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Abstract

Although various face-related tasks have significantly
advanced in recent years, occlusion and extreme pose still
impede the achievement of higher performance. Existing
face rotation or de-occlusion methods only have empha-
sized the aspect of each problem. In addition, the lack of
high-quality paired data remains an obstacle for both meth-
ods. In this work, we present a self-supervision strategy
called Swap-R&R to overcome the lack of ground-truth in
a fully unsupervised manner for joint face rotation and de-
occlusion. To generate an input pair for self-supervision,
we transfer the occlusion from a face in an image to an es-
timated 3D face and create a damaged face image, as if ro-
tated from a different pose by rotating twice with the roughly
de-occluded face. Furthermore, we propose Complete Face
Recovery GAN (CFR-GAN) to restore the collapsed textures
and disappeared occlusion areas by leveraging the struc-
tural and textural differences between two rendered images.
Unlike previous works, which have selected occlusion-free
images to obtain ground-truths, our approach does not re-
quire human intervention and paired data. We show that
our proposed method can generate a de-occluded frontal
face image from an occluded profile face image. Moreover,
extensive experiments demonstrate that our approach can
boost the performance of facial recognition and facial ex-
pression recognition. The code is publicly available1

1. Introduction
Various studies have been conducted on face-related

tasks, including facial recognition, expression recognition,
and re-identification with progress in a deep neural network.
Despite recent improvements, extreme pose and occlusion
remain obstacles to the above tasks. Face rotation and de-

∗Equal contribution. †Corresponding author.
1 https://github.com/yeongjoonJu/CFR-GAN.

Figure 1: Qualitative results on CelebA-HQ and FFHQ
datasets. Our method is able to synthesize photorealistic
rotated and de-occluded face images, achieving the state-
of-the-art performance on standard benchmarks.

occlusion can alleviate these problems but are challenging
tasks because of the lack of high-quality training data.

Most traditional methods for face rotation use the 3D
Morphable Model (3DMM) [1], a statistical model of fa-
cial shape and texture that uses a set of linear basis func-
tions [8, 46, 38]. A challenging issue is the natural es-
timation of the texture of the invisible face area. Zhu et
al. [46] proposed symmetric editing and invisible region
filling to solve this problem. However, these methods tend
to show unnatural results with visible artifacts. Recently,
many studies [53, 47, 55] have been proposed to synthe-
size photorealistic rotated faces by utilizing the power of the
Generative Adversarial Network (GAN) [13]. These meth-
ods have shown remarkable performance improvements but
often lose the local facial details of the face. In addition,
they do not generalize well beyond the controlled dataset
for training, and the resulting images are usually limited to
low resolution, which is not perceptually satisfactory.

The lack of high-quality paired training data is also a crit-
ical issue in de-occlusion tasks. Existing methods [51, 11,
50, 4, 10] artificially synthesize images to occlude the parts
of the face, training a deep neural network to restore the
original face images from unnaturally synthesized images.
However, since these methods depend on artificially synthe-
sized data, they tend to show unnatural results for various
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occlusions.
To address these limitations, we propose Complete Face

Recovery GAN (CFR-GAN), a fully unsupervised method
for joint face rotation and de-occlusion. Our method cov-
ers two challenging tasks: (i) estimating the mask for the
occlusion area that can provide 3D face-based guidance to
naturally restore the texture of the occlusion area, and (ii)
providing strong self-supervision for joint face rotation and
de-occlusion by proposing a Swap-R&R strategy that trans-
fers occlusions from an image to the estimated 3D face and
rotates it twice, as if rotated from a different pose.

First, two 3D faces are generated from the input image
using our 3D face reconstruction model fine-tuned with a
two-stage strategy. One 3D face is created by estimating
the 3DMM parameters, and the other 3D face is created
by projecting the texture of the input image onto the es-
timated 3D shape. The rendered image Re from the 3D
face with the estimated texture is an occlusion-free facial
image owing to the limited representation power of 3DMM
and the rendered image Rp from the 3D face with the pro-
jected texture is a facial image that includes occlusion. Our
key contribution is to provide strong self-supervision with
a Swap-R&R strategy that extends the Rotate-and-Render
strategy [55]. Specifically, the mask for the occlusion area
is coarsely calculated based on the color and structural dif-
ferences between the two face images. Then, the occlusion
areas are exchanged between two rendered images by uti-
lizing the calculated occlusion mask. Thus, Re and Rp be-
come the occluded and occlusion-free images, respectively.
Next, we obtain a damaged facial image through two rotate-
and-render operations of [55]. The process rotates a face
in the 3D space back and forth, and re-renders it onto the
2D plane. Rp becomes a rendered facial image, with any
random pose through a first rotate-and-render operation. A
second rotate-and-render operation creates a facial image
with the original pose. Finally, our generator learns to re-
store the original input image from two images, Re and Rp.
The generator is designed to provide structural and textural
information from Re for the recovery of Rp. In addition,
we add an occlusion parsing path to focus on occluded and
damaged regions so that more natural images can be recov-
ered. On the other hand, in the inference process, our gener-
ator creates an image without occlusion from the rendered
images of the two 3D faces.

In this paper, we propose a self-supervised joint face ro-
tation and de-occlusion method that can recover a photore-
alistic occlusion-free facial image. Qualitative and quanti-
tative results show that our method outperforms previous
state-of-the-art methods for both constrained and in-the-
wild images. In addition, our method does not require a
paired training dataset. The contributions of this paper can
be summarized as follows:

• We propose a novel face rotation and de-occlusion

model that is guided by 3DMM and a coarse occlusion
mask.

• We propose a novel Swap-R&R strategy for strong
self-supervision that does not require paired training
data for joint face rotation and de-occlusion.

• We present an occlusion-robust 3D face reconstruction
model through two-stage fine-tuning.

2. Related Work

2.1. Face Rotation and Multi-View Synthesis

The face rotation task generates multi-view face images
when given a single-view face image and required poses.
Specifically, frontalization has received more attention, as
it generates a frontal face image. Face rotation methods can
be roughly divided into GAN-based methods and 3D-based
methods.
GAN-based methods. DR-GAN [39] adopted a GAN to
generate a frontal face with an encoder-decoder architecture
for the first time. However, the generated results are unsatis-
factory and contain serious artifacts. TP-GAN [20] utilizes
global and local networks to consider individual facial com-
ponents using a multi-task learning strategy. CAPG-GAN
[18] leverages face heatmaps, which provide the location
information of key facial components. Similar to TP-GAN,
PIM [52] adopts a dual-path generator to produce high-
quality images by adding regularization terms to effectively
learn face representations. FNM [33] normalizes faces from
the pose, expression, illumination and occlusion by training
to combine labeled and unlabeled data, however, their re-
sults lead to overfitting of a constrained Multi-PIE dataset
environment. Dual et al. [11] proposed a face de-occlusion
and frontalization method using a boosting generator, but
this method only performs face de-occlusion for white re-
gions, not general objects. Furthermore, it fails to preserve
their identities or generate high-quality results.
3D-based methods. FF-GAN [47] integrates a 3DMM co-
efficient regression network and generative model. The net-
work acquires low- and high-frequency information from
the 3DMM coefficients and an image, respectively. 3D-
PIM [53] obtains prior information for pose, using 3DMM
fitting and pose normalization. Then, a dual-path generator
for facial components is used to generate a frontal face im-
age. HF-PIM [5] generates high-quality frontalized facial
images via facial texture maps and correspondence fields.
However, a paired dataset is required for training. Rotate-
and-Render [55] proposed a self-supervised framework for
face rotation, which corrupts an image by applying two
rotate-and-render operations and learns to reconstruct the
image to the original image.

3712



2.2. Face De-Occlusion and Completion

Image completion aims to fill the erased area of the im-
age when given with the mask for the erased region. SC-
FEGAN [21] achieves high-resolution in-painted face im-
ages by using color maps and sketches. Face de-occlusion
automatically detects erased regions, as well as occlusion
due to various factors and recovers the regions naturally.

Most face de-occlusion methods [51, 50, 4, 10] learn
to reconstruct original images from synthesized images oc-
cluded with a limited set of objects. Zhao et al. [51] recon-
structs de-occluded and identity-preserved face images us-
ing a CNN supervised with identity labels. Through an ad-
ditional occlusion detection channel, an occlusion mask is
calculated and combined with the reconstructed face. How-
ever, they only handle grayscale face images and generate
results with artifacts. Yuan et al. [50] guides the facial
structure with a 3DMM prior and uses local and global dis-
criminators. However, the de-occluded area of the gener-
ated results is blurry, and this method fails to de-occlude
face images with more than one type of occlusion. STN-
GAN [45] fills the erased region around facial key compo-
nents under the guidance of facial landmark points. As with
Dual et al.[11], inpainting is performed only for constrained
white areas.

3. Approach
Our self-supervised method for joint face rotation and

de-occlusion comprises three parts: occlusion-robust 3D
face reconstruction, Swap-R&R strategy, and generator for
complete face recovery. Our model aims to recover a face
corrupted by rotation and occlusion with the help of a 3D
face.

3.1. Occlusion Robust 3D Face Reconstruction

The first step of our method is to regress the 3DMM co-
efficients from the input image. We use the original [9] as a
baseline model for 3D face reconstruction and fine-tune the
model in two stages, since existing 3D face reconstruction
methods tend to show unnatural results in both shape and
texture for occluded face images. We briefly summarize
3DMM and then introduce our novel fine-tuning strategy
that makes the model robust to occlusion.
3DMM. In a 3DMM, the face shape S and the texture T
can be represented as:

S = S(α, β) = S̄ +Bidα+Bexpβ,

T = T (δ) = T̄ +Btδ,
(1)

where S̄ and T̄ are the average face shape and texture; Bid,
Bexp, and Bt are the PCA bases of identity, expression, and
texture respectively, which are all scaled with standard devi-
ations; α, β, and δ are the corresponding coefficient vectors

for generating a 3D face. We adopt the 3DMM parameter
regressor [9]. Given a face image, it regresses a 239 dimen-
sional vector {C, p, γ}. C consists of α ∈ R80, β ∈ R64,
and δ ∈ R80, p is a 6-dimensional 3D face pose for ro-
tation and translation, and γ is a 9-dimensional Spherical
Harmonics (SH) [34]. The output 3D mesh contains 36K
vertices excluding ear and neck areas.
Occlusion-robust 3D face. We propose our novel two-
stage fine-tuning strategy for occlusion-robust 3D face re-
construction. The training method is split into two training
stages due to the difficulty of initial training for extreme oc-
clusions. We fine-tune the baseline with our newly created
datasets in the first stage and with teacher-student learning
method in the second stage.

For the first fine-tuning stage, we create two occluded
face datasets. In order to train occlusion-robust 3D face
model, occluded face image datasets are essential, but they
are absent. So, we create datasets by synthesizing the hand-
shape mask on two datasets, 300W-LP [57] and CelebA
[28]. The 300W-LP is synthesized dataset in extreme poses
through 3D image rotation and CelebA is real face im-
age dataset. The hand-shaped mask is randomly trans-
formed with rotation and scaling and is located around the
facial landmarks. When training, the model estimates the
3D face with the occluded face images as input, and all
losses are calculated using the original image as the tar-
get. Furthermore, the Multi-PIE dataset [14] is used for
robustness to various poses and illuminations. The land-
marks for the Multi-PIE and CelebA datasets are estimated
through 3DDFA-V2 [15]. We follow the overall loss func-
tion from [9], but we multiply 0.7 to facial landmark loss for
CelebA and Multi-PIE dataset to prevent error propagation
of 3DDFA-V2.

For the second fine-tuning stage, we introduce teacher-
student training strategy on a Masked Face-Net dataset [3],
since there still exists a limitation to the face image where
extreme occlusion exists. The Masked Face-Net is a dataset
created by synthesizing a dental mask on high-resolution
face images in FFHQ dataset. Additionally, we use Ran-
dom Erasing [54] on the FFHQ dataset, which randomly
erases a few pixels in the image to avoid overfitting on the
Masked-FaceNet dataset. Both the teacher model T and the
student model S are initialized identically with the weights
of the fine-tuned model in the first stage. T and S take im-
ages in the FFHQ and Masked Face-Net datasets as inputs,
respectively. Therefore, the entire network is trained to pre-
dict occlusion-robust 3D faces. A combination of parameter
loss, perceptual teaching loss, and landmark loss is used in
the training process. To balance the terms, weights are set
to 0.1, 1.0 and 0.01 in the order mentioned.

For parameter loss, we leverage coefficients regressed by
the teacher network as the ground-truth.

Lpara(T ,S) = ∥T (I)− S(I ′)∥2, (2)

3713



Figure 2: Swap-R&R strategy to generate training pairs
for self-supervision. We swap Rp and Re for the corre-
sponding regions on a coarse occlusion mask M. Then,
Rpsp

is generated from the swapped Rps
via two rotate-

and-render operations.

where I ′ is the synthesized face image with a dental mask
on input image I .

Inspired by [22], we regularize the distance between fea-
tures from the top K layers of the teacher and the student
network. Our perceptual teaching loss is defined as

Lteach(T ,S) = 1

K

K∑
i=1

ωi∥T (i)(I)− S(i)(I ′)∥2, (3)

where T (i) and S(i) represent the ith layer of each model.
We leverage only the features from the top 4 layers prior to
the fully connected layers. wi is the weight of the feature
distance of each layer, which we set to 0.125, 0.25, 0.5, and
1, respectively.

We also guide the 68 3D facial landmark locations. The
3D landmark vertices of the reconstructed 3D face are pro-
jected onto the 2D plane by function q and used to calculate
the loss.

Llan(x) =
1

N

N∑
n=1

ωn∥qn − q′n(x)∥1, (4)

where ωn is the landmark weight. We set the inner mouth
and eye points to 20 and the others to 1. Through our novel
fine-tuning strategy, the outputs are much more robust to the
occlusion than the results from the baseline model.

3.2. Swap-R&R Strategy

We use our occlusion-robust 3D face reconstruction
model to generate two different 3D faces. The first 3D
face is generated from the shape and texture parameters es-
timated through our model. The second 3D face is created

by projecting pixels of input image onto the estimated 3D
shape. Then, the rendered image Re from the first 3D face
which has the estimated texture is an occlusion-free facial
image owing to the limited representation power of 3DMM
while the rendered image Rp from the second 3D face with
projected texture includes occlusion.

Inspired by the Rotate-and-Render strategy [55] for face
rotation, we propose a swap-R&R strategy, which enables
our model to be trained in a fully unsupervised manner for
joint face frontalization and de-occlusion task. Our intu-
ition is that a 3DMM-based reconstructed 3D face is an
occlusion-free image and can guide the recovery for cor-
rupted regions with large gaps in textual and structural fea-
tures. First, we coarsely calculate the mask M for the oc-
clusion area irrespective of the type of object by leveraging
the structural and textural information. Face parsing net-
works cannot distinguish not-trained objects like hands. So,
we only use it as an auxiliary role such as excluding the eye
area. The occlusion mask M from the two rendered images
can be acquired as follows:

M = ztzs + zt + αzs, (5)

where zt and zs are the z-scores of the texture differences
dt and structural differences ds between two rendered im-
ages, respectively. α is the weight to compromise between
occlusion and skin details, such as wrinkles, and is empiri-
cally set to 0.4. Then, M is normalized with the mean and
standard deviation, and areas with values above zero define
as occlusion areas. We compute the textural differences dt
between Rp and Re using L2 distance in the CIE-Lab color
space [36]. SSIM [42] is used to calculate the structural
differences, ds. We only use the product of contrast and
structure, without calculating luminance. Finally, we add
masks for eyeglasses and hairs and subtract eyes area using
BiseNet [48]. See the supplementary (Sec 2) for detailed
formulations and descriptions.

Then, we swap the texture between Rp and Re for the
occlusion area that exists within Rp as follows:

Rps = (1−M)⊗Rp +M⊗Re,

Res = (1−M)⊗Re +M⊗Rp,
(6)

after dilating and blurring M to synthesize naturally around
the occlusion area. Additionally, to avoid referring to the
texture of the rendered Res as it is, we determine Res via
blurring for Rp. Finally, Rpsr is generated as a broken
image through two Rotate-and-render operations. Rpsr and
Res comprise a training pair for our overall network. Our
swap-R&R strategy is illustrated as Fig 2.

3.3. CFR-GAN: Complete Face Recovery GAN

Our overall framework is illustrated in Fig 3. In the
training stage, we take both rendered images Rpsr

and Res
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Figure 3: The overall framework of the proposed method. In the training stage, the network is trained to restore the input
image from two images generated from Swap-R&R strategy. In the testing stage, the rotated and de-occluded face image is
inferred from two rendered face images with any pose.

Figure 4: Generator architecture. G includes generation
path and occlusion parsing path. The occlusion parsing path
consists of 3D-guided occlusion attention module and mix-
ing module.

generated through the Swap-R&R framework as inputs
and learn to reduce the differences between the generated
image and original image I . This learning strategy allows
the network to use Re to restore the collapsed textures and
disappeared occlusion areas within Rp. In other words, the
network is trained to consider the structurally and texturally
different regions of Re and Rp to be occlusion areas and
restore those areas using the Re. Simultaneously, our
CFR-GAN is trained to recognize the location information
for occlusions raised by inter-occlusion and self-occlusion.
During the testing stage, thus, our model produces a high-
quality rotated and de-occluded image and an occlusion
mask by taking the rendered Rps

and Res as inputs, which
are rotated only once to the desired pose. The details of the
network are described below.

Discriminator. We employ a multi-scale discriminator
from Pix2PixHD [41] and apply a gradient penalty GP
from WGAN-DIV [44] to stabilize the training of the GAN.
Our loss function of discriminator D and adversarial loss of

generator G are formulated as follows:

LD =− E(D(I)) + E(D(G(Rpsr ,Res))) +GP, (7)

Ladv = −E(D(G(Rpsr
,Res))). (8)

Generator. We employ CycleGAN [56], an image-to-
image translation network, as the base structure of our
generator G. The generator of CycleGAN is composed
of a down-sampling module, residual blocks, and an up-
sampling module. We improve the down-sampling module
to enable the detection and removal of occlusions by adding
an occlusion parsing path O and leveraging the spatial at-
tention mechanism. The module enhances the feature rep-
resentation of occlusions with the help of the O path and
enfeebles the corresponding features via the attention mech-
anism. A 3D-guided occlusion attention module and a mix-
ing module in the O path calculate the distance between Rp

and Re in the feature space and combine the gating feature
maps extracted from the gated convolutions [49]. Specifi-
cally, the 3D-guided occlusion attention module is formu-
lated as follows:

fo = IN((fp − fe)
2),

fp = fp ⊗ (1− σ(fo)),
(9)

where fp and fe are the input feature maps of Rp and Re,
respectively, with the same spatial dimensions as input im-
age I . IN is instance normalization [40] and fp is newly
updated using fo. The details of our generator is depicted
in Fig 4. To provide attention to occlusions and obtain an
occlusion mask Mo, our model is optimized by targeting
the coarse occlusion mask M as the ground-truth. How-
ever, there may be problems in generating the facial compo-
nents in the testing stage and inaccuracy of M because the
model is mostly learned to recover non-facial parts during
the training stage. We alleviate the problems with simple
data augmentation, RandomErasing. We obtain our model
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to focus more on occlusion through the following loss func-
tions: occlusion mask loss Lm and occlusion-aware recon-
struction loss Lrec.

Lm = ∥Mo −M∥2, (10)

Lrec =
1

NM

NM∑
i=1

(M⊙
3∑

c=1

|G(Rpsr ,Res)− I|). (11)

Lrec is defined as L1 distances between the ground truth
image I and output image of the generator G, which is
only calculated for the mask M. To regularize the distance
between the output and target features, we use the percep-
tual loss Lper using VGG-19 [37] network pre-trained from
ImageNet. The loss function is calculated with the fea-
ture maps Fvgg which are the outputs of Nvgg layers in the
VGG-19 network as follows:

Lper =

Nvgg∑
i=1

∥F (i)
vgg(I)− F (i)

vgg(G(Rpsr ,Res))∥1. (12)

When the network recovers the facial components in the
corrupted regions, it tends to try to imitate Re as a guid-
ance without the consideration for identities. So, to pre-
serve identities, we add an identity loss function using a
face recognition network. The face recognition network,
which is ResNet-50 [17] is trained with ArcFace [7] on
MS1M [16]. The loss function is:

Lid = 1− F I
id · FG

id

max(∥F I
id∥2 · ∥FG

id∥2, ϵ)
, (13)

where F I
id and FG

id are the 512-dimensional output vectors
of the face recognition network for an input I and the output
image of G, respectively. ϵ sets to very small value 1e-8 to
avoid division by zero.

Our total loss function L of the generator is as follow:

L = Ladv+λidLid+λmLm+λperLper+λrecLrec, (14)

where λ is multiplied to balance the loss terms.

4. Experiments
4.1. Experimental Settings

Implementation Detail. For all input images, we perform
face alignment based on the extracted eyes, nose, and mouth
with [6]. Instance Normalization [40] and Spectral Normal-
ization [31] are applied to all layers in G, except for the
O path. Discriminator D is composed of two scales that
use the same network structure with 6 CNN layers. For our
base 3D face model, we only use R-Net without using C-Net
from [9]. Each input image size for R3D and the generator

Figure 5: Our joint frontalization and de-occlusion results.
(a) Input images. (b) De-occluded images. (c) Joint rotated
and de-occluded results.

is 224. The weights are updated using the AdamW opti-
mizer [29]. The inference time is about 0.05s to generate
a rotated and de-occluded face image from a single image
when using 1 TITAN XP GPU. Pytorch [32] is used for the
code implementation. Pytorch3D [35] is also used as a 3D
renderer for training and rendering. Please refer to our code
for more information.
Datasets. Our approach does not depend on occlusion-
free images and paired multi-view data because we pro-
vide strong self-supervision using the swap-R&R strategy.
Therefore, we choose CelebA-HQ [23], CelebA [28], and
FFHQ [24] for training the CFR-GAN, which are gener-
ally used for high-quality face datasets containing some oc-
cluded face images. To evaluate our boosting performance
on face-related tasks, we test our methods on facial recogni-
tion and facial expression recognition. For the evaluation of
facial recognition, LFW [12] and IJB-A [2] containing pro-
file faces and occluded faces are used. Moreover, more dif-
ficult face recognition datasets such as IJB-B [43] and IJB-
C [30] are used for additional comparison with the state-of-
the-art model. To evaluate facial expression recognition, a
large-scale facial expression database RAF-DB [26, 25] is
leveraged.

4.2. Qualitative Results

Results on challenging images. The results on face images
with both extreme poses and complicated occlusions are il-
lustrated in Fig. 5. We show that natural de-occluded face
images with background can be obtained through combina-
tions of original images and synthesized images with pro-
duced occlusion masks through O path. Our model works
well when complex or multiple types of occlusions exist si-
multaneously, too.
Comparison with face rotation methods. Fig. 6 illus-
trates the results of the face frontalization methods. Similar
to our method, FF-GAN [47] and Rotate-and-Render com-
bine 3D and GAN. However, FF-GAN fails to fully make
the frontal face and has losses for regions of self-occlusion
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Figure 6: Qualitative comparison with methods for face
frontalization.

Figure 7: Qualitative comparisons with state-of-the-art
methods of each task. The left side and the right side are re-
sults for face frontalization and de-occlusion, respectively.

Method LFW IJB-A
ACC / AUC(%) @FAR=.01 / .001

TP-GAN [20] 96.13 / 99.42 -
FF-GAN [47] 96.42 / 99.45 85.2 / 66.3
DR-GAN [39] - 87.2 / 78.1
CAPG-GAN [18] 99.37 / 99.90 -
FNM [33] - 93.4 / 83.8
HF-PIM [5] 99.41 / 99.92 95.2 / 89.7
Res18 [17] 98.85 / 99.90 90.57 / 80.0
Res18+R&R [55] 98.95 / 99.91 91.98 / 82.48
Res18+Ours 99.23 / 99.92 93.36 / 82.88

Table 1: Verification performance (%) on LFW and IJB-A
dataset.

such as TP-GAN [20]. HF-PIM and Rotate-and-Render
produce high-quality results similar to ours but some oc-
clusions, such as hairs and a finger, remain in their results.
CAPG-GAN [19] and FNM [33] generate results in which
the identity is not preserved. The results of [18, 5, 33] in
Fig. 6 are extracted from [55]. Compared to these studies,
our results seem to be clearer. Through the additional re-
sults in Fig. 7, our method exhibits better performance than
Rotate-and-Render for occlusion-free face images.
Comparison with face de-occlusion methods. Most stud-
ies on face de-occlusion do not offer their codes and mod-
els. However, our results can be compared with published
results from [50], as illustrated in Fig. 7. Our results show

Train Set Method IJB-B IJB-C
@FAR=.01 / .001

CASIA+Ours - 83.17 / 47.42 81.41 / 37.09

CASIA

- 82.68 / 21.60 79.39 / 18.80
R&R [55] 71.30 / 0 36.55 / 6.48
Ours w/o Lid 81.90 / 67.08 83.46 / 68.89
Ours 85.34 / 73.54 86.46 / 74.81

Table 2: 1:1 Verification performance (TAR@FAR) on the
IJB-B and IJB-C dataset.

Method Total Occlusion Pose(> 30)
VGG16 [37] 82.53 76.87 79.39
GACNN [27] 85.07 80.54 -
VGG16+ours 85.48 80.54 84.05

Table 3: Test accuracy (%) on RAF-DB dataset.

structurally more complete results for the de-occluded part
than their results. To further clarify our contributions, we
show the results for images with more than one type of oc-
clusion mentioned as a limitation in [50], as well as the re-
sults for the case where complex occlusions exist, as illus-
trated in Fig. 5.

Because it is nearly impossible to find a perfectly frontal
and occlusion-free face image to use as the ground truth, it
is difficult to measure accurate numerical results. Further-
more, we only limit the range of occluded regions to the face
area. Therefore, we substitute the numerical results with the
results of additional experiments for facial recognition and
facial expression recognition.

4.3. Extensive Experiments

Facial Recognition To evaluate our method on facial recog-
nition task, we compare the verification performance with
frontalization methods on LFW and IJB-A datasets. How-
ever, as mentioned on [55], previous methods do not fol-
low either clear setting or using different baseline (e.g.
LightCNN29) which is not comparable. Therefore, we fol-
low settings of [55], which uses ResNet18 [17] for back-
bone, ArcFace [7] for loss function, and CASIA-WebFace
for training data. First, we evaluate the performance on
LFW and IJB-A datasets with the recognition model, which
is trained with the dataset augmented via our method like
the previous method. The results are listed in table 1. More-
over, we demonstrate that our model remarkably boosts the
performance on harder dataset, IJB-B and IJB-C, which are
mostly used in the facial recognition task. We also expand
our experiments by adding the performance when prepro-
cessing testing datasets with our method. As the results
listed in table 2, we boost the facial recognition perfor-
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Method [0,30] [30,60] [60,90] Mean / Std

[9] Ori 2.808 3.332 4.318 3.486 / 0.626
Occ 3.949 5.530 7.335 5.605 / 1.383

Ours Ori 2.662 3.404 4.090 3.385 / 0.583
Occ 2.773 3.579 4.362 3.571 / 0.649

Table 4: The NME (%) on AFLW2000-3D dataset (68 pts).
The rows of ”Ori” and ”Occ” present NME for original im-
ages and occluded facial images, respectively.

mance more than the state-of-the-art model, giving margins
of the boosting clearly. In addition, it can be mentioned
that Lid prevents imitating Re without the consideration for
identities and helps preserve identities.
Facial Expression Recognition Table 3 shows the perfor-
mance of the models on facial expression recognition task.
We use the VGG-16 as a baseline model and add our model
to identify performance change accordingly. GACNN [27]
proposed additional modules to consider the occlusion by
encoding patches from VGG-16. When our method is used
for data augmentation, test accuracy remarkably increased,
which is comparable to GACNN [27]. This result verifies
that our joint face rotation and de-occlusion method can al-
leviate the problems of extreme pose and occlusion, and
boost the performance on facial expression recognition task.

4.4. Ablation Study

Occlusion-robust 3D face To validate the effectiveness of
occlusion-robust face reconstruction, we present the results
according to fine-tuning in Fig. 8. The results show that
fine-tuned model can better estimate the shape and tex-
ture of faces existing severe occlusions. For quantitative
results, Normalized Mean Error (NME) is measured for
AFLW2000-3D database to evaluate 3D face alignment, as
shown in table 4. We evaluate the robustness for occlusion
by evaluating for both the original images and the occluded
face images synthesized with hand-shaped masks.
CFR-GAN Fig. 9 shows that our methods strongly affect
removing occlusions. When the training data was gener-
ated without swap in swap-R&R, most occlusions except
to occlusions by rotation remain remarkably. The results
for the model trained without O path were only erased for
objects with a strong difference. To verify help detect di-
verse occlusions our algorithm to calculate a coarse occlu-
sion mask, the mask is calculated by only using a face pars-
ing network. The results are better than previous cases, but
occlusions like hands not classified by the face parsing net-
work were not completely removed. Additionally, through
comparison with Rotate-and-render [55] which is a face ro-
tation method, we show the necessity of joint face rotation
and de-occlusion. It is difficult to apply an additional face
de-occlusion method because of the remaining afterimages

Figure 8: Ablation study on occlusion-robust 3D face re-
construction. The 3D faces estimated by [9] and ours are
shown on second and third columns, respectively.

Figure 9: Ablation study on our overall method. Ours w/o
{diff} is results only using face parsing network, not our
entire algorithm to calculate a coarse occlusion mask M.

of occlusions on frontalized results and the collapse of fa-
cial structure. In experiments for the absence of O path,
we changed the occlusion-aware reconstruction loss to a re-
construction loss for a total image due to not generate an
occlusion mask.

5. Conclusion
In this paper, we present a CFR-GAN for joint face ro-

tation and de-occlusion. Unlike existing methods, which
suffer from the lack of high-quality datasets, our method
does not require paired dataset. We provide a strong self-
supervision by synthesizing a damaged face image with our
occlusion-robust 3D reconstruction model and Swap-R&R
strategy. Our method outperforms previous state-of-the-art
methods for qualitative results. Furthermore, this work can
boost the performance for other face-related tasks and be a
step forward regarding training joint face rotation and de-
occlusion networks in a fully unsupervised manner.
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