.

Recently proposed CondInst [31] generates dynamic
convolutional weights that correspond to an instance for
each feature location. Our model adopts dynamic filters
proposed by CondInst for segmenting instances. By equally
treating the filters for thing and stuff, SPINet can finalize the
panoptic segmentation with a single-shot convolution.

3. SPINet
As the primary goal of SPINet is to integrate the path-

ways of thing and stuff, our model has a simple execution
flow as illustrated in Fig. 2. SPINet is composed of four
steps: FPN backbone, filter sampling module, Panoptic-
Feature generator, and single-shot convolution. First, the

input image is encoded into multi-scale features through
FPN backbone. Then, Panoptic-Feature generator takes the
multi-scale features and constructs Panoptic-Feature. At
the same time, the filter sampling module also operates on
each stage of the multi-scale features to dynamically gener-
ate filters for segmenting instances in the scene. Filters for
semantic segmentation are defined as trainable parameters
and learned through back-propagation. Finally, single-shot
convolution with dynamic filters for things and learned fil-
ters for stuffs are applied to Panoptic-Feature to finalize the
overall prediction at once. Further improvement of perfor-
mance is possible by adding auxiliary tasks that enhance the
representation power of the Panoptic-Feature.

3.1. FPN

We utilize FPN [19] as multi-level features of our model.
A considerable number of detection models adopting FPN
use five levels of the feature maps {P3, P4, P5, P6, P7}.
However, using these levels results in a performance im-
balance between instance and semantic segmentation. To
deal with this issue, we make a slight adjustment, employ-
ing relatively low-level feature maps of {P2, P3, P4, P5}.
Since a feature map of stride 4 has substantial spatial size,
passing it to convolutional layers results in excessive com-
putations. Therefore, we scale down C2 in half, generating
P2 with a summation between halved C2 and P3. Note that
for COCO, we include additional level P6, and the genera-
tion of P6 is the same as P5, which is of stride 32.
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3.2. Filter Sampling Module

We adopt dynamic convolutional filters, inspired by
CondInst [31], to design our filter sampling module that is
composed of the class head and the filter head. To deal
with objects of different scales, the filter sampling mod-
ule takes multi-level features Pl from FPN as inputs. The
weights of the module are shared across all levels. With
the class and the filter head, the filter sampling module pre-
dicts the class scores and generates dynamic convolutional
filters, each corresponding to a designated instance. The
class head consists of four sequential convolutions which
outputs Cl ∈ RHl×Wl×Nt , where Hl and Wl are the height
and width of the feature Pl, and Nt is the number of thing
classes (e.g. 8 for Cityscapes dataset). For the filter head,
the structure is the same as the class head, but it addition-
ally takes the absolute positional information encoded at
each level [23]. The filter head produces dynamic filter
Fl ∈ RHl×Wl×Df as an output, where Df is the number of
output channels. Let k be the size of the kernel used for the
single-shot convolution. A filter of k2Df dimensions can
be obtained from the output of the filter head Fl; spatially
pooled by the size of k × k, putting the center to a given
sampling location. During the training, the filters are uni-
formly sampled from the foreground locations. On the other
hand, for the inference, the positions to be sampled are se-
lected by the confidence score above a threshold, measured
by C. The sampled filters can be finally used as convolu-
tional weights after passing through a fully connected layer,
each resulting in k2Dϕ of the number of channels, where
Dϕ is the number of channels of the Panoptic-Feature. The
separation between the convolution and the fully connected
layer can save memory and computation by forwarding only
the filters at interested locations.

3.3. Panoptic-Feature Generator

The structure of Panoptic-Feature generator is similar
to the segmentation branch of Panoptic-FPN [14]. As the
Panoptic-Feature is generated with the multi-level informa-
tion from FPN, the features can simultaneously capture the
context while fine-grained details are preserved. Note that
per-instance relative coordinates can provide strong cues for
segmenting instances as proposed in CondInst [31]. How-
ever, since all things and stuffs should be handled together
in the Panoptic-Feature, per-instance relative coordinates
cannot be used. Rather, as shown in Fig. 3, Panoptic-
Feature generator utilizes the absolute positional encoding
of CoordConv [23] to the merged output of the multi-level
features, passing two additional convolutions followed by
a deconvolutional layer. As a result, we can have a higher
dimensional Panoptic-Feature with 256 channels compared
to 8-channeled feature used in CondInst. From our exper-
iments, it is found that adopting high-dimensional features
is important to enable the integration of paths.

upsample 2×
conv 3x3

P3 conv 3x3

P4 upsample 2×

P5

P2 conv 3x3

conv 3x3
× 2

× 1

× 1

× 1
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⊕ Multi-level Feature Summation
+ 1x1 convolution ⊚ CoordConv Positional Encoding

Figure 3. Panoptic-Feature generator. By merging multi-level
features from P2 to P5, the feature map holds information from
low-level to high-level altogether. Given the positional encoding,
it passes through extra layers and become the size of stride 4.

To make the output features to have access to informa-
tion of distant spatial locations, many previous works sup-
ply additional modules to their segmentation branch. The
use of convolutions with deformation [9], dilation [5], or
concatenating features from different levels have proven to
be powerful [17, 26, 42]. Compared to general semantic
segmentation branches that adapt each level to the size of
stride 4, Panoptic-Feature generator internally maintains its
spatial size to the stride of 8. As the size of the Panoptic-
Feature is more compact, it can reach the information of
distant locations by passing through convolutional layers.
Therefore, SPINet can be accurate and efficient as it avoids
using the aforementioned heavy computations. Moreover,
by training with our proposed auxiliary tasks, the represen-
tation of the Panoptic-Feature can be further enriched.

3.4. Unified Single-shot Convolution

In our panoptic segmentation framework, the segmenta-
tion of both things and stuffs can be done by a single-shot
convolution. The convolutional weights for things are sam-
pled from the filter sampling module and the weights for
stuffs are learned as trainable parameters. Applying these
weights together on the Panoptic-Feature, the raw mask log-
its responsible for things ŷt and stuffs ŷs are generated.

We have separate losses for things and stuffs, denoted
as Lt and Ls. These losses are computed using the ground
truth for segmentation (yt and ys). For the loss of things
Lt, we uniformly sample yt and ŷt from foreground loca-
tions, and scaled to the stride of 4. The loss is computed as
follows:

Lt(yt, ŷt) = DICE(yt, σ(ŷt)), (1)

where σ is the sigmoid function, and DICE is the dice loss
as in [25]. Lt is normalized by the number of sampled sets.

For the loss of stuffs Ls, we use a summation of two
losses: bootstrapped cross entropy loss (Lce) [41] and the
new multi-class dice loss (Lmd). We refer readers to [41]
for the details of Lce. We make use of the dice loss again,
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Figure 4. Intra-Class Triplet loss. Multiple representations of
instances can be generated from randomly generated masks; a pair
per a random mask. Better arrangement of latent space assisted by
the loss enhances the overall segmentation quality.

and Lmd is computed as follows:

Lmd(ys, ŷs) = DICE(ys, ψ(ŷs)), (2)

where softmax – taken across stuff classes – is used for
ψ, and Lmd is normalized by the number of sampled sets,
which in this case equals to the number of stuff classes.

The difference between Eq. (1) and Eq. (2) is the way
it ranges the logits between 0 and 1 (e.g. sigmoid and soft-
max). Note that a finer semantic segmentation is shown pos-
sible with the simple use of Semantic Encoding Loss [44],
which guides to better predict the presence of each class in
the input. Similar to Semantic Encoding Loss, multi-class
dice loss guides the mask of each class to be better fitted,
enabling finer segmentation results.

4. Auxiliary Tasks for Clustering
One way to interpret the Panoptic-Feature is as follows:

each point in Panoptic-Feature clusters together at latent
space if they belong to a same class and moreover same
instance. From this interpretation, Panoptic-Feature can be
viewed as a huge composition of groups. In the latent space,
there exists a large gap between the clusters of different
classes, whereas the gap between instances of a same class
is comparatively narrow.

Recently, many approaches improved performance by
making use of auxiliary tasks that are designed properly
with the consideration to the main task [1, 37]. We also
offer new auxiliary tasks considering the interpretation of
the Panoptic-Feature given above. The tasks are designed
to give better guidance to the Panoptic-Feature. For exam-
ple, the distance between points in the Panoptic-Feature in-
creases if they are from different instances, and vice-versa.

Given the guidance, the latent space of the Panoptic-Feature
arranges properly, allowing the single-shot convolution to
make better predictions.
Intra-Class Triplet Loss. Let ϕ ∈ RH×W×Dϕ be the
Panoptic-Feature with Dϕ number of channels over its
H × W spatial size. Let there exists an instance k with
the ground-truth mask mk ∈ {0, 1}H×W . Given a random
mask mr ∈ {0, 1}H×W , we can obtain a pair of partial
masksMk,M

′
k, both corresponding to the instance k as fol-

lows:

Mk = mk ⊙mr, M ′
k = mk ⊙ (∼mr), (3)

where (∼) operator inverses the value of each pixel, and ⊙
is the element-wise multiplication.

With a partial mask M , we can generate a representation
vector V as follows:

vc =
1

NM

∑
i,j

Mi,j ∗ ϕci,j , v =
[
v1, v2, ..., vDϕ

]
V = FC(v),

(4)

where Mi,j is the mask value of location (i, j), and NM is
the number of locations where Mi,j = 1. ϕci,j is the value
of cth channel at location (i, j) of the Panoptic-Feature, and
FC is a fully connected layer. By taking the above strategy,
a representation pair Vk and V ′

k can be obtained from the
pair of partial masks Mk and M ′

k.
A collection of representation pairs from instances can

be gathered by applying the same to each instance. From
the collection, triplets can be obtained by assigning repre-
sentations from a same instance to pair up into Anchor and
Positive, while a representation from another instance be-
come Negative. For tasks like re-identification and met-
ric learning, off-the-shelf triplet margin loss [29] is a great
choice to be considered. In order to better cluster points,
we use Intra-Class Triplet Loss for narrowing the point fea-
tures belonging to a same instance, and spreading the clus-
ters of different instances. After some modifications from
the triplet margin loss, our loss is defined as follows:

dp = −DIST(Va, Vp), dn = −DIST(Va, Vn),

Lintra(Va, Vp, Vn) = − log

(
edp

edp + edn

)
,

(5)

where Lintra is normalized by the number of triplet sets.
DIST measures the L2 distance of an input pair, and Va,
Vp, Vn are representation vectors ofAnchor, Positive, and
Negative respectively. An illustration of the triplet loss is
given in Fig. 4.
Inter-Class Contour Loss. We assign an additional task
to the Panoptic-Feature which is of predicting contours be-
tween different classes. A 1 × 1 convolutional layer is ap-
plied to the Panoptic-Feature, and the output channel of the
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layer is 16. The spatial size of the output is the same as the
Panoptic-Feature, which is of stride 4. Hence each location
takes charge of 4× 4 area with the pixel-shuffle [30] opera-
tion on the 16 channels. Inter-Class Contour Loss (Linter)
is computed over every pixel as follows:

Linter =
1

H ×W

H∑
i=1

W∑
j=1

FOCAL(yi,j , ŷi,j), (6)

where FOCAL is the focal loss [20]. yi,j and ŷi,j are the
value of ground truth and predicted soft contour at location
(i, j), respectively. The task of predicting contours from the
Panoptic-Feature leads to enlargement of distances between
class-wise clusters in latent space, and furthermore it eases
the convolutional weights to distinguish classes.

Trained with the introduced Intra-Class Triplet Loss and
Inter-Class Contour Loss, our model differentiates points
from contrasting classes, and also clusters by instances. The
auxiliary tasks stabilize our model’s training, and SPINet
improves performance while not compromising its effi-
ciency as the tasks are used only for training.

5. Experiments
In this section, we compare our results with previous

works on standard panoptic segmentation benchmarks. We
analyze our model with the models that are on par with the
state-of-the-art performance. We also provide ablation stud-
ies conducted on various settings. All experiments are con-
ducted using ResNet-50 as the backbone.

5.1. Datasets

Our experiments are conducted on two popular bench-
mark datasets: COCO and Cityscapes. COCO [21] is a
large dataset that has annotations of 118K, 5K, and 20K im-
ages for training, validation, and testing, respectively. The
number of thing classes is 80, and stuff classes is 53. We use
fine-grained annotations of Cityscapes [8] which is com-
posed of 2975 images for training and 500 for validation.
The dataset has 8 thing classes and 11 stuff classes, and is
considered as a great benchmark for panoptic segmentation
task due to its highly delicate annotations.

5.2. Implementation Details

Unless specified, our model is set without deformable
convolutions, built on top of ImageNet pretrained ResNet-
50 backbone, that replaces the first 7 × 7 convolution with
three 3 × 3 convolutions. The replacement is proven ef-
fective by He et al. [12]. All convolutional layers of filter
sampling module are followed by group normalization [38],
and we freeze batch normalization of the layers of the back-
bone.
Training. The ground truth assignment for Filter Sampling
Module is as allocating an instance to points that belong to

the instance mask which is interpolated to the feature size.
If a point resides in an overlap of masks, an instance of
smaller size is chosen.

With all the losses introduced, we can now finalize the
total loss of SPINet as follows:

L = λ0Lcls + λ1Ls + λ2Lt + λ3Linter + λ4Lintra, (7)

where Lcls uses focal loss [20]. For Lce of Ls, bootstrapped
cross entropy loss of 0.2 top-k ratio is used for Cityscapes,
while COCO uses general cross entropy. The coefficients
(λ0, λ1, λ2, λ3, λ4) differs by the dataset. Cityscapes uses
the coefficients of (1, 1, 5, 20, 1), while COCO adopts (1,
0.5, 3, 0, 1). Our model can benefit from training with
Linter on Cityscapes as the dataset is composed of fine-
grained pixel-level annotations. However, the coarse anno-
tations of COCO diminishes the enhancement.

Using 8 Tesla V100 GPUs, our models are trained for
270k iterations, allocating 2 images per GPU on COCO ex-
periments. The learning rate starts from 0.01 and decreases
by a scale factor of 0.1 at 180k and 240k. Allocating 4 im-
ages per GPU for Cityscapes experiments, the learning rate
starts from 0.01 and decreases at 80k and 90k, terminating
the training at 95k.

Inference. During inference, we preserve the full resolution
of images from all datasets. We forward the input image
through the network and give the confidence threshold of
0.45 for the sampling of dynamic filters for instances. Addi-
tional steps for the post-processing follows that of Panoptic-
FPN [14], which marks down instances first, and adds up
the predictions of stuff classes to the non-instance regions.

5.3. Comparison to the State of the Art

To highlight our model’s performance, we compare our
proposed SPINet to the state-of-the-art models for both
COCO and Cityscapes dataset as shown in Table 1. For
fair comparison, we listed performances of each models that
are built on top of ResNet-50 and pretrained on ImageNet
dataset.

COCO and Cityscapes have contrastive charateristic to
each other. COCO is composed of numerous instances,
thus the importance lies in the ability to capture instances.
Meanwhile, to achieve high scores in Cityscapes, the ability
to precisely predict the class of pixels is important. Hence,
there has been a tendency of RPN based models being
dominant on COCO, and non-RPN based models favoring
Cityscapes until now. This tendency is clearly shown in Ta-
ble 1, where previous models without RPN suffer from low
performance on COCO dataset while being competitive on
Cityscapes. However, with the strong ability of capturing
instances, our model’s performance on COCO is substan-
tially higher than all non-RPN based model. Furthermore,
the maintenance of pixel level details allows SPINet to sur-
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COCO val set Cityscapes val set

Method deform atrous PQ PQth PQst AP mIoU PQ PQth PQst AP mIoU

w
/R

PN

Pan-FPN [14] 39.0 45.9 28.7 33.3 41.0 57.7 51.6 62.2 32.0 75.0
OCFusion [16] ✓ 42.5 49.1 32.5 - - 59.3 53.5 63.6 - -
UPSNet [42] ✓ 42.5 48.6 33.4 34.3 54.3 59.3 54.6 62.7 33.3 75.2
Seamless [26] ✓ - - - - - 60.3 56.1 63.3 33.6 77.5
Li et al. [17] ✓ 43.4 48.6 35.5 36.4 53.7 61.4 54.7 66.3 33.7 79.5

w
/o

R
PN

DeeperLab† [43] ✓ 33.8 - - - - 56.6 - - - -
SSAP‡ [10] 36.5 - - - - 58.4 50.6 - 34.4 -
Hou et al. [13] 37.1 41.0 31.3 - - 58.8 52.1 63.7 29.8 77.0
Pan-DL [7] ✓ 35.5 37.8 32.0 19.7 - 60.3 50.9 67.1 32.1 78.7
Axial-DL⋆ [34] 43.2 48.1 35.9 - - 63.1 - - 35.6 80.3

SPINet 42.2 49.3 31.4 33.2 43.2 63.0 57.0 67.3 35.3 80.0
SPINet ✓ 43.0 49.3 33.5 34.0 43.9 63.5 57.4 67.9 36.3 81.3

Table 1. We underline the highest numbers among all, and bold the highest numbers over the models without RPN. For fairness, the
scores are measured without test time augmentation, and the models are trained on top of ResNet-50, using ImageNet pretrained weights.
deform and atrous indicate the use of Deformable convolution and Atrous convolution, respectively. †: Xception-71 is used for backbone.
‡: ResNet-101 is used for backbone with horizontal flipping and mutliscale test. ⋆: Axial-DeepLab-M is used for backbone.

Method PQ (%) Params (M) Inference Time (ms)
Total Network Post

UPSNet 59.3 44.5 501 191 310
Pan-DL 60.3 59.8 499 335 164

SPINet 63.0 42.2 201 171 30

Table 2. Inference time on Cityscapes val set. Total: Network
+ Post. Network: Time for a model to complete feed-forward
execution. Post: Time for post-processing.

pass all previous models on Cityscapes, becoming the new
state-of-the-art.

We also compare our model’s inference speed with
two well-known models: UPSNet [42] and Panoptic-
DeepLab [7] where each represents a model with and with-
out RPN. We measured time to output raw predictions, and
time to post-process raw predictions. All times are mea-
sured on the same system environment, using TITAN XP.
Note that Panoptic-DeepLab gains more accuracy than the
proposed results in the paper by modifying the first convo-
lutional layer of the backbone as described in Sec. 5.2 [39].
Our model enjoys the integrated structural pathway, where
it omits both feature extraction at RPN and using heavy
modules as ASPP. SPINet accelerates its prediction while
performing the best score as shown in Table 2.

5.4. Ablation Study

We conduct ablation studies on COCO and Cityscapes
validation sets using our model with ResNet-50. We show
how our model can be improved by differentiating the
model under various settings.

Use of Proposed Losses. As shown in Table 3, the perfor-
mance of SPINet can be improved by making use of the pro-

M.C.D Linter Lintra PQ PQth PQst Params

61.8 54.8 66.8 42.2
✓ 62.3 56.0 66.8 42.2
✓ ✓ 62.7 56.2 67.4 42.3

✓ ✓ 62.3 55.9 66.9 42.3
✓ ✓ ✓ 63.0 57.0 67.3 42.3

Table 3. Use of different losses on Cityscapes val set. M.C.D:
Multi-class dice loss. Params (M): Total number of parameters
needed for training.

posed losses. Note that the modules needed for the auxiliary
tasks are not used during inference, thus the use of aux-
iliary tasks does not burden the model. Using multi-class
dice loss and both auxiliary tasks enhances the segmenta-
tion quality, and also stabilizes the training. By taking a
look at Fig. 5, we can understand how the auxiliary tasks af-
fect the predictions. Compared to the model trained without
auxiliary tasks, the model trained with auxiliary tasks tries
to avoid the overflow of segmentation masks as Intra-Class
Triplet loss restricts the intervention between instances as
shown in Fig. 5 (b) and (d). Furthermore, SPINet trained
with Inter-Class Contour loss detects the borders between
semantic classes. It increases not only PQst but also PQth

as it indirectly helps the model capturing small sized in-
stances. Therefore, with the potential to estimate contours,
our model can generate more accurate segmentation maps.

Different FPN Level. Since our model uses the single
Panoptic-Feature, balancing the performance between thing
and stuff becomes important. SPINet uses the multi-level
features from FPN in two modules: Panoptic-Feature gen-
erator and filter sampling module. From experiments, we
find that using the lower levels from FPN results in the best
performance as shown in Table 4. Therefore, we lower the
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Trained
w/  Triplet

Trained
w/o Triplet

(a) Input Image

(c) Contour Prediction (d) w/  Auxiliary Tasks

(b) w/o  Auxiliary Tasks

Trained w/  contour

Trained w/o contour

over
flow

Figure 5. Visualized results of SPINet with ResNet-50 on Cityscapes val set. With the given image (a), we show two panoptic segmentation
results, which are retrieved from the models trained without auxiliary tasks (b), and with auxiliary tasks (d). As the model trained with
auxiliary tasks (d) uses two additional losses, Intra-Class Triplet loss and Inter-Class Contour loss, we visualize how the losses affect
the prediction. We also visualized the contour map (c), predicted by (d), to ease the understanding of how the contours can increase the
segmentation quality.

P.F.G F.S.M PQ (%) PQth (%) PQst (%)

P 3-7 P 3-7 40.5 48.3 28.6
P 2-6 P 3-7 40.5 48.6 28.3
P 2-6 P 2-6 42.2 49.3 31.4

Table 4. Various results measured on COCO validation set can
be obtained by using features from different levels of FPN. P.F.G:
Panoptic-Feature generator. F.S.M: Filter sampling module.

resolution of P2 to balance the performance and computa-
tion loads as described in Sec. 3.1, and use the downscaled
feature for both Panoptic-Feature generator and filter sam-
pling module.

Path Integration on CondInst. Though SPINet is inspired
by CondInst thus share some similarities (e.g., both gen-
erate dynamic filters for each instance), it does not imply
that CondInst is also suitable for path integration. The key
difference is on the feature where instance-wise dynamic fil-
ters are applied to: Fmask in CondInst and Panoptic-Feature
of SPINet. Specifically, CondInst customizes Fmask for
each instance by using per-instance relative coordinates thus
they need as many Fmask’s as the number of instances. As
a result, they need to limit the channel size of Fmask to
fit into GPU memory (8-channeled feature map is used as
Fmask in CondInst). When we tried to directly integrate the
instance and the semantic paths onto CondInst, the model
could not be stably trained. Our conjecture is that the low
dimensional feature map acts as an information bottleneck.
We have tried gradually increasing the channel size as much
as our GPU can hold, but the model still cannot be trained
properly. On the contrary, our SPINet, by design, can have
a larger 256-dimensional Panoptic-Feature and it allows us
to integrate two paths stably.

Integrated PQ (%) Speed (ms) Params (M) FLOPs (1012)

62.3 202 46.6 0.96
✓ 63.0 171 42.2 0.81

Table 5. The integration lightens both the speed and the com-
putation, while also increasing the performance as implicit inter-
changes of information between thing and stuff become possible.

Advantages of Path Integration. The integration of the
separated branches makes the sharing of computations be-
tween things and stuffs become possible. Though it is clear
that our model can benefit huge efficiency from the inte-
gration, it is uncertain to expect the gain in terms of per-
formance as the number of parameters decreases. There-
fore, we generated two feature maps from two individual
Panoptic-Feature generators, each taking in charge of things
and stuffs respectively. As shown in Table 5, the model with
separate feature maps gets a lot heavier than the model with
the integrated pathway. With fewer computations, the in-
tegrated model surprisingly overtakes the model with the
separated branches by 0.7% increment of PQ.

6. Conclusion

We have introduced SPINet, a model with the novel in-
tegration of pathways between the instance and semantic
segmentation, which makes efficient yet powerful panoptic
segmentation become possible. With the simplification of
the execution flow, SPINet can take the advantages of top-
down and bottom-up models, improving even further with
proposed auxiliary tasks. Finally, SPINet shows compara-
ble results on COCO, and delivers the state-of-the-art per-
formance on Cityscapes with a large margin.
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