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Figure 1: Spatial control over image generation with inference-time adaptive normalization. We suggest a new spatial-

aware normalization technique applied on pre-trained GANs at test-time that enables spatial control over the generation

process. This allows to use pre-trained GAN models (e.g. [13, 2]) for a variety of applications that modify only specific image

regions. For example (a) randomly generating sub-regions within an image (while keeping the rest of it fixed), (b) controlling

the saliency of different objects, (c) transferring local attributes from one image to another and (d) modify a specific part of the

image to belong to a different class.

Abstract

We introduce a new approach for spatial control over

the generation process of Generative Adversarial Networks

(GANs). Our approach includes modifying the normaliza-

tion scheme of a pre-trained GAN at test time, so as to act

differently at different image regions, according to guidance

from the user. This enables to achieve different generation

effects at different locations across the image. In contrast

to previous works that require either fine-tuning the model’s

parameters or training an additional network, our approach

uses the pre-trained GAN as is, without any further modi-

fications or training phase. Our method is thus completely

generic and can be easily incorporated into common GAN

models. We prove our technique to be useful for solving a

line of image manipulation tasks, allowing different gener-

*These authors contributed equally to this work.

ation effects across the image, while preserving the GAN’s

high visual quality.

1. Introduction

Since first introduced by Goodfellow et al. [8], uncondi-

tional GANs have led to a revolution in the computer vision

community, with a rapid improvement in terms of the vi-

sual quality of the generated scenes, as well as the ability to

generate images with growing resolution [12, 2, 13, 21, 14].

Consequently, pre-trained unconditional GANs have been

incorporated as a building block in many image editing and

manipulation tasks, enabling high flexibility while ensuring

high quality performances [7, 11, 24, 9, 23, 28]. Some meth-

ods train a generative model from scratch to perform for

the desired task [23, 28], while others use the pre-trained

GAN as a black box and perform the desired manipulation
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in the generator latent space instead of in the image space it-

self. However, many current State-of-The-Art (SoTA) GANs

models map a latent vector that has no notion of spatial co-

ordinates, into a two dimensional image. Therefore, any

manipulation of the latent code affects the whole image,

causing a global manipulation effect. This negates the ability

to control the generation process at different spatial locations,

and impedes the use of GANs for tasks that require different

operations at different locations across the image.

In this work, we suggest a new method for adapting a

pre-trained GAN at test time to allow spatial control over

the generation process. Our method includes modifying the

model’s original normalization scheme (that was used while

training) to act differently on different image regions, ac-

cording to guidance from the user. As we show, although

the GAN model was trained with a global fixed normaliza-

tion, using our spatial adaptation at inference time allows to

utilize the great performances of pre-trained GANs models,

while controlling the generation process locally. This is done

without any further modifications to the model or additional

training, which is often a challenging task by itself when

dealing with adversarial training.

We show that our method is very easy to apply and can be

integrated into popular GANs models like BigGAN [2] and

StyleGAN [13, 14]. In addition, as no training is required,

we enjoy very short execution time compared to other meth-

ods that require a targeted training phase. We exemplify

the contribution of our method for the tasks of local genera-

tion, local attribute transfer, class hybridization and saliency

manipulation. As we show, for all these applications, our

method allows to modify only a specific image region while

keeping the rest of it intact. This is while maintaining high

visual quality as presented in Fig. 1.

2. Related work

Image manipulation with pre-trained GANs. In recent

years, pre-trained GAN models have been incorporated into

image manipulation schemes for various applications. This

is usually done by manipulating the latent code to achieve

the desired effect. For example [22] finds meaningful direc-

tions in a progressively growing GAN (PGG) model trained

on faces, in order to semantically edit facial attributes. An-

other example is [7] that suggests to optimize direction in

the latent space of BigGAN [2] in order to change cognitive

properties of the images such as memorability, aesthetics,

and emotional valence. A recent line of works [11, 24, 9]

extend this to reveal steering directions corresponding to se-

mantically meaningful image transformations in BigGAN’s

latent space. StyleGAN [13] is used in [4] to perturb a latent

code of an image to obtain modified image views. However,

since all these generators map the latent code that has no no-

tion of spatial dimensionality into the full image, any change

in the latent representation affects the whole image, causing

a global effect. Our approach offers spatial control over

the manipulation effect by incorporating inference time spa-

tial adaptive normalization, and allows to manipulate only a

specific image region.

Spatial adaptive normalization. The idea to use location-

dependent normalization mechanism for image generation

was first introduced in SPADE [20] for the task of semantic

image translation. This concept have been extended in vari-

ous of followup works [30, 26, 25, 15] and have been quickly

adopted for other tasks [27, 16, 29]. All these normalization

techniques include learned parameters and therefore need to

be incorporated during training. On the other hand, our ap-

proach is applied only at inference time and does not require

any training phase.

Local control over GANs. Lately, several methods that

control spatial aspects of generative process have been pro-

posed [3, 31], presenting high quality results. However, in

contrast to our work, these models require training an addi-

tional network that encodes spatial characteristics, whereas

our framework uses only the pre-trained GAN without the

need to train any additional component. The most closely

related method to ours in this aspect is [1] which presents im-

pressive results for the task of locally editing images accord-

ing to text description. For BigGAN, this method achieves

spatial control by masking feature maps, whereas we focus

on adapting the normalization unit.

3. Inference-time Adaptive Normalization

In most SoTA GANs architecture ([2, 13, 14]), the la-

tent code is embedded into the generation process through

the normalization units. This is done by applying a z-

dependent denormalization operation right after the nor-

malization mechanism (e.g. Batch-Norm in BigGAN [2],

AdaIN in StyleGAN [13]) at each of the generator layers.

That is, at the n-th layer of the model, the denormaliza-

tion gain and bias parameters γn, βn ∈ R
1×1×Cn are calcu-

lated from the latent code z ∈ R
1×1×Cz by a linear layer

Ln, i.e γn, βn = Ln(z). These parameters are then dupli-

cated along the spatial dimensions to create two correspond-

ing denormalization maps γ̂n, β̂n ∈ R
Hn×Wn×Cn with the

same dimensions of the n-th layer normalized feature map

fn ∈ R
Hn×Wn×Cn . The denormalization maps are then

applied to fn according to

γ̂n ⊙ fn ⊕ β̂n, (1)

where ⊙,⊕ represent element-wise product and sum respec-

tively, as described in Fig. 2a. Therefore, note that this

mechanism imposes that any change in the latent code z will

be directly applied to the full image space causing a global

effect, without any ability to control the manipulation effect

across different spatial locations.

Our goal is to enable spatial control over the generation

process. Namely, given a latent representation z, we would

like different image locations h,w to be modified by differ-

ent operations ϕh,w. We achieve this by modifying the nor-
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Figure 2: Inference-time adaptive normalization. In con-

trast to the standard GAN’s normalization scheme that ap-

plies the same global fix normalization at all spatial loca-

tions (a), we allow the normalization operation to vary spa-

tially according to a guidance map (b). Therefore, instead of

letting only a single latent code to govern the whole image,

we are able to blend several different latent codes to control

the generation process at different image regions. We per-

form this adaptation at test-time, and thus can use pre-trained

GAN models with no additional training. In this illustration

we generate an image from two different latent codes z1, z2
according to a binary map m.

malization mechanism at test time. Instead of using a simple

duplication operation across the spatial dimension to create

the gain and bias maps, as done in training, we suggest con-

structing locally-varying denormalization maps that allow

different transformations at different image locations. That

is, the latent code z is manipulated by different operations at

different locations ϕh,w, creating a set of spatially-varying

latent codes {zh,w}, each correspond to different gain and

bias parameters γ̂h,w, β̂h,w = L(zh,w) that construct the full

denormalization maps γ̂, β̂. The denormalization is then

performed according to eq. 1.

Let us explore the relatively simple case of two different

latent code manipulation operators z1 = ϕ1(z), z2 = ϕ2(z),
such that each is applied at different region of the image

according to a binary mask m . In this case we will have a

set of two corresponding denormalization parameters

γ1, β1 = L(z1), (2)

γ2, β2 = L(z2).

The final gain and bias maps are then constructed by

γ̂ = m⊙ γ1 + (1−m)⊙ γ2, (3)

β̂ = m⊙ β1 + (1−m)⊙ β2,

where ⊙ denotes element-wise product, as illustrated in

Fig. 2b. This technique therefore enables to control the gen-

eration process at different image regions, and thus allows

local edit and image manipulations. The manipulation op-

erators ϕ are determined according to the specific task we

wish to solve, and will be described in Sec. 4.

Our method is similar to the normalization mechanism

of SPADE [20] presented in the context of semantic image

translation, in the sense that both let the denormalization

operation to vary spatially. However note that [20] train

their generator with the adapted normalization whereas we

suggest to adapt the normalization of a pre-trained generator

only at inference time. Thus we avoid any additional training

which can be very unstable with GANs.

4. Applications

We next demonstrate the use of our Inference-Time Adap-

tive Normalization (ITAN) technique for four different appli-

cations, all are solved using fixed pre-trained GAN models.

Therefore our run time is equal to the inference time of the

model. Please see additional results in the supplementary

materials (SM).

4.1. Local generation

We first demonstrate the use of ITAN for randomly draw-

ing only a specific part of the image. For this task we use

StyleGAN2 [14] pre-trained on the FFHQ dataset [13]. We

start by generating a random image according to a random

latent vector zinit. In the next step we select an area to be

re-sampled according to a new random latent code zre-samp,

and construct a corresponding spatial binary mask m that

indicates which latent vector controls the generation at what

region. We then use our scheme described in sec. 3 and

follow eq. (2), (3) with z1 = zinit, z2 = zre-samp,m, to con-

struct an image that corresponds to zinit outside the mask

and zre-samp inside the mask (here ϕ is the identity mapping).

Figure 3 shows several results of our local re-generation

scheme, each row corresponds to a different initial sample
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Figure 3: Local generation. Our approach enables to randomly resample only specific regions of an image. In these examples

we first generate images using StyleGAN [14] (leftmost column) and then randomly re-generate only a specific part of the

face indicated by the mask using our inference-time adaptive normalization (left column, upper left corner). By doing so

we are able to create new image content inside the mask (e.g. (a) new eyes appearance, (b) nose shapes, (c) lips and chin

composition), while keeping the rest of the image intact.

zinit and each column represents a new re-sampled image

with zre-samp. As can be seen, our approach enables to re-

generate only a specific region of the face, while keeping

the rest of it identical to the initial sample. Note how al-

though we use a relatively coarse mask the blending effect

is completely smooth. As StyleGAN is constructed with a

multi-scale architecture, we are able to choose which scales

to modify using ITAN normalization. In these experiments

we adapt scales 1-3. The effect of choosing different sets of

scales is exemplified in the SM.

4.2. Semantic attribute transfer

Here we spatially compose an image from two different

sources. We exemplify this with StyleGAN2 [14]. Given

two images G(zsource), G(ztarget) and a binary mask m, we

generate an image that corresponds to the attributes encoded

in z1 = zsource outside the mask, and z2 = ztarget inside

the mask. Again we achieve this by following eq. (2), (3)

(here again ϕ is the identity mapping). This can be seen as a

version of the method presented in Sec. 4.1, but instead of

randomly drawing zre-samp, we choose a specific latent vector

ztarget which generates an image G(ztarget) with a specific

local attribute we wish to transfer to G(zsource). The results

are presented in Fig. 4. As can be seen, in contrast to the

global style mixing suggested in [13], we are able to transfer

only local attributes like lips, eyes and nose appearance.

Note that we achieve this although our masks are rough and

do not contain any semantic notions like the exact location

of lips, eyes, nose, etc.). Here as well we modify scales 1-3

of the models with ITAN.

4.3. Class hybridization

Next, we exemplify the use of our method for the task

of class hybridization, our goal is to generate images that

spatially combine two different classes according to a guid-

ance mask. For this task we use BigGAN [2] which is a

class conditioned model that was trained on the ImageNet

dataset [6] containing 1K classes. Obviously, conditioning

the generation on the image class enables to generate images

from only one specific class at a time. We use our ITAN

technique to challenge this.

In BigGAN, the class representation is embedded into the

generation process as part of the latent code. That is, the

latent code is a concatenation of a random noise z and a class
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(a) source (b) target (c) global style mixing [13] (d) local mixing (ours)

Figure 4: Semantic attribute transfer. The multi-scale architecture of StyleGAN [13] enables the authors to perform global

style mixing by taking one latent code to globally control a subset of scales, and another latent code to globally control the rest

of the scales. According to their method, here we use the latent code of the target image (b) for the coarser scales, and that of

the source image (a) for finer scales. This result in a mixed image (c) containing the global structure of the target image (e.g.

face and hair shape) and finer image features from the source image (e.g. skin tone). Our test-time adaptive normalization

enables to control this effect spatially; we perform the mixing locally according to a given spatial mask ((d) right lower corner).

The effect is that only local attributes are transferred from the target image to the source image, while keeping the area outside

the mask fixed. Note how we manage to transfer relatively coarse structures (e.g. lips, eyes and nose shape) while maintaining

realistic appearance.

representation c such that the input to the model blocks is a

concatination of the two [z, c]. We use our ITAN mechanism

in order to synthesize images that combine two different

classes spatially. We start by drawing a random vector z that

will be shared across all spatial locations, then we choose the

classes to be combined c1, c2 according to a binary mask m.

The ITAN gain and bias maps are then calculated according

to eq. 2, 3 where z1 = [z, c1] and z2 = [z, c2] (here ϕ can

be interpreted as the concatenation operation between z and

c). As mentioned before, we apply the spatial normalization

only at test time on the pre-trained BigGAN model, and

therefore, there is no need for additional training or fine

tuning.

Figure 5 shows several examples of our class hybridiza-

tion results. As can be seen, by changing only the image

class, but keeping z fixed, G(z1) and G(z2) share the same

general layout. By spatially combining the classes using

ITAN, the final result is an image that combines both of the

classes, yet maintains a realistic appearance (though describ-

ing an unrealistic object combination). Note that the first

BigGAN block has no notion of spatial dimension, therefore

for this block only we use c1 across the whole image, which
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(a) G([z, c1]) (b) G([z, c2]) (c) ITAN hybridization

Figure 5: Class hybridization. Class conditioned GANs such as BigGAN [2] are trained to generate images that explicitly

belong to a specific class ((a),(b)). We use our inference-time adaptive normalization technique to break this, and create images

combainig two classes, blended spatially according to a mask ((c), bottom-right corner). The result is an hybrid image that

contains a single object of both of the classes (c).

greatly affects the general appearance of the results.

4.4. Saliency manipulation

We next use ITAN not only for combining different latent

codes spatially, but also for finding how to manipulate them

spatially according to a desired image effect. We choose to

exemplify this for the task of saliency manipulation. That is,

we would like to edit an image such that a specific region will

be more/less arresting to a human observer. Previous works

suggest to perform such manipulation directly in the image

space by editing pixels/patches [17, 18]. Using ITAN we

harness the power of GANs for this task, which enables us to

change the saliency of an image by generating a completely

new image content. For example, in Fig 6 row (a), in order

to make the upper-left corner of the image more salient, our

approach manipulates the latent code such that the GAN

generates a house in the background.

To perform this we use GANalyze [7] as a baseline. This

method aims to find meaningful directions in BigGAN’s

latent space according to a network that assesses cognitive

properties of images (e.g. memorability, aesthetics, emo-

tional valence). That is, the optimization process includes

finding an optimal affine transformation of the latent code

ϕ(z) so that all latent vectors going towards this transforma-

tion will get an increase of t in the assessor score. Namely

argmin
φ

Ez,t(A(G(ϕ(z))) − (A(G(z)) + t))2. See [7] for

additional details.

In order to use the GANalyze framework for saliency

manipulation we first make two important adaptations to the

optimization process: (i) GANalyze works on a dataset of

images to find a transformation ϕ that is optimal for general
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Figure 6: Saliency manipulation. We use our inference-time adaptive normalization to extend GANalyze [7] to control

spatial effects. This enables to solve tasks that require treating different image regions differently, like saliency manipulations.

Instead of searching for a global optimal latent code transformation, as done in [7], we find a pair of optimal codes each

corresponding to a different image region (e.g. foreground and background in line (c), left corner and the rest of the image in

line (a)). As can be seen, our technique enables to change the saliency of the image such that the indicated area is less/more

salient, while keeping the global semantics of the image with minimal changes, compared to the baselines where drastic

changes alter the image semantics. For validation, we check the saliency map of the result. Our images are the only to achieve

the desired effect.
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Input Mask Output

Figure 7: Saliency manipulation results. With ITAN we

optimize the latent codes corresponding to two image areas

indicated by the mask, such that the indicated object will be

more salient. The latent code transformation causes different

image effects on both the object and the background such as

color changes, relighting, focus adaptation, etc. to achieve

the desired effects.

images. In our case, as saliency maps are unique for each

specific image, we aim to find a transformation that will be

optimal only for the specific image we wish to manipulate.

Therefore we reduce the optimization process to work on

a single latent vector. (ii) The assessors used in GANalyse

output scalar scores A(G(z)). We use a saliency detection

network [5] (trained on human gaze maps) as an assessor,

which takes an image and outputs a saliency map that has spa-

tial dimensions. Therefore A(G(z)) is not a scalar. We thus

modify the loss function to take the ℓ2 norm between the mea-

sured and target saliency maps (instead of a direct difference

as done in GANalyze). These result in a modified optimiza-

tion problem argmin
φ

Et∥(A(G(ϕ(z)))− (A(G(z)))+ t)∥2.

Next, we incorporate the ITAN normalization to the Big-

GAN model (as described in sec. 3) to allow spatial manipu-

lation at test time. Our optimization scheme includes finding

two optimal transformations z1 = ϕ1(z) and z2 = ϕ2(z)
such that the combination of the two according to a spatial

map with the ITAN normalization scheme will give an image

with the desired target saliency map. As in GANalyze, we

take ϕ to be a simple parametric affine transformation of the

latent code. Note that in contrast to the previous applica-

tions described in this paper, here both the regions inside

and outside the mask can change.

We compare our result with two baselines: (i) The GAN-

alyze baseline [7] using the saliency detection network [5]

as an assessor, and (ii) a variant of GANalyze that finds the

optimal transformation only for a single image (but with-

out ITAN). Note that both of these baselines find a global

transformation ϕ that affects the whole image, whereas our

approach allows the transformation to differ across different

image regions. The results are shown in Fig. 6. As can

be seen, both of the baselines achieve relatively drastic ef-

fects that completely alter the image, whereas our approach

results in more delicate manipulations that preserve the gen-

eral semantics of the image. Investigating the saliency map

of the manipulated images (generated with [5]) shows that

our approach is the only one to achieve the desired effect;

in the first example (row (a)) the latent code manipulation

generates a house in the top left corner of the image, which

is indeed detected to be more salient (row (b)). In the sec-

ond example (row (c)) the image background becomes more

vivid, and the saliency map (row (d)) indicates that relative

to the background, the mushroom is now less salient. Addi-

tional examples for our saliency manipulation results appear

in Fig. 7. As can be seen, the latent code manipulation with

ITAN makes the indicated object more salient by causing

different effects in the image space such as relighting, re-

coloring, modifying the object size and location, and focus

changes.

5. Conclusions

We introduce a new normalization technique that is ap-

plied at test time to SoTA GANs and enables local control

over the generation process. The new approach is useful for

a line of tasks. Our examples include manipulation of two

image regions, however these can be easily extended to the

general case of N regions. In addition, in order to manipu-

late real images (and not only generated ones) one can first

use back-projection to the GAN’s latent space, e.g. [19, 10].
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