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Abstract

Temporal Video Segmentation (TVS) is a fundamental
video understanding task and has been widely researched
in recent years. There are two subtasks of TVS: Video Ac-
tion Segmentation (VAS) and Video Procedure Segmenta-
tion (VPS): VAS aims to recognize what actions happen in-
side the video while VPS aims to segment the video into a
sequence of video clips as a procedure. The VAS task in-
evitably relies on pre-defined action labels and is thus hard
to scale to various open-domain videos. To overcome this
limitation, the VPS task tries to divide a video into several
category-independent procedure segments. However, the
existing dataset for the VPS task is small (2k videos) and
lacks diversity (only cooking domain). To tackle these prob-
lems, we collect a large and diverse dataset called TIPS,
specifically for the VPS task. TIPS contains 63k videos in-
cluding more than 300k procedure segments from instruc-
tional videos on YouTube, which covers plenty of how-to ar-
eas such as cooking, health, beauty, parenting, gardening,
etc. We then propose a multi-modal Transformer with Gaus-
sian Boundary Detection (MT-GBD) model for VPS, with
the backbone of the Transformer and Convolution. Fur-
thermore, we propose a new EIOU metric for the VPS task,
which helps better evaluate VPS quality in a more compre-
hensive way. Experimental results show the effectiveness of
our proposed model and metric.

1. Introduction

Coupled with the significant increase of content-based
video data on the Internet, video analysis remains an in-
tensely studied field, e.g., temporal video segmentation [27,
3]}, dense video caption [18 [26]], visual grounding [18 [26].
Temporal video segmentation (TVS), which is a fundamen-
tal step in content-based video analysis, plays a key role in
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Figure 1. Difference between Video Action Segmentation (VAS)
and Video Procedure Segmentation (VPS). VAS predicts action
label for each frame while VPS predicts semantic boundaries for
video procedure and can be viewed as pre-processing for video
captioning.

video analysis. YouTube|I| already released the video seg-
mentation feature on several videos, most of which rely on
the video creator to manually input the timestampsﬂ Al-
though automatic segmentation is of high-demand for web
applications, it is still a quite challenging research problem.

“The goal of temporal video segmentation is to divide the
video stream into a set of meaningful and manageable seg-
ments” [9]]. To achieve this goal, two types of subtasks have
been proposed in recent years, as shown in Fig. [T} The first
subtask is Video Action Segmentation (VAS), which tem-

Uhttps://www.youtube.com/watch?v=gCtLbNe7800
Zhttps://techcrunch.com/2020/05/28/youtube-introduces-video-
chapters-to-make-it-easier-to-navigate-through-longer-videos/
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porally divides a video into several segments and predicts
an action for each segment. [21]] proposed the 50Salads
dataset, which provides a total of 52 actions for the cook-
ing domain. Later, [24]] proposed the COIN dataset, which
provides a total of 180 actions for the multiple domains
from YouTube. However, as the actions are pre-defined, the
videos are inevitably annotated under the restriction of the
action labels and it is hard to generalize to new actions. To
remove this restriction and learn video temporal segments
from pure visual evidence, [27] proposed the second sub-
task, Video Procedure Segmentation (VPS). Similar to the
VAS task, the VPS task also temporally divides a video into
several segments and each procedure segment is category-
independent. The VPS task defines a natural procedure seg-
mentation for real-world scenarios and has a high applica-
tion value, such as automatically generating chapters for
YouTube videos. However, there are few VPS datasets in
the research field and the existing VPS datasets have limita-
tions in diversity and scale. For example, [27]] proposed the
Youcook?2 dataset, which only provides 2000 videos in the
cooking domain.

To tackle these problems, we first introduce a new au-
tomatically collected dataset called TIPS for video pro-
cedure segmentation. Fig. [2| shows an example of this
dataset. TIPS is a large and diverse dataset built from in-
structional videos on YouTube, which contains 63k videos
and more than 300k procedure segments. It covers plenty
of instructional videos from various domains, e.g. cook-
ing, health, beauty, parenting, gardening. We then pro-
pose a novel Multi-modal Transformer Gaussian Boundary
Detection (MT-GBD) model for the VPS task. The MT-
GBD model uses a visual transformer to encode the video,
a language transformer to encode the transcript, and a cross
transformer to encode the interaction between visual and
language followed by a temporal convolution network, and
finally detects the segment key point with Gaussian bound-
ary. Furthermore, to evaluate the procedure segmentation
performance of the model in a human-sense manner, we
introduce a new metric, called Experienced IOU (EIOU),
specifically for video procedure segmentation.

In summary, our contributions are as follows:

(1)We introduce a large, open-domain, category-
independent dataset for video procedure segmentation.

(2)We propose a novel Multimodal Transformer Gaus-
sian Boundary Detection (MT-GBD) model with detailed
ablation for video procedure segmentation.

(3)We design a new Experienced IOU metric for video
procedure segmentation, which comprehensively considers
procedure length, precision, and recall.

2. Related Work

2.1. Temporal Video Segmentation Datasets

Early datasets for temporal video segmentation focus on

video action segmentation[6, 21}, [11} [1} [24]. Most of them
only involve a specific domain, such as cooking. Recently,
[27] introduced video procedure segmentation task and pro-
posed the Youcook?2 dataset, which provides incontiguous
video procedure segments. Tab. [T] gives a comparison of
existing datasets that support temporal video segmentation.

0.12emOpt1pt Dataset Task Samples Domain Actions

GTEA VAS 28 Cooking 7

50Salads VAS 50 Cooking 17

Breakfast VAS 1,989 Cooking 48

EPIC-KITCHENS VAS 432 Cooking 149

COIN VAS 11,827 Open 180
0em0.5pt0.5pt heightYoucook2  VPS 2,000 Cooking -
TIPS(ours) VPS 63,756 Open -

0.12emOpt1pt
Table 1. Comparisons of existing datasets that support temporal
video segmentation.

The differences between TIPS and existing datasets are
four-folds. (1) Scale. TIPS is the largest temporal video
segmentation dataset, and more specifically, the largest
video procedure segmentation dataset. (2) Diversity. TIPS
contains open-domain instructional videos on YouTube in-
cluding cooking, health, beauty, parenting, gardening, etc.
(3) Contiguity. Unlike in Youcook?2 dataset, the segments
are incontiguous while the segments in TIPS are contigu-
ous. The contiguous segmentation better overviews the pro-
cedure of the whole video structure globally. (4) Auto-
generated. We introduce a workflow to auto-generate the
TIPS dataset from YouTube with guarantee of high qual-
ity. With the increase of videos uploaded to YouTube, it is
feasible to collect more data automatically in the future.

2.2. Temporal Video Segmentation Methods

One formulation of this problem is frame-wise
classification[3} 16, 4]]. Previous methods[12l 23] relied on
Hidden Markov Models (HMM). With the development
of deep learning methods, RNNs and CNNs are widely
used [19, 14} [15]. Recently, [3] proposed Multi-Stage
TCN (MS-TCN), which uses dilated convolutions to cap-
ture long-range temporal dependencies. The other simi-
lar works are proposal based models including Deep Ac-
tion Proposals[2} [10], Procnet[27]. Initially, the proposal-
based approaches|2} |10] were proposed for overlapped and
loosely-coupled event discovery instead of procedure seg-
mentation. Later, Zhou etc.[27] refined the algorithm for
video procedure segmentation. Besides, inspired by effec-
tive Transformer based method[22 [16] with pretraining on
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Figure 2. An example of the proposed TIPS dataset.

video action recogniton, retrieval, captioning etc., we also
adopt Transformer{25]] for procedure segmentation.

In this work, we propose a novel MT-GBD model to pre-
dict whether the frame is a segmentation or not. The differ-
ences between our proposed MT-GBD and existing meth-
ods are two-fold: 1) Considering the contiguity of the pro-
cedure, MT-GBD adopts Transformer for closely-coupled
context encoding and temporal convolution for frame-wise
prediction; 2) MT-GBD uses Gaussian Boundary Detection
(GBD) to enforce the model to predict more smooth results
instead of hard boundaries used in [3} [14]]. Experimental
results show that MT-GBD outperforms the state-of-the-art
methods to a large extent.

2.3. Temporal Video Segmentation Metrics

Existing temporal video segmentation models frequently
employ the F1 score and MIOU as an evaluation met-
ric [14} 3]]. However, F1 reports the results based on a pre-
defined threshold, while MIOU only measures the precision
instead of Recall. The main differences between our pro-
posed experienced IOU (EIOU) and those frequently-used
metrics are two-folds: 1) EIOU is a better evaluation met-
ric with consideration of both precision and recall without
a pre-defined threshold; 2) EIOU calculates the evaluation
score considering the various importance of each segment.
According to our study, the novel EIOU is more like a hu-
man judge compared with F1 and MIOU.

3. The TIPS Dataset

Currently, existing temporal video segmentation datasets
are not targeting procedure segmentation, or small dataset
and focus on one specific domain. It is hard to evaluate the
performance of deep models. However, manually labeling
a large and diverse video dataset is quite challenging since
it requires the annotators to watch different kinds of videos
with various unfamiliar fields, foreign languages, or long
duration. To overcome those issues, we collected a new
TIPS dataset automatically from YouTube, composed of
videos with contiguous segments from diverse categories.

3.1. Dataset Collect Methods

To generate a large-scale dataset, we built a 3-step work-
flow to automatically obtain labeled data from YouTube.
Our key insight is that a large number of instructional videos

contain explicit speech utterance of procedural steps, i.e,
“step one”, “step two”. These features make it possible for

the machine to automatically generate segment labels. In
detail, the TIPS dataset is collected in the following 3 steps:

Collecting instructional videos. Our goal is to find
high-quality instructional videos. To quickly find large-
scale dataset, we first download videos from YouTube and
then filter them according to a heuristic approach. We
search the video title with keywords like "How to” or “ways
to” etc. as instructional videos. In all, we processed 160M
videos and traversed more than 20M instructional videos.

Select well-organized videos. To guarantee the data
quality, based on the ASR speech text, we filter unorga-
nized videos by the following rules. 1) Firstly, we match the
speech text that explicitly mention the keywords like “step
17, “step two”, and so on. 2) Secondly, we filter out invalid
videos that contain less than 2 steps or more than 10 steps.
Videos with 1 step are too short for segmentation and those
with too long steps are complex which can be considered
as future work. 3) Thirdly, we further filter out videos with
missing steps through counting the number of each step,
that means, all steps must be continuous. 4) Fourthly, we fil-
ter out the remaining videos with sub-steps which contains
multiple steps between two continuous steps. These videos
are complicated in structure and our proposed dataset fo-
cuses only on top-level procedure segmentation.

Construct segment labels. We finally collect 63k well-
structured videos with high-quality procedure segmenta-
tion. Then we map each video segmentation to the corre-
sponding solution step. Fig.[2]shows an example of “how to
set up GitHub”. Since the speech text explicitly mentioned

“step number one”, “step number two”, the ground-truth

segmentation is then labeled with the corresponding times-
tamps. For example, if the phrase “step number one” was
pronounced at the timestamp 0:00:33, then the first corre-
sponding segmentation label is annotated at the exact times-
tamp 0:00:33.

3.2. Dataset Statistics

In this section, we list the statistics of our proposed TIPS
dataset. As shown in Tab. [1] the TIPS dataset contains a
total of 63,756 samples with 358,247 procedure segments,
among which 19,140 videos are taken as test dataset.

Fig. [3] presents the top 20 categories of TIPS. The cat-
egories are generated by aggregating video tags or titles.
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Figure 3. Top 20 Categories Distribution of this Dataset.

TIPS contains a variety of popular categories, such as ed-
ucation, DIY, business, and beauty. Each primary cate-
gory contains 3-7 secondary categories. For example, the
primary category “education” contains several secondary
category such as “certificate”, “exam”. Besides, the TIPS
dataset contains 20% videos longer than 10 minutes, which
also brings challenges for deep-learning models.

3.3. Data Quality Study

The data quality is of crucial importance for semi-
automatically generated data. We perform 3 types of qual-
ity check. 1) as mentioned in section 3.1, we select the
well-organized video through well-designed heuristic rules;
2) we randomly select 100 cases and ask the annotators to
manually check the data for accurate evaluation.

Specifically. we conduct data quality study of both preci-
sion and recall for these segmentations. The precision is 1.0
and the recall is 0.95 for the labeled 100 videos. In details,
we recruited 4 annotators and asked each annotator to la-
bel 100 videos. To evaluate the precision, the labeling tool
directly localized to the checkpoint of each segmentation
with a 10-second window (5 seconds before and after the
segmentation checkpoint), and the annotators were asked to
watch this video clip to select whether there is a segmen-
tation checkpoint or not during this time. All segmenta-
tions are valid. Then for the recall, we asked the annotators
to watch the whole video and report whether there is any
missing step. There are 5% videos missing the final step,
such as “finally...”. The labels automatically annotated are
basically agreed by users except a small portion of a little
time shift between the speech and the real action, usually
less than 5 seconds. This motivates us to design the Gaus-
sian function to blur the sharp segmentation. Furthermore,
the annotator is asked to label whether the first sentence of
each step can be exploited as captioning. There are over
30% invalid sentences like “’step 1, please you , gotta” and
”step 3 on behalf of ludmila.”, which are hardly used as the
descriptive sentence for the segmentation.

4. The MT-GBD Method

In this section, we introduce our proposed Multi-modal
Transformer with Gaussian Boundary Detection (MT-GBD)
with four parts: Feature Extraction, Multimodal Trans-
former, Temporal convolution and Gaussian Boundary De-
tection.

4.1. Feature Extraction

Firstly, SlowFast ResNeXt-101 proposed by [7] is used
to extract video features, as shown in Eq. (]I[)

vi= SlowFast(video), (1
where video € RM>*w*hx¢ jg a sampled video with a max-
imum of M frames. Each frame has a region size of w X h

and ¢ channels. V' € RM*? g the output feature. To en-
hance each frame with positional information, an additional
positional embedding matrix is used, as denoted in Eq. (2).

V= Linear(Vf) + E® [Dida]s (2

where Linear(V /) € R?is the video semantic embedding.
E®) ¢ RMxd j5 the video positional embedding matrix,
Pidz € [1,2,---, M] is the positional indexes. Therefore,
E®) [p;q.] € RM*4 is the video positional embedding and
thus V' € RM*4 is the final video embedding. Then, a Bert
Tokenizer is used to tokenize video transcripts, as shown in

Eq. (B).
word;qs = BertTokenizer(transcript), 3)

where word;s € RY is the tokenized word index, N is
the max length of the input transcripts. Note that we re-
move instruction flags such as “step 17, “step two” in the
transcript, since we expect the model to predict procedure
segmentation with semantic information, instead of focus-
ing on these special flags. Similar to the visual part, Eq. (@)
is used to calculate the transcript feature with the consider-
ation of position information.

L = E®wordigs] + EP[¢ige], )
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Figure 4. The MT-GBD model architecture. This model includes three major modules: feature extractor, multimodal fusion and temporal
network. First there are two extractors to extract video and text features, and then self-attention model for encoding each modality
information. Then the MHA (multi-head attention) module is adopted to fuse the multimodal fusion. Finally, a temporal convolution
network followed by linear layer is used to predict the final segmentation labels.

Where E(*) € RS*4 is the transcript word embedding ma-
trix. S is the vocabulary size. g4 = [1,2,-- , N] is tran-
script word positions. E(@ € RN*4 s the transcript po-
sition embedding matrix. L € RY*? is the final transcript
embedding.

4.2. Multimodal Transformer

Current state-of-the-art models for multimodal fusion
are transformer based models. Recently, as a basic module
in Transformer proposed by [25]], Self-Attention has been
widely used in many NLP tasks. Typically, Self-Attention
can be written in the following formula in Eq. (5):

Q = Linear(X),
K = Linear(X),
V = Linear(X),
X = softmaz(QK " //dy + M)V.

®)

If input feature X € RNXd= then Q, K,V € RN«xdk,

M € RM= is the attention mask, X € RNIXd; is the
attended result. For simplification, we rewrite Eq. () as
Eq. (0): i

X = Att(X, M) (6)

Then, the key attention operations in our proposed multi-
modal transformer can be simply represented in Eq. (7):

L= Att®™ (L, M*), (7

where MV € RM is video attention mask, M~ € R¥ is the
transcript attention mask, a, b, c € R denotes the number
of stacked attention layers. [;] denotes the concatenation
operator. V € RM>*h is the video attended result, L e
RN>*" s the transcript attended result. H € R(M+N)xh g
the cross attended result.

4.3. Temporal Convolution Network

Although Transformer models multi-modal fusion, we
still resort to the convolutional layers to perform the tempo-
ral segmentation to further improve the performance similar
to [14]. In detail, we perform a 1 x 3 convolution layer with
an ReLU activation followed by a 1 x 1 convolutional layer
with residual connections for combination. The action is
denoted in Eq. (8)

H = ReLU(W1x H[1: M] + b1) (8)
H=H[1:M]+W2xH+ b2 )

where H[1 : M] is the input with only video attended
results, H € RM*" is the output of the layers, * denotes
the convolution operator, W1 € R3*"*" are the weights of
the 1 x 3 convolution, W2 € R1*"* gre the weights of the
1 x 1 convolution, b1, b2 € R’ are bias vectors.

Finally, a linear layer is used to map the channel size of
H into 2, as denoted in Eq. (I0).

S = Linear(H) (10)

where S € RM*2 is the final output logits of the multi-
modal transformer.

4.4. Gaussian Boundary Detection

Different from the VAS task, the VPS task has only two
types of frame labels: boundary or non-boundary. This
brings two challenges. Firstly, a large number of negative
frames overwhelm the training. Secondly, sometimes there
is a temporal shift between transcript and video, which leads
to inconsistency between the strict ground-truth signals and
the real scene since the boundaries of some steps are not
absolute in many instructional videos. Gaussian heat map
is widely applied in 2-d keypoint-based detection [13} [17]]
to define a keypoint to maintain semantic continuity as well
as to balance positives and negatives in the training. To this
end, we propose Gaussian Boundary Detection (GBD) and
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add additional processing in both the training and test phase.
Concretely, given a radius r and a center X, the value of x;
can be defined by following function.

—(z — ;)

212

Gaussian_blur(xz;) = exp (11)
During the training phase, we use 1d Gaussian to blur
the ground-truth boundary, as denoted in Eq. (12):

S = Gaussian_blur(S) (12)

where S is the original ground-truth, S € R™ is the blurred
ground-truth.

During the test phase, instead of simply predicting each
frame by a threshold, we use Non-maximum suppres-
sion(NMS) for boundary detection to filter out these noisy
responses that helps model to precisely identify the correct
boundaries. In particular, we use a temporal window with
a length £ to slide on the prediction and filter out the non-
maximal values in the window.

5. The EIOU Metric

Many segmentation tasks use MIOU as the evaluation
metric. However, the MIOU metric lacks of consideration
of the following two factors. One one hand, different steps
usually have different importance. Most of the time, the
importance of a procedure is very closely related to its pro-
cedure length. For example, a video of “how to make a
cocktail” has three segments, one minute of “ingredients”,
five minutes of “making cocktail” and one minute of “dec-
oration”. The key procedure of this video is the “making
cocktail” procedure. That means if a longer procedure is
wrongly predicted, the segment experience will be much
worse. On the other hand, the MIOU metric focuses on
whether each prediction precisely overlaps ground-truths
without consideration of the recall. Another popular seg-
mentation metric is the F1 score which depends on a pre-
defined threshold. In this section, we first define EIOU and
then compare EIOU with existing metrics.

5.1. Definition of EIQOU

Let g = {g1,92, - , gn} be the ground-truth video seg-
ments, p = {p1,p2, - ,Pm} be the predicted video seg-
ments. The MIOU metric used in [27] can be defined in

Eq. (13).
1
MIOU = — 10U (i, 95), 13
; - max 10U (pi g;) (13)
where p; is the ith predicted segment, g; is the jth ground-

truth segment. IOU is the Intersection over Union opera-
tion. For each predicted segment, the MIOU metric finds

the best ground-truth match and average IOUs of these
matches.

The MIOU metric doesn’t differentiate segmentations
with various lengths. Besides, MIOU focuses on precision
instead of recall with only one-directional match, which
only care about whether the predicted segment is correct
but not how many ground truth segments are found. An
example case is shown in Fig. [5] where the horizon axis is
the video’s time line. If the predicted segment p; and po
matches the ground truth segment g; at the same time, g;
will choose the ps, which has the maximum IOU with it-
self. As a result, p; is a Superfluous Prediction (SP) and
po is an Effected Prediction (EP). Since g3 has no corre-
sponding predictions, we call gs Missed Prediction (MP).
To sum up, superfluous Prediction is the segment predicted
but not the best match with ground truth. Missed prediction
is the segment in ground truth but not the best match with
predicted segment. All SP and MP are incorrect cases to be
penalized.

Missed Prediction

GT: |« g1 > 9o >« gz —>
Sle 1
PR: [ pio—— p, —} P3 >
-
Superfluous Effected Effected

Prediction Prediction Prediction

Figure 5. Illustration of SP, EP, and MP.

Motivated by this, we add length normalization and
penalty for both superfluous and missed predictions. As a
result, we propose Experienced IOU (EIOU), as denoted in

Eq. (T4).

n.

B n ~ L(ps) o
BIOU = —— ; s m?xIOU(pugg),

S + N i
14
where L(p;) is the length of the segment p; and L is the
overall length, n is the number of ground-truth segments,
n is the number of SPs, n,,, is the number of MPs, and n,
is the number of EPs. EIOU takes bi-direction alignment

between the predicted and ground truth segments.

5.2. Comparison between metrics.

We compare different metrics through typical cases, as
shown in Fig.[d]

» Comparison of Case A and Case B: Case A fails to pre-
dict a key point on a long procedure while Case B fails
on a short procedure. Both MIOU and F1 @0.5 cannot
distinguish these two cases. However, EIOU signifi-
cantly distinguishes them by segmentation length.

* Comparison of Case A and Case C: Case C fails to pre-
dict multiple ground-truth segments and is worse than
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MIOU F1@0.5 EIOU

CaseA | T | | 0.83 0.86 0.40
CaseB | | ] 0.83 0.86 0.60
Case C —T— ] 0.83 055 031
Case D [ I T | 0.63 086 0.41

Figure 6. Comparison of different metrics. The green line denotes
the ground-truth and the red line denotes predicted segments.

Case A. However, the MIOU score keeps the same,
while F1@0.5 and EIOU give low scores. This shows
that EIOU considers both precision and recall.

* Comparison of Case B and Case D: In case D, the
predicted segments are overlapped with the ground-
truth segments but not perfectly matched as in Case
B. F1@0.5 gives the same score, but MIOU and EIOU
can distinguish such cases.

In summary, EIOU is a trade-off metric that comprehen-
sively considers procedure length, precision, and recall.

6. Experiments
6.1. Implementation Details

For the dataset, we randomly split the 63k data with 44k
as training and 19k as validation dataset. In the feature ex-
traction part, we extract video features with 16 fps and re-
size the video frame into the size of 112 x 112 x 3, the
maximum video frame M is 96. The maximum of tran-
script tokens N is 512. The output dimension of Slow-Fast
model d is 2560, and The the dimension of video embed-
ding and transcript embedding d is 1024. In the multimodal
transformer part, the number of stacked transcript attention
layers a is 12, the number of stacked video attention layers
b is 6, the number of stacked cross layers c is 2. The hid-
den dimension d is 768. In the Gaussian detection part, the
variance of the Gaussian distribution is 1, and the maximum
influence range is 3 frames on both left and right side of the
ground-truth boundary according to our experiment. All the
nonlinear layers of the model all use the ReLu activation
function and dropout [20] to prevent overfitting. We use
Adam [8] to train the model with a learning rate of 10~ and
a batch size of 16. We will publish the dataset and model
incorporating with this paper soon.

6.2. Performance of MT-GBD Method

Comparison with SOTA We compare MT-GBD with a
set of benchmarks and study the effectiveness of different
modules of our model. We re-implement “MS-TCN” [3]],
a strong baseline of frame-wise prediction method, and
Procnet[27], a proposal based method. Our proposed MT-
GBD outperforms all baseline methods in a large margin.

Ablation Study We did an ablation study to gradually
study the impact of each component including the Trans-
former, Temporal network, pretrain, speech text, and Gaus-
sian Boundary Detection (GBD), as shown in Tab. @ “T” is
a Transformer model without loading pre-training weights
and the convolutional structures. It improves the metric
of EIOU by 4.22%, which shows the effectiveness of the
self-attention structure. “T w/ C” adds additional Temporal
convolution layers on top of the transformer (see Eq. (8)),
which further improves the performance by 3.90%. This
shows the complementary of the Convolution and Self-
Att structure. “T w/ CP” share the same structure with
“T w/ C” and loads pre-training weights, and the perfor-
mance further improves by 1.98%. “MT” is our proposed
Multimodal-Transformer, which considers both video evi-
dence and speech text to infer the final segmentation. MT
further improves the performance by 3.64%, which shows
that the speech text give additional semantic information
for procedure segmentation. Finally, MT-GBD with ad-
ditional GBD further improves the performance by 2.91,
which shows the effectiveness of using blurred Gaussian la-
bels and sliding windows to predict final segments. Further-
more, Tab. E] shows the performance of MT-GBD with dif-
ferent video lengths on the TIPS dataset. When the video is
longer than 6 minutes, the performance drops significantly.
This shows the procedure segmentation of long videos is
quite a challenge.

6.3. Qualitative Analysis

We study the cases in the TIPS data as well as the re-
sults of our proposed MT-GBD method. Figure [/| demon-
strates two cases representing typical result types includ-
ing: a) video with explicit scene dynamics; b) video with
distinct actions; c) video with fine-grained objects and ac-
tions. From case 1, we can see that our MT-GBD model
performs well on videos with explicit scene dynamic, dis-
tinct objects and actions. The segmentation is quite similar
with high overlap between corresponding ground truth seg-
mentation. The Gaussian smoothing is capable of handling
the boundary shift. However, for the case 2, the model fails
to segment the details of the video and predict rather not
to segment. This video reveals the rarely-appeared objects
with fine-grained actions like “UTP cable”, "rotate” etc. in
the similar scene which is hard to for the model to predict
correctly.

6.4. Effectiveness of EIOU Metric

We designed a user study to evaluate the metrics. In de-
tails, we invited 3 labelers to evaluate the EIOU metric. We
borrow the idea for ranking evaluation and apply a side-
by-side pair-wise comparison. Specifically, we first col-
lected 19 segmentation cases, which are composed of differ-
ent quality predictions, some cases are composed of perfect
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0.12emOptlpt Model Transf Conv Pretrain Speech GBD F1@0.10 F1@0.25 F1@0.50 MIOU EIOU
MS-TCN[3] X v X X X 54.94 52.65 35.07 51.88 4549
ProcNet[27] X X X X X 67.95 67.87 60.51 63.88  58.72

T v X X X X 63.22 61.23 44.47 56.10  49.19

Tw/C v v X X X 70.57 69.19 55.38 60.00  53.81

T w/ CP v v v X X 73.15 71.9 58.79 61.98  56.02

MT v v v v X 78.43 77.48 65.6 65.62  59.61
MT-GBD v v v v v 82.24 81.36 70.43 68.53  63.88

0.12emOpt1pt

Table 2. Comparisons between MT-GBD and benchmarks on our proposed TIPS dataset. The column “Transf” means Transformer, and

”Conv” means Temporal convolution backbone.
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Figure 7. Qualitative results including two cases: 1. video with explicit scenes dynamics; 2. video with distinct actions; 3. video with
fine-grained objects and actions. We present the frame thumbnail sequence, and the segmentations for each case. ”GT” represents the
ground truth segmentation, ”P” represents the prediction segmentation

0.12emOptipt Length F1@0.10 F1@0.25 F1@0.50 MJ@QUyellEKME whole trend. EIOU has a clear drop aligned

<6min 86.21 85.45 75.75 With2user 68dilentation experience.
6-12min 74.97 73.80 61.82 64.17  57.09
>12min 6461 6207 4508 T,

0.12emOpt1pt
Table 3. Performance of MT-GBD on different durations.

predictions, some contain missed predictions, some contain
superfluous predictions. Next, for each of the 19 cases, we
asked the annotator to compare the predicted segmentation
with all other 18 cases and label whether the segmentation
is better (1) or worse (0). In the labeling tool, annotators are
presented with both the ground truth segmentation (to help
user understand the video) and predicted segmentation of
two samples for pairwise comparison. Then, we aggregate
those scores for each sample as a final satisfaction score.
Finally, we order the 19 cases by a decreasing order of the
segmentation satisfaction score. Ideally, the segmentation
metric should perform a continuous decrease based on this
satisfaction-decreasing order. From the figure [8] we can
see clearly that EIOU’s trend is very closely aligned with
human sensed segmentation quality change. MIOU how-
ever, performs worse especially on the 15th and 17th cases,
which missed long segments. Neither MIOU nor F1 per-

1

o
o0

Metric Value
o
[e)}

F1@0.5

10

Case ID

15

20

Figure 8. 19 segmentation cases decreasingly ordered by human

satisfaction.

7. Conclusion

In this paper, we introduce a large and diverse TIPS
dataset, an end-to-end Multimodal Transformer Gaussian
Boundary Detection (MT-GBD) model, and a new Expe-
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rienced IOU (EIOU) metric for video procedure segmenta-
tion task. The VPS datasets contains two types of annota-
tions including the proposal based dataset like Youcook2

and

segmentation based dataset like TIPS. As a future

work, we plan to investigate a unified model for both types
of datasets considering the procedural continuity and the
boundary smoothness.
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