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Abstract

The ability to efficiently search for images is essential for
improving the user experiences across various products. In-
corporating user feedback, via multi-modal inputs, to nav-
igate visual search can help tailor retrieved results to spe-
cific user queries. We focus on the task of text-conditioned
image retrieval that utilizes support text feedback alongside
a reference image to retrieve images that concurrently sat-
isfy constraints imposed by both inputs. The task is chal-
lenging since it requires learning composite image-text fea-
tures by incorporating multiple cross-granular semantic ed-
its from text feedback and then applying the same to vi-
sual features. To address this, we propose a novel frame-
work SAC which resolves the above in two major steps:
”where to see” (Semantic Feature Attention) and ”how to
change” (Semantic Feature Modification). We systemati-
cally show how our architecture streamlines the generation
of text-aware image features by removing the need for var-
ious modules required by other state-of-art techniques. We
present extensive quantitative, qualitative analysis, and ab-
lation studies, to show that our architecture SAC outper-
forms existing techniques by achieving state-of-the-art per-
formance on 3 benchmark datasets: FashionIQ, Shoes, and
Birds-to-Words, while supporting natural language feed-
back of varying lengths.

1. Introduction
The ability to search for images over an indexed catalog

is a fundamental task that serves as a cornerstone for sev-
eral allied user experiences like smart, intuitive experiences
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for online commerce such as fine-grained tagging [45, 1],
virtual try-on [20], product recommendations [25] and vi-
sual search [5]. The most ubiquitous frameworks in image

has short sleeves and 
has a peasant neckline

+

is a turquoise scoop neck 
shirt with white decorative 

motif and has a decal design

+

Figure 1: Given a reference image and a support text, we
focus on the task of retrieving images that resemble the ref-
erence image while also satisfying constraints imposed by
the support text.

search either take image or text as input query to search for
relevant items [26, 14]. However, a key limitation of these
frameworks is the in-feasibility to capture detailed user re-
quirements, either with a single image or a combination of
keywords. Correspondingly, several interactive paradigms
are being explored, incorporating feedback to help tailor re-
trieved results to specific user intentions. These interactions
involve refining a reference query image through feedback
in form of spatial layouts [24], scene-graphs [21, 30] or rel-
ative attributes [18, 39]. More recently, text feedback via
keywords [37] or short captions [7] are being explored to
provide more expressive flexibility to the user during in-
teractive image search [15]. This task is denoted as text-
conditioned image retrieval. As shown in Figure 1, the task
of text-conditioned image retrieval utilizes a support text
feedback alongside a reference image with the objective of
retrieving image results that can satisfy constraints imposed
by both components of the multi-modal input.
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Broadly, this task requires learning composite image-text
representations that transform only the image features rele-
vant to the text modification while preserving the rest. Sev-
eral works such as [37], [7], [3] have tried to address this
issue. First in this domain, TIRG [37] proposed a simple
method leveraging gating and residual modules on the aver-
age pooled features from the terminal image layers. Adding
to this, ComposeAE [3], in their work suggests that TIRG
assigns huge importance to image features than the text
ones, and hence they propose a novel complex space to
learn the composition respectively. Although working well
to their capacity, the above methods fail to account for wide
range of queries and visual concepts and hence are lim-
ited in their performance. Moving further, a recent method
VAL [7] proposed to employ multiple composition modules
at varying depths rather only the last. Unlike the previous
methods that operate on the average pooled features from
the last layer, VAL’s composition module transforms the
entire Image Volume. However, this not only requires com-
plex series of steps but as VAL perturbs the entire Image
Volume, it incurs an additional module just to preserve the
features of the input image (as required by the task). Thus,
posing challenges to performance and the leveraged com-
pute. Moreover, even though VAL [7] composes the image
and text at varying depths, it does not account for interac-
tions among features across levels of conv layers.

In this work, we propose SAC that resolves the above is-
sues in two major steps: ‘where to see’ and ‘how to change’,
and subsequently propose two modules respectively. For
example, in Row 1 of Figure 1, the support text requires that
the modified image has short sleeves and a peasant neck-
line. This implies that the ‘where to see’ operation should
focus on ’sleeves’ and ‘neckline’ whereas ‘how to change’
operation should focus on the descriptive attributes of these
regions such as ‘short’ and ‘peasant’. For the first step
(‘where to see’), we introduce a Semantic Feature Atten-
tion (SFA) module which effectively computes the salient
regions in the image with respect to the text (i.e. regions
which need to be modified). Since CNNs learn visual con-
cepts with increasing abstraction ([42],[23]), we thus sam-
ple image features over two levels to capture the coarse and
fine-grained features. For the second stage, we propose a
Semantic Feature Modification (SFM) module that takes as
input the two-stage image features along with the text vec-
tor to 1) aggregate inter-level features (the coarse and fine-
grained features) while ensuring rich representation and 2)
modify the resultant according to the text. Further, to fo-
cus on several nuances that arise while training composite
(Image-Text) features, we propose a unique composition of
loss functions.

Our contributions can be summarized as follows,

• We introduce two modules (SFA and SFM) to break
down the task of TCIR into two simple steps ’where to

see’ and ’how to change’.

• We show how our SFA is able to capture salient im-
age regions mentioned in the query and how our SFM
module is able to modify these regions according to
the query.

• We perform detailed quantitative and qualitative anal-
ysis on 3 benchmark datasets and outperform existing
state-of-the-art methods.

2. Related Work
Product Search and Image Retrieval attracts signifi-

cant research interest due to the diverse practical applicabil-
ity [17]. Conventional works have utilized uni-modal (im-
age or text) queries to retrieve similar [9] or compatible [34]
images. More recently, we have witnessed a surge in inter-
active multi-modal techniques that incorporate user feed-
back to navigate visual search. The user interactions can
manifest in form of attributes [1, 44], spatial layouts [24, 4],
sketches [40] and text descriptions [37, 7, 15]. Owing to
the ubiquity in existing search engines and flexibility of ar-
ticulation, using textual support can facilitate fine-grained
specificity in user queries. In this work, we pursue the prob-
lem of visual search with textual feedback and propose a
framework to efficiently handle unconstrained natural lan-
guage descriptions of varying lengths.

Learning Composite Image-Text Representations in-
volves jointly processing image and text inputs to capture
both these contexts effectively and in a way specific to each
task. To review a few, we have 1). Visual Question Answer-
ing [2, 27] which uses text semantics to localise the image
and further generate the answer, 2). Language Grounding
[36, 35] which requires spatial localization subject to the
input text/phrases , 3). Image-Text matching [32, 38] which
searches for an Image given the natural language phrase
and vice-versa, among many other tasks digesting both the
modalities. To this contrast, learning representation in our
task involves incorporating text inputs to selectively modify
the relevant image features in a way that ensures the preser-
vation of the unaltered features.

Text Conditioned Image Retrieval has been well ex-
plored in several recent works [37, 7, 3]. First in this do-
main, TIRG [37] introduced a residual gating operation to
fuse latent image and text embeddings. Citing drawbacks
of TIRG, ComposeAE [3] proposed their novel complex
space for robust composition of Image and Text Concepts.
Moving one step further, a recent state of the art, VAL [7]
proposed to use multiple compositional modules over vary-
ing convolutional depths. Briefly, VAL first broadcasts and
then fuses the text with image feature to obtain a visiolin-
guistic representation and then performs self-attention to
improve visiolinguistic cues and performs Joint-Attentional
Preservation (JAP) to preserve image features. Although
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effective, VAL in its formulation poses several key limita-
tions: need for complex steps and additional modules af-
fecting performance gains and compute, and in-feasibility
to model the interactions/relationship among the features
obtained over multiple levels. Addressing the aforemen-
tioned, we introduce SAC, which tackles the task of TCIR in
two steps, first attending to salient regions in a more struc-
tured and simplified way and second, by taking into account
both inter-level relationships among features across hierar-
chy and inter-modal relationship between image and text.

3. Approach
Given a query image (Iq) and the modification text de-

scription (Ds), the training objective of our task is to learn
a Image-Text composite representation that uniquely aligns
with the visual representation of the target ground-truth im-
age (It). To debrief our overall approach and the compo-
nents underlying, we divide this section as: Section 3.1
presents an overview and motivation behind our approach,
which is then followed by each part of our methodology.
Section 3.2 provides our strategy to independently encode
the image (Iq , It) and text (Ds) inputs. Further, Sections 3.3
to 3.4 delineates different phases of SAC, thus generating
visual representation for It and the composite Image-Text
representation for Iq and Ds. In the last part of this sec-
tion, we present our unique composition of loss functions
(in Sec. 3.5) which are designed to regularize the visual
and linguistic features in the composite representations. An
overview of the proposed approach is provided in Fig. 2.

3.1. Learning in Two Stages

We intuitively break down the learning of SAC in two
stages: ‘where to look’ and ‘how to change’.

In the first stage, we utilize the Semantic Feature Atten-
tion (SFA) module to find the salient image regions with
respect to the text. On the other hand, VAL [7] in their
very first step fuses the image and text features to obtain vi-
siolinguistic representations and further introduces two set
of modules: self-attention to improve the obtained visiolin-
guistic cues and “Joint-Attentional Preservation” (JAP) to
preserve the image features which do not have to be modi-
fied. Intuitively, they first learn the coarse level visiolinguis-
tic Image Text Relationships which further undergo trans-
formation and preservation to obtain final features required
for retrieval.

In contrast to learning any complex visiolinguistic trans-
formation, the only task for our Semantic Feature Atten-
tion (SFA) is given an Image, generates the 2-d probability
map that describes the importance of each pixel with re-
spect to text. Therefore, we use the text vector as a kernel
and convolve the entire image volume to obtain a proba-
bility matrix. The probability matrix is then applied back

to the image volume to reweigh the features in accordance
with the text importance, hence ‘where to look’. Intuitively,
our method keeps the image volume intact and only alters
the regions of interest from the original image volume, thus
eliminating the need for a separate preservation module (as
used in VAL).

To handle the ‘how to change’, we propose a Semantic
Feature Modification (SFM) Module. Since, we sample two
levels of image features, the input to SFM includes two re-
weighted image features and the text feature vector, which
are encapsulated in our novel way to capture relationships
across feature levels (coarse and fine) and across modalities
(image and text).

3.2. Representing Image and Text

Image Encoder: CNNs are well known to encode visual
concepts with increasing abstraction, generally, becoming
finer as we progress over levels. Following the similar idea,
in our method, we propose to sample out two granularities
of embeddings: Low-Level features and High-Level fea-
tures. Furthermore, in Section 4.4 we provide an analysis
on levels as used in our method and related efforts. Con-
cretely, the resultant visual features Fq and Ft for the query
(Iq) and the target image (It) respectively, are computed as,

Fq = {V 1
q , V

2
q } = φCNN(Iq)

Ft = {V 1
t , V

2
t } = φCNN(It)

(1)

Text Encoder: To generate text embeddings corre-
sponding to the visual features at the two granularities we
use a GRU [8] followed by 2 parallel fully connected layers.
Given the support text Ds (max N words), we obtain a se-
quence of word-level embedding features Fword ∈ R1×768

which are then passed through a GRU to obtain the support
text feature Fsent ∈ R1×1024 as

Fsent = GRU([F 1
word, F

2
word, · · · , FN

word]) (2)

We then transform the Fsent through two separate linear
projection layers as,

T 1, T 2 = Ω1(Fsent), Ω2(Fsent) (3)

3.3. Semantic Feature Attention (SFA)

As previously mentioned, the goal of our SFA module is
to highlight salient regions in the image which need to be
modified according to the text. Our SFA Module is made of
two major sub-parts: (1) Attentional Visual Transformation
(2) Semantic Pooling. Intuitively, the first one captures the
importance of a pixel, subject to the other positional loca-
tions within the Image, while the second one captures the
importance with respect to text. Formally, we define both
these operations below. Since SFA at both levels follows
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Figure 2: (1) Outline of our proposed SAC framework. We highlight the 2 main components (shaded): the Semantic Fea-
ture Attention module, the Semantic Feature Modification (SFM) module. (2) Schematic representation of the Semantic
Pooling component. Some of the operations are denoted by symbols with their description provided in the legend.

the same operations, we use level ` in the discussion below
for brevity.

Attentional Visual Transformation: Here, we capture
apriori long-range contextual relationships within the vi-
sual embedding (V `

q ) to help enhancing the representa-
tional capabilities. Therefore, we leverage a positional at-
tention mechanism to aggregate the spatial context, [43,
13] to transform V `

q into volumetric representation V
`

q ∈
RC`×H`×W` . For this, V `

q is passed through parallel convo-
lutional layers (denoted by Θq , Θk, Θv) and the obtained
volume is reshaped to obtain new query and key feature
maps denoted by (Q`,K`) ∈ RC`×N` , N` = H` × W`

which are then used to obtain a spatial attention map A`
self .

Q` = Θq(V `
q ), K` = Θk(V `

q ), V` = Θv(V `
q )

A`
self = softmax((Q`)TK`)

We generate an intermediate feature E` to compute the
transformed attentive visual feature map V

`

q as,

E` = V`(A`
self )

T and V
`

q = βE` + V `
q (4)

The feature vector V
`

q encodes global visual information
along with selectively aggregated spatial context which im-
proves the semantic consistency in the representation.

Semantic Pooling: Further, the learnt attentive visual

representation V
`

q is now convolved with the correspond-
ing text representation T ` to obtain a 2-D saliency map)
A`

sal ∈ RHi×Wi . that essentially gives the importance of
each pixel with respect to Text.

A`
sal = V

`

q ~ T ` (5)

A`
sal is then passed through softmax, with temperature T ,

to obtain feature-weightage map (probability map) M `.

M ` = softmax(A`
sal/T ) (6)

We provide a clear representation of the operations per-
formed in Figure 2.

We then use the obtained feature-weighted map M ` to
pool each channel in the attentional visual feature map V

`

q

to select image features salient to text features, thus gener-
ating S` ∈ RC`×1 given as,

S`(c) =

H∑̀
h=1

W∑̀
w=1

M `(h,w) ~ V
`

q(c, h, w) (7)

where 1 ≤ c ≤ C` and C` denotes the number of channels.
Finally, the granular text-conditioned visual embedding

O`
q is obtained by a weighted addition of the Text Con-

ditioned Image feature S` with pooled attentive visual
feature map (we use generalized-mean pooling technique
GeM [29]). The pooled visual embedding for the target im-
age is also obtained as,

O`
q = Pool(V

`

q) + γS` and O`
t = Pool(V `

t ) (8)

The obtained embeddings for the query image O`
q and the

target image O`
t , across the two levels combined, form the

resultant salient feature set F img
q and F img

t which is passed
on to SFM.

F img
q = {O1

q , O
2
q} and F img

t = {O1
t , O

2
t } (9)
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3.4. Semantic Feature Modification (SFM)

Here, we address the task of “how to change” by com-
positing the transformed image features with text features.
Inputs to this are salient feature set F img

q and text feature
Fsent. Briefly, in this step, we first perform a gating oper-
ation over feature levels and then subsequently modify the
resultant with text. Formally, we take the feature set F img

q

and pass it through two independent linear projections. As
features across levels encode different properties and conse-
quently exhibit different output sizes, projecting them to a
common space before modeling their interactions is helpful,

G1
q, G

2
q = Ω1([F img

q ]1),Ω2([F img
q ]2) (10)

G1
q, G

2
q = BatchNorm(G1

q), BatchNorm(G2
q) (11)

To selectively pass on features from the lower-level (G1
q)

to higher-level of hierarchy (G2
q), we further use our gating

operation, that uses an LSTM followed by a BatchNorm
to obtain aggregated feature vector fagg:

H = LSTM ([G1
q, G

2
q])

fagg = Ω(BatchNorm(H))
(12)

To obtain embedding ftgt for the target feature set F img
t ,

we follow the same pipeline of projection up until gating
across levels. (G1

t , G
2
t below are obtained using Eq. 10 and

11 for F img
t )

ftgt = LSTM ([G1
t , G

2
t ]) (13)

Next, we take the aggregated feature vector (fagg) and the
global text vector ftext obtained by taking the linear pro-
jection ftext = Ωg(Fsent). The final composed image-text
representation which includes the modifications is then ob-
tained by Residual Offsetting of fagg with ftext followed
by vector normalization as:

fcom = δ
fagg + ftext
‖fagg + ftext‖2

(14)

where δ parameter denotes the learnable normalization
scale and ‖.‖2 denotes the L2 norm. We discuss the impact
of this residual composition strategy in Section 4.4.
fcom, ftgt and ftext are used as inputs to the loss func-

tions detailed in the next section.

3.5. Loss Functions

The training dataset (Itrain) is characterised by 3-tuples
consisting of (Iq, Ds, It). Correspondingly, fcom repre-
sents the composed text-conditioned image embedding for
(Iq, Ds), ftext represents the latent embedding for Ds and
f+tgt represents the latent embedding for It. Consider an-
other image In sampled from Itrain, s.t. In /∈ {Iq ∪ It}
where f−tgt represents its latent visual embedding which is

generated using the same pipeline as for ftgt. We next ex-
plain the different loss functions used to train SAC.

Triplet Loss is the primary training objective which
seeks to constrain the anchor fcom to align with the tar-
get f+tgt by simultaneously contrasting with the embedding
for a negative image f−tgt. The loss function is defined as

Ltriplet = log(1 + e‖fcom−f
+
tgt‖2 − ‖fcom−f

−
tgt‖2) (15)

where ‖.‖2 operator denotes the L2 norm.
To help learn discriminative representations, we employ

a hard negative strategy that interleaves the random selec-
tion of In with an online distance-based sampling tech-
nique. This sampling weighs each In ∈ Itrain using theL2-
distance of the corresponding embedding (f−tgt) with fcom
with smaller distances weighted higher.

Discriminator Loss helps improve the alignment of
fcom with ftgt by utilizing a discriminator that penalizes
distributional divergence of linear projections of these em-
beddings.

Ldisc = −E
[
log(D(ftgt)

]
− E

[
log(1−D(fcom))

]
(16)

whereD is the discriminator network which has three fully-
connected layers and is trained end-to-end along with the
entire model. Details about the architecture of the discrimi-
nator is provided in Appendix A. We also discuss the partic-
ular impact of using this discriminator loss in Section 4.4.

Consistency Loss constraints visual and linguistic pro-
jections of fcom, denoted by f img

gen and f textgen , to align with
latent embeddings ftgt and ftext respectively. This objec-
tive by reconstruction regularizes and reinforces the bal-
anced utilization of both text and image in composed em-
bedding fcom.

Lcons = αt‖f textgen − ftext‖2 + αi‖f img
gen − ftgt‖2 (17)

where, ‖.‖2 is the L2 norm.
In the above equation, we project the vector fcom using

learnable transformations to obtain f img
gen and f textgen as,

f img
gen = Ωc

img(fcom) f textgen = Ωc
text(fcom) (18)

where Ωc
img and Ωc

text are learnable transformations and are
trained end-to-end alongside the model. We discuss the par-
ticular impact of using this consistency loss in Section 4.4.

Total Loss used for training is computed as

Ltotal = λ1Ltriplet + λ2Ldisc + λ3Lcons (19)

αt, αi, β, γ, λ1 to λ3 are learnable scalar hyperparameters.

4. Experiments
In this section, we formalize the datasets, baselines, im-

plementation and evaluation details for our experiments.
We use the same experimental and evaluation settings as
used by the previous techniques to ensure consistency.
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Method
Dataset FashionIQ

Dress Toptee Shirt Average AverageR@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50
Image Only 2.92 10.10 4.53 11.63 5.34 14.62 4.26 12.12 8.19
Text Only 8.67 25.08 9.68 28.25 8.30 25.02 8.88 26.11 17.50

Concat 9.06 27.27 10.45 29.83 9.66 28.06 9.72 28.39 19.56

FiLM [28] 14.23 33.34 17.30 37.68 15.04 34.09 15.52 35.04 25.28
TIRG [37] 14.87 34.66 19.08 39.62 18.26 37.89 17.40 37.39 27.40

Relationship [31] 15.44 38.08 21.10 44.77 18.33 38.63 18.29 40.49 29.39
VAL [7] 21.47 43.83 26.71 51.81 21.03 42.75 23.07 46.13 34.60

VAL w/ GloVe [7] 22.53 44.00 27.53 51.68 22.38 44.15 24.14 46.61 35.38

CurlingNet [41] (FashionIQ-W 2019) 24.44 47.69 25.19 49.66 18.59 40.57 22.74 45.97 34.36
RTIC [33] (FashionIQ-W 2020) 28.21 51.41 28.00 55.58 21.30 44.80 25.83 50.59 38.22

ComposeAE w/ Random Emb. [3] (WACV 2021) 11.99 31.38 11.01 27.48 11.04 26.49 11.34 28.45 19.89
ComposeAE w/ BERT. [3] (WACV 2021) 14.03 35.1 15.8 39.26 13.88 34.59 19.89 36.31 25.44

SAC w/ Random Emb. 26.13 52.10 31.16 59.05 26.20 50.93 27.83 54.03 40.93
SAC w/ BERT 26.52 51.01 32.70 61.23 28.02 51.86 29.08 54.70 41.89

Table 1: Quantitative comparison on FashionIQ dataset. SAC outperforms existing methods using both randomly and BERT-
pretrained initialized text embedding. Best numbers are highlighted in bold.

Method
Dataset Birds-to-Words

R@10 R@50 Average
Text Only 1.69 8.34 5.01

Image Only 15.45 32.14 23.80
Concat 12.05 34.27 23.16

TIRG [37] 15.8 38.65 27.22
VAL [7] - - -

ComposeAE w/ Random Emb. [3] 10.94 29.35 20.14
ComposeAE w/ BERT. [3] 10.66 34.84 22.75

SAC w/ Random Emb. 20.34 44.94 32.64
SAC w/ BERT 19.56 45.24 32.40

Table 2: Quantitative comparison on Birds-to-Words
dataset. SAC outperform existing methods using both ran-
domly and BERT-pretrained initialized text embedding.

Method
Dataset Shoes

R@1 R@10 R@50 Average
Text Only 0.60 6.20 19.42 8.74

Image Only 6.07 25.6 47.87 26.51
Concat 5.70 20.32 39.97 22.00

FiLM [28] 10.19 38.39 68.30 38.96
TIRG [37] 12.60 45.45 69.39 42.48

Relationship [31] 12.31 45.10 71.45 42.95
VAL (2 level) [7] 14.98 47.25 - -

VAL [7] 16.98 49.83 73.91 46.91
VAL w/ GloVe [7] 17.18 51.52 75.83 48.18

ComposeAE w/ Random Emb. [3] 3.46 20.84 52.58 25.62
ComposeAE w/ BERT [3] 4.37 19.36 47.58 23.77

SAC w/ Random Emb. 18.11 52.41 75.42 48.64
SAC w/ BERT 18.5 51.73 77.28 49.17

Table 3: Quantitative comparison on Shoes datasets. SAC
outperform existing methods using both randomly and
BERT-pretrained initialized text embedding.

4.1. Datasets

We conduct experiments on multiple benchmark datasets
that are selected to maximize diversity in length of the nat-
ural language descriptions. Figure ?? (in Appendix) shows
the average number of words in the support text vary from
5 to 31 across the different datasets. Shoes [6] contains
14,658 images of footwear tagged with relative captions for

dialog-based interactive retrieval. The dataset is split into
10,000 training and 4,658 test images with short support
text descriptions that have an average length of 5.32 words.

FashionIQ [16] contains 77,684 images of fashion prod-
ucts over 3 categories: Dress, Toptee, and Shirt, with 46,609
images in the training and 31,075 images in the validation
set. The dataset is characterized by medium support text de-
scriptions with an average length of 10.69 words per sam-
ple. Since the ground-truth is not publicly available, so we
follow VAL and report performance on the validation set.

Birds-to-Words (B2W) [12] contains 15,931 images
(12,770 training and 3,151 testing) tagged with descriptions
of fine-grained differences between pairwise bird images.
The natural language queries here are long with an average
length of 31.38 words.

4.2. Experimental Setup

Baselines: We compare SAC with a wide range of base-
lines including early works and recent State of the Art mod-
els on this task. Image Only uses only image representation
as composed embedding. Text Only uses only text repre-
sentation as composed embedding. Concat Only concate-
nates (denoted by ++) and linear transforms the image and
text representations (following details from [37]) to obtain
the composed embedding. Relationship [31] takes the fea-
ture maps from final CNN layer alongwith the text feature
from RNN and performs concatenation followed by MLP
to learn cross-modal relationships. FiLM [28] is a Feature-
wise Linear Modulation wherein the text information added
to the CNN output to modulate each feature map by affine
transformation. TIRG [37] concatenates visual and textual
representations followed by learning a gating and a residual
connection to obtain a composed embedding. VAL [7] com-
poses the textual representation with the visual representa-
tions at multiple CNN layers using a composite transformer
(more details are mentioned in Section 2).

VAL is the most recent state-of-the-art technique and the
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Has thin straps 
and different 

pattern and more 
autumn colored 

and longer

are more 
solid in black 
with orange-

and-beige 
trim

animal1 has black wings, a black 
head and beak and a white breast 

and tail. animal2 has a black breast 
with green and turquoise flashes. it 
has a black head and a much longer 

beak. it has a shorter tail.

Figure 3: Qualitative results (one for each dataset) from our approach SAC. Images in the first column are the reference
images followed with the query text. Retrieved results are ranked from left-to-right. Red boxes highlight the target image.

strongest baseline for our experimental study. For both VAL
and TIRG, we refer to the author-provided code implemen-
tations with the recommended hyper-parameter settings.

Comparison with Workshop: For comparison with the
FashionIQ 2020/2019 Workshop (FashionIQ-W), we com-
pare with the workshop winners who follow the standard ex-
perimental settings i.e. who do not perform pre-training of
feature network on attribute prediction tasks or any other ex-
ternal data/tasks, and do not use an ensemble of models. We
compare SAC with RTIC [33] and CurlingNet [41]. How-
ever, RTIC uses the ResNet101 backbone while the widely
used encoder for the task is ResNet50.

Implementation & Evaluation Details: We use Resnet-
50 [19] pre-trained on ImageNet [10] as the backbone for
image encoder and set L = 2 for our experiments. For
our experiments with pretrained text embeddings, we use
BERT [11] pretrained on QA task. Performance is evalu-
ated using the Recall@K (R@K) {K = 1, 10, 50} metric
which computes the percentage of evaluation queries where
the target image is found within the top-K retrieved images.
We use a batch-size of 32 and Adam [22] (initial learning-
rate of 1e−3) optimizer for image & text encoders and the
SGD optimizer (initial learning-rate of 2e−4) for the dis-
criminator. The learning rate was divided by 2 for the Adam
optimizer and divided by 10 for the SGD optimizer when
the loss plateaued on the validation set until it reached 1e−6.
For the image encoder, we allow for the gradual fine-tuning
by unfreezing it’s weights only after first few epochs (10 in
our case) of training. We use a temperature of T = 1, 8. We
choose the values λ1 = 1, λ2 = 0.6, λ3 = 0.1 as the hyper-
parameters of our loss functions. We take αt = 1 and αi =
0.1 in the consistency loss.

For the discriminator D, we use a simple neural network
with three fully-connected layers that reduce the feature
vectors embedding size to a scalar value that is then passed
through the loss function as described in Section 3.5. The
architecture for the Discriminator is provided in Appendix.

4.3. Results

We present quantitative and qualitative comparison of
SAC with our baselines on each of the three datasets. Due
to limited space, additional results are included in the ap-
pendix which are cited where pertinent.

Quantitative Results: The quantitative results for all
three datasets FashionIQ, Birds-2-Words and the Shoes
dataset are summarized in Tables 1, 2, and 3 respectively.
We also highlight the best number in bold in all the tables
for convenience. We report the performance of SAC us-
ing both pre-trained BERT and random embeddings. Over-
all, we can see that SAC outperforms the strongest baseline
on all three datasets by 3-4% on average on the R@10 and
R@50 metrics. Moreover, our model also outperforms the
baselines on the challenging Birds to Words dataset which
has much longer and more complex sentences. 1

Qualitative Results: To corroborate our quantitative ob-
servations, we also present a qualitative analysis for SAC
and present the results for the same in Figure 3. We observe
that the SAC is able to concurrently incorporate multiple se-
mantic transformations in visual representations from text
descriptions when retrieving images. We observe that SAC
is able to – (A) retrieve new images while changing certain
attributes conditioned on text feedback eg. color, material
(from row 1, SAC captures the “autumn-colored” while pre-
serving the “longer” property) (B) ingest multiple visual at-
tributes and properties in the natural language text feedback
(from row 2, “solid”, “black” and “orange-and-beige trim”
all focus on different semantics of the image. SAC captures
all of the semantics in the retrieved image) (C) can jointly
comprehend global appearance and local details for image
search (from row 2, SAC captures the overall “black” look
across the retrieved results and attempts to find the appro-
priate local variations in the design) (D) aggregate multiple
fine-grained semantic concepts within query sentence for
image search (from row 3, SAC captures the fine-grained

1Results on B2W dataset for VAL were not available and experimenting
using their code was prohibitive even with 16-GB GPUs
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Composition R@10 R@50
Concatenation 22.98 47.73

Residual Gating 24.00 46.72
Hadamard 22.74 46.35

Residual Offsetting 27.83 54.02

Table 4: Results on ablations for effect of composition

Method # of Parameters
TIRG 16.96M

ComposeAE 19.07M
VAL 61.76M
Ours 21.74M

Table 5: Number of params for different methods

Loss Functions
Average

R@10 R@50
Ltriplet 23.47 48.48

Ltriplet + Lcons 24.82 50.25
Ltriplet + Ldisc 22.84 48.87

Ltriplet + Ldisc + Lcons 27.83 54.02

Table 6: Results from our ablation study showcasing the
impact of individual losses on FashionIQ dataset.

Level-1 Level-2 R@10 R@50
X 8.95 24.13

X 14.24 31.05
X X 27.83 54.02

Table 7: Ablations for aggregating both levels

changes like “black breast”, “green flashes” and “longer
beak” in a single query and aggregates these concepts effec-
tively). Due to limited space, we have included comparative
qualitative analysis with VAL and additional qualitative re-
sults in Appendix C.

4.4. Ablation Studies

In this section, we conduct ablation studies to investigate
the impact of different design choices in SAC. For all our
ablations, we restrict our scope to the FashionIQ dataset for
ease of exposition and analysis.

Importance of SFA and Attention Maps We provide
the attention map from the last level (A`

cross) from SAC in
Figure 4. From the figure, the network focuses on the re-
gion of the sleeve in the image since the text has “shorter
sleeves”, and the neck region as the text said “deeper neck”.
We also provide additional attention maps in Figure 5 in
Appendix B. Besides, we also show the importance of the
SFA module on the right side of Figure 4 and it can be seen
that adding the SFA module improves the R@10 and R@50
metrics by around 3%. Since, for this problem at hand and
our method, it wouldn’t be logical to run analysis by remov-
ing SFM (‘how to change’), which would make it equivalent
to Image Only baseline as discussed in Section 4.2, hence,
we omit the same in our study.

Figure 4: On the left, Attention maps for a pair of input im-
age and text with specific keywords underlined correspond-
ing to the attention heat-maps on the image. On the right,
the effect of SFA is shown on the Fashion-IQ dataset

Effect of Residual Offsetting in SFM: Here, we study our
idea to utilize text to only “modify” the image feature based
on the text feature, rather than create an entirely. Corre-
spondingly, we validate this design choice by contrasting
with the following operators: Concatenation, Hadamard
Product, Residual Gating (used in TIRG) and Residual Off-
setting (defined in Eq. 14). The results are summarized in
Table 4 which highlights that our operator significantly out-
performs the alternate choices.
Importance of Aggregating both Levels: Here, we study
the effect of aggregating both the levels in contrast to using
one of them. Table 7 shows how taking coverage of con-
cepts over both the levels results in better performance.
Effect of Discriminator and Consistency Loss: Discrimi-
nator loss is defined to provide a weaker supervision to fur-
ther knit the two distributions (fcom and ftgt) together while
Consistency Loss is designed to regularize the learned
composite multi-modal representations (see Section 3.5)
Table 6 shows the efficacy of the two loss functions.
Comparison of Number of parameters: Proposing a sim-
ple yet efficient approach, we compare the number of pa-
rameters against existing SOTA (VAL [7], TIRG [37] and
ComposeAE [3]) in Table 5. Table 1 shows how our model
outperforms VAL significantly, while using just one-third
number of parameters. Moreover, by adding just 14% pa-
rameters to ComposeAE, our model achieves a gain of 10%
on R@10 metric.

5. Conclusion and Future Work
In this work, we focus on the task of text conditioned im-

age retrieval and introduce SAC, which resolves the given
task into 2 major steps, SFA (where to see) and SFM (how
to change) which systematically streamlines the generation
of text aware image features. We conduct extensive ex-
periments on diverse benchmark datasets and consistently
achieve state-of-the-art performance.

There are some cases when all the predictions are quali-
tatively coherent but this is not captured by metric since the
specific target image is not a part of the retrieved set. Thus,
exploring adaptive evaluation metrics is an interesting di-
rection for future work.
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