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Figure 1: Comparison between real and display images showing diverse moiré patterns in edged images. The artifacts
varying by the displays are known as moiré patterns, which can lead to overfitting of the model to the training data. The
unique patterns per display makes it challenging to develop a generalized method to distinguish such spoof images. Since
each display has a unique moiré pattern, it is challenging to develop a generalized model to distinguish such spoof images.

Abstract
In online markets, sellers can maliciously recapture oth-

ers’ images on display screens to utilize as spoof images,
which can be challenging to distinguish in human eyes. To
prevent such harm, we propose an anti-spoofing method us-
ing the pairs of RGB images and depth maps provided by
the mobile camera with a time-of-fight sensor. When images
are recaptured on display screens, various patterns differ-
ing by the screens as known as the moiré patterns can be
also captured in spoof images. These patterns lead the anti-
spoofing model to be overfitted and unable to detect spoof
images recaptured on unseen media. To avoid the issue, we
build a novel representation model composed of two embed-
ding models, which can be trained without considering the
recaptured images. Also, we newly introduce mToF dataset,
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the largest and most diverse object anti-spoofing dataset,
and the first to utilize the time-of-flight (ToF) data. Experi-
mental results confirm that our model achieves robust gen-
eralization even across unseen domains.

1. Introduction

As the volume of online transactions increases, the size
of online person-to-person transactions is also on the rise
(i.e. Craigslist). In unfortunate cases, sellers can mali-
ciously use spoof images for scams, and buyers are forced
to bear the risk of scams to proceed with transactions. To
prevent such cases, many online services provide mobile ap-
plications specifically developed for secure verification with
real-time capturing and direct transferring of users’ images.
However, such verification methods are still imperfect be-
cause the abusers can avoid such safeguards by recapturing
others’ images displayed on a screen. Thus, distinguishing
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such spoof images has become one of the most important
challenges to fostering reliable online transactions.

Unfortunately, however, most previous anti-spoofing
studies have focused on the human face [1,7,8,20,22,25,28,
40,42]. While the common characteristics of the human face
can be utilized in the face anti-spoofing detector, the object
anti-spoofing detector cannot utilize the architectural prop-
erties of the target objects due to their variety in merchan-
dise. As a result, the object anti-spoofing detector needs to
focus on the difference between the real and display images,
which originates from the capturing constraints.

As shown in the edged images located at the second
row of Fig. 1, some display screens show distinct artifacts,
which are known as moiré patterns. The moiré patterns can
be utilized to train the anti-spoofing model; however, due
to the uniqueness of the moiré patterns, the anti-spoofing
model suffers from the overfitting issue to the various moiré
patterns appearing in the training data. When overfitting
occurs, the model’s performance can dramatically decline
when tested with the new display screens unseen during the
training phase. Furthermore, the moiré patterns of some dis-
play screens appear in a subtle and almost indistinguishable
manner in human eyes. Thus, for the generality across the
various spoof media, a more advanced anti-spoofing detec-
tor is required to avoid the overfitting issue to the moiré
patterns of various display screens.

To solve the issues, we propose a novel framework to
utilize both the image and the depth map obtained with the
Time-of-Flight (ToF) sensor. The proposed framework con-
tains dual embedding models to learn the multi-sensor rep-
resentation of the real images, which are trained without
the display images. Since no display image is considered
during training, the representation model can ignore the ef-
fect of moiré patterns entirely. Thus, our proposed model
can achieve improved robustness across the various types
of spoof media. To train and evaluate our model, we col-
lect mToF dataset, which provides the largest amount of
real and display images captured with the various objects
on diverse spoof media, each paired with the ToF map.
The ToF map is the depth map obtained with the ToF sen-
sor, which estimates the depth based on the duration of the
light emitted from the sensor to reach the object and return.
mToF dataset is the largest and the most diverse object anti-
spoofing dataset and the first to utilize ToF maps in this field
of study. By using the mToF dataset, numerous experimen-
tal results confirm that our anti-spoofing method can outper-
form other models and achieve state-of-the-art performance
on generalized detection in various combinations of objects
and spoof media. 1

• In the field of object anti-spoofing, our study is the first
to employ the images with depth information gathered
by the mobile ToF sensor.

1https://github.com/SamsungSDS-Team9/mToFNet

• Using the RGB images with the depth maps, we pro-
pose a generalized anti-spoofing method to distinguish
even the unseen display images during the training
phase.

• We introduce a new dataset of 12, 529 pairs of RGB
images and the corresponding ToF maps, all of which
are labeled as either ‘real’ or ‘display.’

• Numerous experiments validate the effectiveness of
our method in object anti-spoofing.

2. Related Work
2.1. Face Anti-Spoofing

Most previous studies in anti-spoofing methods have
been focused on the face category only, usually for the bio-
metric recognition system to allow access to genuine users
and prevent identity theft. For texture-based anti-spoofing,
early studies focus on the hand-crafted feature descriptors,
such as the local binary patterns [7,8,28], and the histogram
of the oriented gradients [22,40]. The Convolutional Neural
Networks (CNN) are also employed for face anti-spoofing,
such as [1], which utilizes CNN and score fusion methods.
Also, [25] employ a combination of CNN, principle com-
ponent analysis, and support vector machine as a face anti-
spoofing method. Then, [20] inversely decomposed a spoof
face into a live face and a spoof noise for classification. Re-
cently, [42] introduced a vast amount of face anti-spoofing
dataset with rich annotations.

2.2. Object Anti-Spoofing

To expand the scope, we explore the literature on the ob-
ject anti-spoofing for a deeper analysis. Recently, [35] take
the issue of recaptured images on spoof media using the
CNN-based framework consisting of GOGen, GODisc, and
GOLab. [35] also provide GOSet, a new dataset consisting
of 2,849 videos captured with 7 camera sensors, 7 spoof
media, and 24 objects for Generic Object Anti-Spoofing
(GOAS). [19] have tackled the issue by analyzing the dif-
ference in depth of field of two images, each with a differ-
ent focal length. [19] also provides a unique paired dataset
using various objects and three spoof media, and each pair
consists of two images with the same viewpoint but differ-
ent focal lengths. Our work improves upon the prior litera-
ture by utilizing various object categories and spoof media
with mobile ToF data and providing the richest content and
the largest amount of dataset.

2.3. Studies on RGB-D Images

Generally referred to colored images containing depth
information, RGB-D has been employed in various research
areas. [24] suggest placing 3D bounding boxes to detect
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(b) Difference in the real and dis-
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Figure 2: Comparison in power spectra of real and dis-
play images. The statistical difference between the real and
display becomes magnified when ToF maps are utilized.

objects using 2D information in RGB-D images, in order
to decrease the run-time and 3D search space. For RGB-
D salient object detection, [3] propose a fusion method for
the RGB and depth information using CNN. Also, RGB-
D is employed for object classification, as [34] introduces
a model that combined convolutional and recursive neural
networks. Also, [2, 12] suggests utilizing the RGB-D im-
ages for object classification using dictionary learning and
covariance descriptors. RGB-D is used in-depth estimation
to improve performance, as many studies based on deep
networks have suggested [11, 26, 32, 38]. Recently, with
a spread of Time-of-Flight (ToF) sensors in mobile cam-
eras, [31] suggest a joint alignment and refinement using
deep learning for the ToF RGB-D module. We find that it
is useful to detect the display images using the depth maps,
since the conventional spoof media result in the flat regions
in depth maps.

3. ToF-based Object Anti-spoofing
In this section, we observe the difference in ToF maps

between the real pairs and display pairs, and propose a ro-
bust anti-spoofing method utilizing the ToF maps. The real
pairs of images and ToF maps are obtained by capturing the
actual objects, and the display pairs are acquired by recap-
turing the images displayed on the screens. First, we con-
duct a comparative analysis on the image level and the ToF
level in Section 3.1, then we introduce our overall frame-
work and its training method in detail in Section 3.2.

3.1. ToF Frequency Analysis
To compare the characteristics of the images and ToF

maps, we conduct a frequency-level analysis. First, we
transform the 2-Dimensional (2D) images and ToF maps
into magnitude spectrum by applying Discrete Fourier
Transform (DFT). DFT is a mathematical approach to dis-
integrate a discrete signal into the frequency-level compo-
nents ranging from zero up to the maximum frequency that
is proportional to the spatial resolution [16].

To reduce the dimension of the 2D spectrum from the

images and ToF maps, the frequency-level 2D spectrum
is transformed into 1D power spectrum by applying Az-
imuthal averaging [10], which is a computational approach
to obtain a robust 1D representation of the power spectrum.
Utilizing the method, we can scale down the number of fea-
tures but maintain the relevant information. By using the
training set of our mToF dataset, Fig. 2 shows the com-
parison between the 1D power spectrum of the images and
the ToF maps. The detailed explanations on mToF dataset
are given in Section 4. As illustrated, the ToF maps con-
tain more ‘artifacts’ or ‘patterns’ from the display screens
and thus show a greater difference in distributions. Based
on the characteristics, we design the overall framework as
described in the following section.

3.2. Overall Framework
Using the two types of modalities including the images

and the ToF maps, we design a framework to distinguish
between the real and display pair without using the moiré
patterns. To overcome the overfitting issue by the moiré
patterns of the training data, we need to entirely ignore the
RGB images of the display pairs. Thus, we utilize the ToF
maps for the display pairs, while both the images and the
ToF maps are used for the real pairs. Since the conventional
classification network cannot be trained by the inconsistent
type of input data, we build a ToF representation network
that can be trained even without the display images.

ToF representation network contains two separate em-
bedding models trained to represent the data distributions
of only the real pairs and both pairs, respectively. The em-
bedding model with the real pairs is named as multi-modal
embedding model, which receives both the images and the
ToF maps and reconstructs the ToF maps. The other embed-
ding model with both pairs is named as ToF-modal embed-
ding model, and it only receives the ToF maps to recover the
identity ToF maps. We let the two representation features of
the embedding models be similar to each other upon the
real pairs, which results in the abnormal distribution of the
representation features for the display pairs. Then, the two
representation features of the embedding models are con-
catenated to be inserted into the spoof classifier, which de-
tects the display images by recognizing the dissimilarity of
the two representation features. The overall framework is
illustrated in Figure 3.

3.2.1 ToF Representation Network

We define the input image and the ToF map as xI ∈
Rw×h×3 and xT ∈ Rw×h, respectively, where w is the
width and h means the height of data. We assume that the
two types of data are resized to have the same size. The two
embedding models respectively contain an encoder and the
following generator. The encoders of the embedding mod-
els compress the input data into the representation feature,
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Figure 3: Overall framework. Using the real images and their paired ToF maps as the inputs, the first embedding model is
trained to reconstruct the ToF maps. Then, using the sampled ToF maps, the second embedding model is trained to reconstruct
the identical ToF maps. The representation features from the two embedding models are mapped into the identical feature
space, from which the classifier makes the prediction.

which is used to reconstruct the input ToF map by the fol-
lowing generator. We define the encoder and generator of
the multi-modal embedding model as EM and GM , respec-
tively, and the encoder and generator of the ToF-modal em-
bedding model are denoted as ET and GT , respectively.

The input of EM is the 4-channel feature c(xI , xT ) con-
catenating xI and xT of the real pairs. Then, the generated
latent code is defined by zM (i.e. zM ≡ EM (c(xI , xT ))).
From the generated zM , the following GM reconstructs the
input ToF map. Instead of the concatenated features, only
the ToF map is reconstructed by GM , which leads to stable
training of the embedding model by reducing the informa-
tion to be reconstructed. Unlike the multi-modal embedding
model (GM (EM (•))), the ToF-modal embedding model ig-
nores the images as its input. Thus, ET gets the 1-channel
feature of xT , and its generated latent code can be obtained
as zT ≡ ET (xT ). Finally, the generator GT of the ToF-
modal embedding model (GT (ET (•))) reconstructs the in-
put ToF map by estimating GT (zT ). The encoders con-
tain three convolution layers of stride 2 and kernel size 3,
which are respectively followed by a ReLU activation func-
tion [29] and batch normalization. In the generators, three
transposed convolution layers are serially connected with
stride 2 and kernel size 2. To allow the latent codes to im-
plicitly represent the data distribution, we do not employ the
U-Net architecture [18] nor the skip connection [15] for our
embedding models.

The training loss for the ToF representation network con-
sists of two reconstruction losses respectively for each em-
bedding model and one representation loss. Using the re-
construction losses, we train the two embedding models to
effectively represent the ToF information. The multi-modal
embedding model is trained to always reconstruct the input
ToF maps only from the real pairs. Thus, for the training

phase of the multi-modal embedding model, the input im-
ages are sampled as (xI , xT ) ∼ Xreal, where Xreal is the
set of real pairs. The reconstruction loss for the multi-modal
embedding model can be defined as follows:

LM
rec = E(xI ,xT )∼Xreal

[||xT −DM (EM (c(xI , xT )))||2].
(1)

In the case of the ToF-modal embedding model, its encoder
receives the ToF maps from both the real and display pairs,
and its generator reconstructs the ToF map similarly to the
input ToF maps. Thus, the reconstruction loss for the ToF-
modal embedding model can be defined as follows:

LT
rec = E(xI ,xT )∼X [||xT −GT (ET (xT ))||2], (2)

where X presents the set of all pairs.
In addition, to detect the display pairs by using the latent

codes, we design a representation loss to reduce the distance
of the latent codes from the two embedding models when
the real pairs are given. By applying the loss, only the latent
codes of real pairs are similar to each other, so the display
pairs can be easily detected based on their discrepancies.
Then, the representation loss can be derived as follows:

Lrep = E(xI ,xT )∼Xreal
[||EM (c(xI , xT ))− ET (xT )||1].

(3)

3.2.2 Spoof Classifier

The spoof classifier compares the latent codes from the two
embedding models to predict the real and display pairs.
First, zM and zI are pooled by an average pooling and
vectorized, which are defined by ẑM and ẑI , respectively.
Then, the spoof classifier is fed by the concatenated fea-
ture of [ẑM , ẑI ]. The spoof classifier consists of three fully
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Table 1: Dataset Comparison

Dataset Category Domain Size # of Spoof
Subject

# of Spoof
Medium Paired ToF

Celeb-A Spoof [42] Face Image 625,537 10,177 - No No
GOAS [35] Object Video 2,849 24 7 No No
DoFNet [19] Object Image 2,757 6 3 Yes No
Ours Object Image 12,529 27 16 Yes Yes

Table 2: Types of Spoof Mediums for mToF Dataset
Monitor Laptop Mobile Phone Tablet PC Projector

Samsung LED
(S27H850QF)

Samsung PEN-S
(NT930)

Samsung S20 Ultra
(SM-G988)

Samsung Tab S4
(SM-T830)

NEC LCD
(M311XG)

Samsung Curved LED
(C34J791WT)

Lenovo Legion 5
(Y540)

Samsung Note 8
(SM-N950N)

Apple iPad 6Gen
(A1893)

LG CineBeam DLP
(HF60LA)

Apple iMac LCD
(A1419)

Apple Macbook Pro
(A1398)

Apple iPhone12 Pro
(A2407) - -

LG LCD
(32GK850G)

LG Gram
(15Z990)

Apple iPhone11 Pro
(A2215) - -

connected layers to classify the concatenated features as ei-
ther real or display pairs. To operate the spoof classifier,
only the encoders of the two embedding models are neces-
sary, so we remove their generators to improve the compu-
tational efficiency in the test phase. The spoof classifier is
trained for the binary classification of ‘real’ or ‘display’, so
we utilize the conventional cross-entropy loss with softmax
function [5].

4. mToF Dataset
Recently, several mobile manufacturers have begun to

equip ToF sensors on their mobile devices such as Samsung
Galaxy S20+, Apple iPhone 12 Pro, and LG G8 ThinkQ.
Due to its easy accessibility and simple operation, the ToF
sensor is a great tool for the measurement of depth informa-
tion. Our mToF dataset is collected to overcome the limita-
tions in size and variety of the previous object anti-spoofing
datasets and to provide additional ToF data for the first time
in this area of research. With 12,529 images in 27 categories
captured on 16 different spoof media, mToF dataset is the
largest in size with the most variety, compared to other re-
cent anti-spoofing datasets as shown in Table 1. Using the
ToF map, we can effectively distinguish whether an image
is taken of a real object, or recaptured on a display medium.

4.1. Data Composition
Our new mToF dataset can be divided into two major

segments: the images taken of the real objects are defined
as real images, and the recaptured images of the real images
on the spoof media are defined as display images. Each real
and display image is paired with its corresponding ToF map,
which is a unique feature compared to other datasets. For
data diversity, our mToF dataset is composed of 27 object
categories, including book, bottle, bowl, bug spray, candle,
cellphone holder, condiment, cosmetic, cup, diffuser, dish,
food container, glasses case, household goods, humidifier,
mouth wash, music album, ointment, pan, perfume, pot,
snack, toy, vitamin, wallet, wet-wipe, and window cleaner.

Also, we use 16 different spoof media, including vari-
ous monitors, laptops, mobile phones, tablet PCs, and pro-

jectors from diverse manufacturers, as listed in Table 2.
For monitors, four types of display screens are used, in-
cluding a Samsung Wide Quad High Definition (WQHD)
Light-Emitting Diode (LED) monitor (S27H850QF, 27-
inch, 2019), a Samsung WQHD curved quantum-dot LED
monitor (C34J791WT, 34-inch, 2018), a retina 5K liquid-
crystal display (LCD) of Apple iMac (A1419, 27-inch,
2017), and an LG anti-glare LCD monitor (32GK850G, 32-
inch, 2017). Also, four types of laptops are used, includ-
ing a Samsung PEN-S (NT930, 13.3-inch, 2019), a Lenovo
Legion 5 (Y540, 15.6-inch, 2020), an Apple Macbook Pro
(A1398, 15.4-inch, 2015), and an LG Gram (15Z990, 15.6-
inch, 2019). For mobile phones, four types of devices are
used, including a Samsung Galaxy S20 Ultra (SM-G988,
6.9-inch, 2020), a Samsung Galaxy Note 8 (SM-N950N,
6.3-inch, 2017), an Apple iPhone 12 Pro (A2407, 6.1-inch,
2020), an Apple iPhone 11 Pro (A2215, 5.8-inch, 2019).
Lastly, two types of projectors are used, including a pro-
jector screen for NEC LCD projector (NP-M311XG, 2012)
and an LG Cinebeam Digital Light Processing (DLP) pro-
jector (HF60LA, 2019).

4.2. Data Collection
All images are captured with a mobile application specif-

ically developed to obtain a pair of RGB images and its
corresponding ToF maps, using the mobile ToF sensor on
a Samsung Galaxy Note 10. For data collection, we first
take the real images by focusing on the subjects located in
the middle and then recapture the display images by set-
ting the mobile phone on a tripod in front of the screens
displaying the real pictures. All display images are taken in
the dark with the lights off to minimize unnecessary fac-
tors, such as light reflections and noises. Also, to imitate
real-world settings, we include various backgrounds behind
the subjects to provide a variety of shooting environments.
The backgrounds include bookshelves, curtains, home ap-
pliances, kitchen cabinets, paintings, and more. For train-
ing, the images are randomly mixed to prevent data bias.

4.3. On-device Refinement of ToF Maps
The raw ToF maps captured with the ToF sensor require a

refining process due to the numerous artifacts and noises in-
cluded, which are affected by various factors, such as multi-
path interference, motion artifacts, shot noises, and differ-
ent camera response functions [14, 31]. After capturing the
paired images with the ToF maps, we refine the data within
the mobile application according to the API guide provided
by Android2. For refinement, we acquire the ToF map with
an even width and height, in which each pixel is 16-bit val-
ued indicating the range of ToF measurements. When the
ToF map is captured, the correctness of the depth value is
saved along with the depth value at the three most signif-

2https://developer.android.com/reference/android/graphics/ImageFormat
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icant bits of them. The correctness of the depth value is
encoded in the three bits as follows: when a value of zero
represents 100% confidence, one represents 0% confidence.
Our collected images have a resolution of 1280×720, and
their ToF maps have a resolution of 240×180.

4.4. Pre-processing of Paired Images
Without pre-processing, we cannot use the RGB image

and the depth map simultaneously, since the depth maps
from the ToF sensor is represented by 16 bits while a color
channel of the RGB images is in 8 bits. To equalize the bit
scales of the RGB images and the depth maps, we transform
the bit scale of the depth map into 8 bits where the value
ranges between 0 and 255. Thus, the bit scale of the depth
map becomes equivalent to one color channel of the RGB
image. Afterward, we resize all of the RGB images and the
depth maps to 180 × 180 in resolution, which is the small-
est image length among the captured data. Finally, when the
samples captured with the same target object and the same
type of displays are grouped by a sample set, we compose
each sample set as follows: 80% as training set, 10% as val-
idation set, and the last 10% as test set. The sample sets of
real images are also organized in the same fashion.

5. Experimental Results
In this section, we conduct experiments to evaluate our

model in various scenarios. The implementation details of
our method are as follows. To align the resolutions of the
image and ToF map, we resize the image resolution to
180×240 to match the resolution of ToF map. For data aug-
mentation, we randomly crop the image size to 160 × 160.
The networks are trained based on Adam optimizer [21]
using the learning rate of 0.0001 and the batch size of
32 with 20 epochs. All experiments are conducted using
a single NVIDIA Titan RTX GPU. To effectively evaluate
the performance of our method, we employ the measure-
ments commonly used in anti-spoofing and image forgery
detection: Accuracy (Acc.), AUROC, and Average Preci-
sion (A.P.) [6, 37, 41].

5.1. Comparison models
In this section, we provide explanations for the com-

pared models including the PCA-based, frequency-based,
and CNN-based naive models.

5.1.1 PCA-based Model

To find a better representation method for detecting dis-
play images than the variance of ToF maps, we employ the
Principal Component Analysis (PCA) [17], which is one
of the most popular methods to find the representative fea-
tures from raw data. Using PCA, we can obtain the projec-
tion axis maximizing the discrimination of the input sam-
ples, which is called the principal component. Also through

PCA, we can get the multiple principal components that
maximize the discrimination, however, the principal com-
ponents are constrained to be orthogonal to each other. Af-
ter reducing the feature size of the ToF maps by two, we
integrate a linear Support Vector Machine (SVM) to detect
the display pairs by using them.

5.1.2 Frequency-based Model

To show the effectiveness of the frequency-based detector
with the ToF maps, we also employ a frequency-based de-
tector [9] as one of the compared algorithms. In the detec-
tor, 2-D image or ToF map is transformed into the frequency
domain by Fast Fourier Transform [16], first. Then, by uti-
lizing the operation of Azimuthal average [10], the 2-D fre-
quency domain is compressed into a 1-D power spectrum
that compresses the frequency information of the ToF maps.
The classification model is based on SVM [4] with linear
kernel, which is also employed for the proposed framework.

5.1.3 CNN-based Naive Classifier

For the classification model of Convolution Neural Net-
works (CNN), we utilize ResNet [15], VGG [33],
resnext [39], alexnet [23]. In a comparative analysis, we
concatenate the ToF maps and the images to use them as
the training input. Since CNN simultaneously works as the
feature extractor, we utilize the raw ToF maps for CNN in-
stead of the feature extraction methods. We replace the last
fully connected layer of the models to reduce the number
of classes by 2. Then, the network is fine-tuned by using the
softmax cross-entropy loss for the binary classification. The
network is updated by Adam optimizer [21], and the num-
ber of epochs, the learning rate, and the batch size are set to
20, 0.0001, and 32, respectively.

5.1.4 Face anti-spoofing model

To compare our method to the face anti-spoofing model, we
utilize the methodology proposed by Moon et al. [27] and
George and Marcel [13]. Moon et al. [27] detects the spoof-
ing face by only using the RGB images, so the decline in
performance is dramatic compared to our model. George
and Marcel [13] utilize the RGB images and depth maps
simultaneously like our method and show state-of-the-art
performance in the face anti-spoofing problem. Since only
the trained model and the loss are shared publicly for the
method, we implement the code for training and testing,
which is fully validated by producing the same performance
with the uploaded model.

5.2. Unseen Display Performance
For real-world applications, the anti-spoofing task

should be able to cover the unseen environment, because
it is impractical to gather all necessary data to detect every
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Table 3: Unseen display performance.

Models Data Type
Target-display Unseen-display All-display

Acc. A.P. AUROC Acc. A.P. AUROC Acc. A.P. AUROC
AlexNet [23] RGB, ToF 51.37 88.64 93.59 40.91 68.77 62.70 41.56 70.01 64.63
VGG [33] RGB, ToF 98.63 100.00 100.00 87.12 92.97 88.16 87.84 93.41 88.90
ResNext [39] RGB, ToF 100.00 100.00 100.00 86.26 86.17 74.64 87.12 87.03 76.23
ResNet [15] RGB, ToF 100.00 100.00 100.00 86.67 88.95 80.53 87.50 89.64 81.75
PCA [17] ToF 100.00 100.00 100.00 87.31 87.31 87.31 88.10 88.10 88.10
Moon et al. [27] RGB 73.57 89.75 85.08 63.33 75.34 73.80 63.97 76.24 74.50
George & Marcel [13] RGB, ToF 100.00 100.00 100.00 86.67 91.13 86.30 87.50 91.68 87.16
Durall et al. [9] ToF 100.00 100.00 100.00 93.33 93.33 93.33 93.75 93.75 93.75
Durall et al. [9] RGB, ToF 100.00 100.00 100.00 93.33 93.33 93.33 93.75 93.75 93.75
Ours RGB, ToF 100.00 100.00 100.00 96.67 100.00 100.00 96.88 100.00 100.00

Table 4: Ablation Study.

Target-display Unseen-display All-display
Acc. A.P. AUROC Acc. A.P. AUROC Acc. A.P. AUROC

w/o ToF 50.00 64.54 56.54 44.75 40.33 23.06 45.08 41.84 25.15
w/o Rep. 100.00 100.00 100.00 87.26 95.94 92.40 88.06 96.19 92.88
w/o Lrep 100.00 100.00 100.00 86.67 95.80 95.13 87.50 96.06 95.43
Ours 100.00 100.00 100.00 96.67 100.00 100.00 96.88 100.00 100.00

Table 5: Moire-based Train performance.

Number of
Displays

Target-display Unseen-display All-display
Acc. A.P. AUROC Acc. A.P. AUROC Acc. A.P. AUROC

1 50.00 56.64 50.83 46.03 35.94 19.18 46.28 37.23 21.16
2 50.00 68.88 66.76 47.90 39.99 24.96 48.16 43.60 30.19
4 63.36 76.27 66.87 58.61 69.73 60.12 59.80 71.37 61.81
8 69.78 87.07 84.36 64.81 81.57 74.79 67.30 84.32 79.58

15 77.40 82.52 84.33 74.70 80.45 81.17 77.23 82.39 84.13
Ours 100.00 100.00 100.00 96.67 100.00 100.00 96.88 100.00 100.00

spoof medium [19, 35, 37]. Thus, for practical applications,
we validate the proposed method by estimating the robust-
ness in anti-spoofing when only a limited number of dis-
plays is considered during training. Table 3 presents the ro-
bustness to the unseen media when only one display is con-
sidered in the training phase. ‘Target-display’ experiments
are of the models trained and tested using the same display
types. Also, ‘Unseen-display’ experiments are of the mod-
els tested with unseen display types, while ‘All-display’ ex-
periments are of the models tested with all display types.

We compare with not only the CNN-based methods [15,
23, 33, 39], such as AlexNet, VGG, and ResNet, but also
the PCA-based methods [25]. As employed in [9, 10], we
additionally compare with the frequency-based detection
methods. As shown in the experimental results, our method
achieves the most robust performance in distinguishing
the display images, using the ToF maps. Furthermore, the
state-of-the-art method for face anti-spoofing detection [13]
shows a decline in robustness for the unseen media, even
though the method also considers the depth map. This re-
sult validates that the object anti-spoofing detection cannot
be solved just by applying the face anti-spoofing detectors.
Since the moiré pattern is easily distinguishable by every
compared model except for AlexNet, the target-display per-
formance is consistently superior among all models. How-
ever, in the case of unseen-display experiments, our pro-
posed framework shows state-of-the-art performance by far.

5.3. Ablation
Table 4 indicates the experimental results of the ablation

study to validate the individual component of our method.
First, we conduct experiments of our model using the CNN
classifier and the images only, without the ToF maps (w/o
ToF). In this case, the model learns the moiré patterns [30]
of the display images for classification, which results in a
decline in performance. Such results demonstrate the im-
portance of using the ToF maps for accurate classification of
the real and display images. Second, we add the ToF maps
along with the images as the input of the CNN classifier
of our model but eliminate the representation network (w/o
Representation Network). By considering the ToF maps,
we can achieve improved performance in distinguishing the
real and display images. Lastly, we conduct experiments of
our model without the representation loss (w/o Lrep), which
makes both the encoder and generator to exist in the same
representation space (w/o Lref ). Although both of the em-
bedding models are trained to reconstruct ToF maps, the re-
sults validate the representation loss is essential since each
network is independent of the other.

5.4. Effectiveness to Train Various Moiré Patterns
In this section, we conduct additional experiments veri-

fying that the training of numerous moiré patterns is ineffec-
tive to improve the generality of the anti-spoof detector. For
the experiments, we utilize Resnet-50 [15], and its hyper-
parameters for training are also the same as those in Sec-
tion 5.2. For the compared models, to maintain the moiré
patterns clearly on the display images, we randomly crop
the display images to use as the input, instead of resizing
as proceeded in the ToF maps. Also, for data augmenta-
tion, we apply random flips and random rotations of the im-
ages to expand the training data. By gradually increasing the
number of training displays, we observe the model’s per-
formance when tested with the target-display and unseen-
display. The experimental results are listed in Table 5, which
indicates the improved performance as the number of train-
ing displays increases. However, our method using the ToF
maps outperforms this method yet. Thus, the training of nu-
merous types of moiré patterns is less effective than our pro-
posed method ignoring the display images.
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(a) Multi-modal embedding model  (b) ToF-modal embedding model  

Figure 4: t-SNE Visualization for Real and Display Pairs. The latent codes from real and display pairs are visualized by
t-SNE. While the real pairs are gathered to form a stable distribution, the latent codes from the display images are grouped
by the spoof media and scattered out of the distribution of real pairs.
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Figure 5: Confusion Matrix. Experiments are conducted
with various combinations of training and test domains to
assess our model by categorizing the spoof media by the (a)
display type and (b) device type. The row and column indi-
cate the training domain and the test domain, respectively.

5.5. Visualization of Latent Codes
Using t-Stochastic Neighbor Embedding (t-SNE) [36],

we observe whether our method based on the representa-
tion training actually makes the real images and the real ToF
maps exist in the same space, so that it can effectively distin-
guish between the real and display images. Fig. 4 illustrates
the clear division between the latent codes from the real and
display images. The features are well categorized according
to the device type, which can provide interesting relations
among the various spoofing media.

5.6. Analysis of Display and Device Types
To show the different characteristics of various displays,

we perform additional experiments to evaluate the perfor-
mance with various combinations of training and test do-
mains. As shown in Fig. 5, we build a taxonomy of the vari-
ous spoof media categorized into two categories: the display
types and device types. As shown in the display types of
the taxonomy, our method experiences difficulties with the
screen type when trained with other media. Similarly, in the
device type, the projector type is more challenging to de-
tect using our method trained with other media. Also, while

the characteristics of the monitor, tablet, and laptop types
can be trained by the phone display, it is more challenging
to detect the phone display using those characteristics only.
This indicates that the robustness among the media can be
related asymmetrically. From the results, we discover that
the proposed algorithm can be improved for future investi-
gations to enhance the robustness of the projector type and
to analyze the asymmetric relations among the spoof media.

6. Conclusion
With the expansion of online commercial transactions, it

becomes increasingly important to prevent image spoofing
in various categories. Our newly proposed method achieves
the most robust performance in distinguishing the real and
display images by using the ToF maps, even when tested
with unseen displays during the training phase. Numerous
experiments confirm our model’s robustness compared to
others, and the individual components of our framework are
evaluated through vigorous ablation study. Also, our mToF
dataset is the largest and the most diverse dataset for object
anti-spoofing and is composed of the real and display im-
ages paired with the ToF maps. We expect our mToF dataset
to be utilized in various tasks, such as 3D reconstruction
and object detection. Furthermore, we believe our work can
make ethical impacts in society by recovering the digital
mistrust in online markets. To enhance the applicability, we
plan to extend the proposed framework to work with the
camera sensor only by utilizing the depth map from the
multiple-view geometry or single-view depth estimation.
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