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Abstract

Most recent face deblurring methods have focused on
utilizing facial shape priors such as face landmarks and
parsing maps. While these priors can provide facial geo-
metric cues effectively, they are insufficient to contain local
texture details that act as important clues to solve face de-
blurring problem. To deal with this, we focus on estimat-
ing the deep features of pre-trained face recognition net-
works (e.g., VGGFace network) that include rich informa-
tion about sharp faces as a prior, and adopt a generative
adversarial network (GAN) to learn it. To this end, we pro-
pose a deep feature prior guided network (DFPGnet) that
restores facial details using the estimated the deep feature
prior from a blurred image. In our DFPGnet, the generator
is divided into two streams including prior estimation and
deblurring streams. Since the estimated deep features of the
prior estimation stream are learned from the VGGFace net-
work which is trained for face recognition not for deblur-
ring, we need to alleviate the discrepancy of feature dis-
tributions between the two streams. Therefore, we present
feature transform modules at the connecting points of the
two streams. In addition, we propose a channel-attention
feature discriminator and prior loss, which encourages the
generator to focus on more important channels for deblur-
ring among the deep feature prior during training. Exper-
imental results show that our method achieves state-of-the-
art performance both qualitatively and quantitatively.

1. Introduction
Single facial image deblurring is to recover facial de-

tails from a blurred face image. The recovery of a sharp
face image from a blurred face image is important for many
computer vision tasks, such as face recognition [36, 6], face
alignment [12, 2, 48], and face detection [34, 45, 19]. This
is because performance degrades dramatically owing to the
complex blur scenarios in which important shape and tex-
ture details of the face image often disappear.

As image deblurring is highly ill-posed, an appropriate

(a) Conventional restoration architecture using deep features

(b) Proposed restoration architecture using deep features
Figure 1. Illustration of the conventional and the proposed
restoration architecture based on deep features from deep
CNN model. (a) The conventional architecture is designed to op-
timize both the perceptual loss for perceptual similarity and the
pixel-wise loss for pixel-wise accuracy in a single restoration net-
work. (b) The proposed architecture is designed to predict deep
features in a separate stream and utilize them as a prior.

prior is necessary to constrain the solution space. For-
tunately, face deblurring can utilize strong prior knowl-
edge of the face even for severe blur. Hence, many recent
studies have exploited various facial priors, such as face
landmark [5, 4], 2D face sketch [21], and face segmenta-
tion [32, 42, 18]. However, these priors are highly biased to-
ward the global shape of the face rather than texture details
[3]. They are insufficient for providing a high-dimensional
texture, because they contain only location information [3].

To restore the texture details, face deblurring approaches
[32, 23, 42, 18] often rely on the perceptual loss function
[11]. This loss function is based on the fact that features
from deep convolutional neural networks (e.g., VGGFace
[27]) trained for high-level tasks (e.g., face recognition), the
so called deep features [46], contain rich representations of
sharp face images, such as edges, textures, and semantic
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information [29]. They extract deep features from specific
layers of this network to minimize the distance in the feature
space between the predicted and ground truth images. Al-
though it is helpful to generate realistic textures, it still may
not match the ground truth images in pixel-wise accuracy
[31]. Thus, it is conventional to optimize both the percep-
tual loss in feature space for perceptual similarity and the
pixel-wise loss in image space for pixel-wise accuracy in a
single restoration network, as shown in Fig. 1a.

However, minimizing these loss terms in a single restora-
tion network may not be the optimal solution for image
restoration. This is because image restoration and image
recognition are different processes. The deep features from
well-trained classifiers primarily contain useful informa-
tion for recognition, not restoration. This means that some
features of the pre-trained recognition network hinder the
restoration network from learning to generate accurate ap-
pearances, because the features of the recognition network
are designed to be robust to intra-class variations in ap-
pearance. This conflicts with the purpose of restoration by
rendering the restoration network insensitive to appearance
variations [24] such as blur. Due to this inherent character-
istics of the deep features, it is not effective to reduce both
the pixel-wise loss and the perceptual loss without consider-
ing the consistency of the purpose of deblurring in a single
network. Thus, we argue that disentangling these represen-
tations by careful design, and focusing on information that
is useful for deblurring among the deep features can lead to
more accurate deblurring results.

In this work, we therefore propose a novel deep fea-
ture prior guided network (DFPGnet), that separates two
streams, including a deep feature prior estimation stream
and a deblurring stream in a end-to-end single restoration
network, as shown in Fig. 1b. This enables the prediction
of important deep features with the supervision of ground
truth deep features from the VGGFace [27] in the prior es-
timation stream, and utilizing them as facial prior to restore
facial details in the deblurring stream. By separating the
two streams in a single network, they can focus on their
own roles. For the information flow between two streams,
we connect the input and output features of the prior es-
timation stream with the intermediate features of encoder
and decoder in the deblurring stream, respectively. How-
ever, the appropriate feature transformations are required at
the connecting points of the two streams due to the discrep-
ancy of feature distributions between two streams. Thus,
we place a self-spatial feature transform (SSFT) module
which is a modified version of a spatial feature transform
(SFT) module and a SFT module [46] at that points, respec-
tively. In addition, we propose a channel-attention feature
discriminator and prior loss based on generative adversar-
ial networks (GANs) framework [7] to focus only on im-
portant information for deblurring among the deep features.

The key idea of our discriminator is to learn the weight of
important channels of the deep features for deblurring by
using the channel attention (CA) module [9] in an unsuper-
vised manner. Using the learned weight, we can define the
prior loss that encourages our generator to focus on more
important channels for deblurring among the deep features.
We show that our method using our deep feature prior out-
performs existing state-of-the-art methods that use the per-
ceptual loss and the shape priors on various datasets.

Our contributions can be summarized as follows.

• We propose to incorporate the deep features as a prior
in a restoration network.

• We propose a channel attention feature discriminator
that enables the generator to focus on more important
channels for deblurring among the deep feature prior.

• We achieve state-of-the-art performance for face de-
blurring against existing method and provide ablation
studies to demonstrate the power of deep feature prior.

2. Related Works
Generic Image Deblurring. Recently, numerous de-

blurring methods based on deep learning (DL) [16] have
been studied and achieved excellent performance. Nah et
al. [25] proposed an end-to-end learning method that di-
rectly estimates the deblurred output using a multi-scale
CNN to gradually restore sharp images. Since the seminal
work of [25], various DL-based methods [35, 43] that pre-
dict images have directly contributed to improving the de-
blurring performance. While all of these deblurring meth-
ods are very accurate in generic image deblurring, they do
not generalize well to domain-specific deblurring, such as
text and face images.

Facial Image Deblurring. For face deblurring, most
existing methods take advantage of facial geometric priors
such as face landmarks [5, 4], facial parsing maps [32, 42,
18], and 3D facial model [30]. Chrysos et al. [5] introduced
a deep architecture along with the pre-processing step to
take advantage of the facial structure through landmark lo-
calization. Shen et al. [32] proposed a two-stage face de-
blurring network that generates facial parsing maps first and
restores the facial images later. Yasarla et al. [42] suggested
measuring the uncertainty of the estimated parsing map to
address the side effects of inaccurate parsing maps. Lee
et al. [18] proposed a multi-semantic progressive learning
to exploit ground truth parsing maps for training purposes.
While these methods are effective at providing geometric
information of the facial components, they are insufficient
for providing texture information, such as detailed edges or
other low-level image contexts [30]. In contrast, we pro-
pose to utilize a deep feature prior that contains both the ge-
ometric and texture information of the face. Although deep
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Figure 2. The overall scheme of our method.

dictionary feature prior [20] and generative prior [37] are
recently utilized for texture generation in blind face restora-
tion, they often fail to handle severely blurred face image.

Perceptual Loss for Restoration. Recently, the percep-
tual loss [11] has been widely used to reconstruct fine edges
and textures in many image restoration studies [17, 39, 32,
29, 42, 18]. Subsequently, existing face deblurring meth-
ods [32, 23, 42, 18] also employed perceptual loss to cap-
ture facial specific features using face recognition model
[27]. However, as image restoration and recognition task
involve different processes, the perceptual loss is limited in
providing optimal solutions for accurate restoration. Differ-
ently, we propose to estimate the rich information of deep
features in separate processing streams and effectively inte-
grate them into the restoration task.

3. Proposed Method

We propose a face deblurring framework, called Deep
Feature Prior Guided network (DFPGnet) that restores a
sharp face image Ideblur from a blurred face image Iblur
with the help of the estimated deep feature prior. Our key
idea is to estimate a strong prior containing the shape and
texture information of the human face. For this, we adopt
the VGGFace [27] model trained for face recognition with
a sharp face dataset to extract the ground truth (GT) deep
feature prior from the sharp face image.

As shown in Fig. 2, our DFPGnet is based on genera-
tive adversarial networks (GANs) [7] that consists of a gen-
erator G and a discriminator DC . The generator consists
of three parts: an encoder of the deblurring stream ME , a
prior estimation stream P , and a decoder of the deblurring
stream MD. First, ME extracts the features from Iblur.
Then, P estimates the deep features prior from interme-
diate features of ME . Finally, MD generates Ideblur by
exploiting the output deep features of P as prior informa-

tion. Although the GT deep features include rich informa-
tion on human faces, they are designed for recognition not
deblurring. Thus, there is a discrepancy of the feature dis-
tributions between the two different tasks of deblurring and
recognition. For this reason, we present the self-spatial fea-
ture transform (SSFT) and spatial feature transform (SFT)
[38] modules at the connecting point between the deblurring
stream and the prior estimation stream. In addition, chan-
nel attention (CA) modules [9] are adopted when training
the discriminator and the generator to emphasize important
channels for image restoration task among the channels of
the learned features using the VGGFace [27].

3.1. Encoder of Deblurring Stream

The encoder ME aims to extract features for deblurring.
It takes a blurred face image Iblur as input and produces a
set of multiple output features E = {Ei|i = 0, 1, 2, 3, 4}.
We group the intermediate outputs except for the first and
last features into a subset EP = {Ei|i = 1, 2, 3}. Thus, we
can formulate [E0,EP , E4] = ME(Iblur). The first output
E0 from a blurred image is added to the last feature D0

of MD for a sharp image using a global skip connection.
The output EP is passed into P to be transformed into deep
features as a prior and the final output E4 is directly fed into
MD to help generate a sharp face image.

3.2. Prior Estimation Stream

This stream P aims to estimate deep feature prior
through the supervision of GT deep features P = {Pi|i =
1, 2, 3}. It takes EP as input and returns a set of estimated
deep features P̂ = {P̂i|i = 1, 2, 3}. More concretely, P
is divided into three sub-networks P = {Pi|i = 1, 2, 3}.
Each sub-network Pi produce each element of output P̂i

from corresponding element of input Ei as P̂i = Pi(Ei)
(Fig. 2). The Pi consist of the self-spatial feature transform
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(a) Self Spatial Feature Transform (SSFT) module

(b) Spatial Feature Transform (SFT) module
Figure 3. The structure of two spatial feature transform modules:
(a) SSFT and (b) SFT module

(SSFT) module and stacked Resblocks used in [47] in se-
ries. The purpose of the SSFT module is to transform the
input feature Ei extracted from M into a feature for P to
better estimate the deep feature prior. For this, we modify
the spatial feature transform (SFT) module [38], which ap-
plies pixel-wise affine transformation on input features us-
ing additional prior. Unlike [38], this module can transform
an input feature without extra data. As shown in Fig. 3a,
the SSFT module learns a mapping function Fs

i based on
its own input feature Ei to generate a pair of affine trans-
formation parameters (αs

i , β
s
i ) as (αs

i , β
s
i ) = Fs

i (Ei). Here
αs
i and βs

i are the scale and shift parameters which have the
same size as Ei, respectively. According to these internal
parameters, we can adaptively modulate Ei to Et

i as

Et
i = SSFTi(Ei|αs

i , β
s
i ) = αs

i ⊗ Ei + βs
i , (1)

where ⊗ indicates element-wise multiplication. Thus, the
output Et

i is transformed to have an appropriate feature dis-
tribution to predict GT deep feature prior. Subsequently, the
following Resblocks [47] are used to predict P̂i using Et

i .

3.3. Decoder of Deblurring Stream

Our key idea is that MD can restore a detailed face im-
age with the help of the estimated feature prior, which con-
tains a rich representation of sharp face images. It considers
not only E0 and E4 from ME but also P̂ from P as facial
priors and generates Ideblur as Ideblur = MD(E0, E4, P̂).
We construct MD using the SFT modules [38] to infuse
prior features P̂ into deblurring features D = {Di|i =
1, 2, 3} of MD. The SFT module [38] is adopted for learn-
ing the transformation parameters to effectively incorpo-
rate prior conditions through affine transformation. Each
SFT module progressively incorporates each prior feature

(a) Channel attention feature discriminator

(b) Prior loss
Figure 4. (a) The structure of the proposed channel-attention fea-
ture discriminator. (b) Prior loss.

P̂i into the same size of deblurring feature Di for better
restoration. As shown in Fig. 3b, SFT module learns a
mapping function Fi that produces a pair of transforma-
tion parameters (αi, βi) based on prior information P̂i as
(αi, βi) = Fi(P̂i). These parameters adaptively transform
Di through a spatial-wise affine transformation as follows:

Dt
i = SFTi(Di|αi, βi) = αi ⊗Di + βi, (2)

where αi and βi are the scale and shift parameters, respec-
tively. They have the same spatial size as Di.

3.4. Deep Feature Guided GAN

According to the previous subsections, we need to esti-
mate our prior features P̂ to be close to the GT deep features
P. Meanwhile, Zhang et al. [46] recently discovered that
the channel-wise importance of deep features is not equal
in perceptual judgment. Inspired by this, we speculate that
there are more important channels among the deep features
that act as guidance to restore the sharp image. However, it
is not trivial to explicitly learn the important channels in the
deblurring process due to the lack of direct supervision in-
formation. To resolve this problem, we notice that channels
which facilitate to distinguish the sharp and blurred images
are more important for restoration task in general. Based on
this, we propose to implicitly learn important channels for
deblurring via a novel channel-attention feature discrimina-
tor DC . In contrast to conventional feature discriminators
[26], we add the channel attention (CA) module [9] at each
input layer, as depicted in Fig 4a. This allows to define the
prior loss that encourage our generator to focus on train-
ing more important channels among P for deblurring and
down-weight others.

Following the GAN-based framework [7], we train our
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generator G and discriminator DC jointly in a min-max
function V (G,DC):

min
G

max
DC

V (G,DC) =

EIGT
[logDC(IGT )] + EIblur

[log(1−DC(G(Iblur)))].
(3)

Thus, it can be divided into two steps, i.e., DC training step
and G training step. We explain each step in detail below.

Discriminator Training. As shown in Fig. 4a, this step
trains DC to alternately take a set of predicted deep fea-
tures P̂ from P or a set of GT deep features P as input.
It then tries to classify them into real (i.e., sharp) or fake
(i.e., blurry) features. DC consists of three parts; a set of
CA modules CA = {CAi|i = 1, 2, 3}, a set of internal
feature processing blocks DC

f = {DC
f,i|i = 1, 2, 3}, and

the last classifier block DC
h (Fig. 4a). The key part is CA

which receives the input prior features. They are trained to
emphasize more helpful channels for classifying the input
features. Thus the following DC

f can learn better represen-
tations from these weighted features instead of raw input
features. Finally, DC

h classifies input features more easily
based on this representation.

More formally, given P (or P̂) as input, each element Pi

(or P̂i) is weighted by CAi as

Pi
′ = CAi(Pi), P̂i

′
= CAi(P̂i). (4)

These weighted features are classified as real or fake by

DC(P) = DC
h(DC

f,3(P
′
3 ⊕DC

f,2(P
′
2 ⊕DC

f,1(P
′
1)))), (5)

where ⊕ denotes the channel-wise concatenation. DC(P̂) is
defined similarly to DC(P) as Eq. (5).

The objective function for training DC is defined as fol-
lows:

LDC = −E[ log(DC(P))]− E[log(1−DC(P̂))]. (6)

Generator Training. To train the generator, our objec-
tive function combines pixel loss Lpixel, adversarial loss
LG,adv and prior loss Lprior.

For pixel loss, we adopt pixel-wise L1 distance to mini-
mize the distance between the ground truth image IGT and
the deblurred image Ideblur as

Lpixel = ∥Ideblur − IGT ∥1. (7)

To encourage the generator to produce a more realistic
deep feature prior, the adversarial loss for the generator is
defined by

LG,adv = −E[log(DC(P̂)))]. (8)

In particular, we propose a novel prior loss to transfer
more useful knowledge of GT deep features for deblurring

and suppressing the others. The main ingredient of our prior
loss is weight of the important channels from the CA mod-
ules that are learned during the discriminator training step.
As shown in Fig. 4b, the CA modules are fixed in generator
training step and used to distill more useful knowledge by
weighting both the GT deep feature Pi and predicted deep
feature P̂i as Eq. (4). Therefore, we can define our prior
loss Lprior using L2 distance as follows:

Lprior =

3∑
i=1

Lprior,i =

3∑
i=1

W∑
w=1

H∑
h=1

∥∥∥P ′
hw,i − P̂ ′

hw,i

∥∥∥2
2
,

(9)
where P ′

hw,i and P̂ ′
hw,i are the normalized features of Pi

′

and P̂ ′
i along the channel-axis for each spatial position.

As a result, the total loss for the training generator in our
approach is defined by

LG = Lpixel + λG,advLG,adv + λpriorLprior, (10)

where λG,adv and λprior are hyperparameters. They are
empirically set as λG,adv = 0.05 and λprior = 1.

4. Experimental Results
4.1. Implementation Details

As DFPGnet consists of the generator and discriminator,
We alternately trained them using the Adam optimizer [13]
with β1 = 0.9, β2 = 0.999. The learning rates of the gen-
erator and discriminator were initialized as 1 × 10−4 and
1×10−5 respectively and decayed exponentially by a factor
of 0.99 for every epoch. For ground truth prior features P,
we employed the VGGFace [27] model, which is trained on
the VGG Face dataset [27] for the face recognition. Specif-
ically, we selected the relu1 2, relu2 2, and relu3 3
layers of VGGFace for P1, P2, and P3, respectively. We
trained the DFPGnet using a single NVIDIA TITAN-RTX
GPU. Our method is implemented using Pytorch [28].

4.2. Datasets

We evaluated our method on two facial deblurring
datasets: Shen test set [32] and MSPL test set [18]. Since
the training sets for the Shen and MSPL test set are syn-
thesized with different blur kernels and images, the evalu-
ation of each test set was performed on the model trained
on the corresponding training set for fair comparison, in-
dependently. The DFPGnet trained on Shen training set
(termed as DFPG-A) was tested on the Shen test set which
consists of 16,000 blurry face images synthesized using
Helen [15] and CelebA [22]. And the DFPGnet trained
on MSPL traning set (termed as DFPG-B) was evaluated
on the MSPL test set which provides two subsets, MSPL-
Center and MSPL-Random, each consisting of centered and
randomly transformed face images.
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Method
Helen CelebA

PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓) PSNR(↑) SSIM(↑) dV GG(↓) LPIPS(↓)
Shen et al. [32] 25.58 0.861 91.06 0.1527 24.34 0.860 117.50 0.1832
Lu et al. [23] 20.25 0.705 241.93 0.1654 19.96 0.742 305.96 0.1688
Xia et al. [41] 26.13 0.886 55.97 0.1052 25.18 0.892 68.05 0.1199
Yasarla et al. [42] 27.75 0.897 86.87 0.1086 26.62 0.908 66.33 0.1401
Shen et al. [33] 25.91 0.869 – – 24.89 0.875 – –
Lee et al. [18] 25.91 0.881 47.80 0.0828 24.91 0.885 57.54 0.0962
Li et al. [20] 21.64 0.754 253.45 0.2275 20.96 0.761 327.00 0.2517
Wang et al. [37] 22.30 0.775 206.57 0.1592 21.62 0.792 261.50 0.1503
DFPG-A (ours) 27.70 0.911 42.84 0.0928 26.56 0.915 53.38 0.1052

Table 1. Quantitative comparisons on Shen test set [32]. The best and second best results are highlighted and underlined, respectively.

Input Shen et al. [32] Yasarla et al. [42] Lee et al. [18] Li et al. [20] Wang et al. [37] DFPG-A (ours) Ground Truth
Figure 5. Qualitative comparisons on Shen test set [32].

MSPL-Center

Method
CelebA CelebA-HQ FFHQ

PSNR SSIM dV GG LPIPS PSNR SSIM dV GG LPIPS PSNR SSIM dV GG LPIPS
Shen et al. [32] 19.75 0.740 113.66 0.301 19.95 0.755 267.41 0.287 19.57 0.723 220.87 0.342
Lu et al. [23] 17.93 0.617 123.35 0.228 18.63 0.649 243.06 0.190 18.26 0.630 177.00 0.226
Zhang et al. [44] 20.40 0.744 117.68 0.314 20.90 0.764 239.04 0.295 20.64 0.743 170.41 0.343
*Zhang et al. 23.98 0.824 45.13 0.241 24.84 0.844 83.36 0.212 23.52 0.813 71.51 0.287
Xia et al. [41] 25.03 0.873 39.58 0.179 25.79 0.886 83.46 0.161 24.66 0.859 57.66 0.208
Yasarla et al. [42] 22.73 0.817 55.01 0.213 23.02 0.827 102.97 0.196 22.19 0.795 86.43 0.251
*Yasarla et al. 24.71 0.857 37.80 0.183 26.11 0.882 50.67 0.148 24.31 0.843 58.46 0.218
Lee et al. [18] 28.07 0.921 18.19 0.115 28.82 0.929 40.93 0.097 27.36 0.908 25.39 0.133
DFPG-B (ours) 29.06 0.933 14.76 0.102 29.86 0.940 20.95 0.085 28.76 0.921 20.28 0.118

MSPL-Random

Method
CelebA CelebA-HQ FFHQ

PSNR SSIM dV GG LPIPS PSNR SSIM dV GG LPIPS PSNR SSIM dV GG LPIPS
Shen et al. [32] 18.89 0.711 90.37 0.331 19.18 0.729 157.49 0.319 19.03 0.713 127.71 0.336
Lu et al. [23] 17.41 0.631 46.05 0.269 18.04 0.664 72.56 0.230 17.94 0.654 65.06 0.259
Zhang et al. [44] 19.36 0.702 86.77 0.328 19.85 0.726 144.74 0.311 19.77 0.715 122.07 0.333
*Zhang et al. 23.35 0.794 30.46 0.254 24.09 0.817 54.06 0.227 23.54 0.804 46.03 0.255
Xia et al. [41] 23.66 0.849 30.94 0.204 24.48 0.861 60.95 0.194 23.95 0.855 44.62 0.202
Yasarla et al. [42] 21.24 0.777 45.05 0.245 21.46 0.789 72.56 0.230 21.28 0.778 65.06 0.241
*Yasarla et al. 22.92 0.789 33.83 0.234 23.56 0.812 48.17 0.214 23.16 0.793 49.94 0.227
Lee et al. [18] 28.95 0.936 11.41 0.109 29.80 0.945 26.91 0.094 29.22 0.941 15.44 0.099
DFPG-B (ours) 29.96 0.945 8.37 0.100 30.76 0.953 23.05 0.084 30.29 0.951 10.93 0.089

Table 2. Quantitative comparisons on MSPL test set [18] . The best and second best results are highlighted and underlined, respectively.

4.3. Comparisons with Existing Methods

We compare our DFPGnet with existing face deblurring
methods [32, 23, 41, 42, 18, 33], blind face restoration
methods [20, 37] and generic deblurring method [43]. For
evaluation, we report two metrics, PSNR and SSIM [40],
which are widely measured in image restoration studies. We
also used the feature distance dV GG of the pre-trained VG-

GFace [27] to measure the similarity of the facial identity
between the deblurred and the ground truth images. In ad-
dition, we compared the LPIPS [46] distance, which mea-
sures perceptual image patch similarity. We also compared
the performance of face detection and verification to deter-
mine how well the restored face image can be used for face-
related applications.
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Input Shen et al. Lu et al. *Zhang et al. Xia et al. *Yasarla et al. Lee et al. DFPG-B (ours) Ground Truth
Figure 6. Qualitative comparisons on MSPL-Center test set [18].

Input *[32] *[42] ours GT
Figure 7. Visual comparisons on MSPL-Random test set [18].

Input [32] [42] [18] Ours
Figure 8. Qualitative comparisons on Real-Blur test set [14].

Comparisons Using Shen test set [32]. Table 1 shows the
official results of the existing face deblurring methods re-
ported by the authors for the Shen test set [32]. Note that
since [33] only reports the PSNR and SSIM without any
official code and visual results, we do not compare dV GG

and LPIPS results. We also compare the blind face restora-
tion methods in Table 1. Since they only provide their
test model, we did not retrain them with same degradation
model. Our method is the best for SSIM and dV GG, and the
second best for PSNR and LPIPS. This indicates that our
restored faces are the most structurally and perceptually to
the ground truth faces. Fig. 5 shows the qualitative compar-
isons with existing methods. The 1st row in Fig. 5 shows
that the DFPGnet restores sharp edges and fine textures on
notable face regions like eyes, lips and facial hair. When
comparing the results of the 2nd row in Fig. 5, our method
can restore the most similar and sharp faces compared to the
ground truth faces.
Comparisons Using MSPL test set [18]. The quantita-
tive comparisons are shown in Table 2. Except for Lee et
al. [18], the other methods are trained with different data

Method Detection (%) (↑) Acc (%) (↑)
GT of Shen test set [32] 96.00 93.47
Blurred images 77.40 77.05
Shen et al. [32] 94.80 87.03
Lu et al. [23] 89.03 80.56
Xia et al. [41] 95.95 89.12
Yasarla et al. [42] 94.49 87.84
Lee et al. [18] 96.55 89.59
DFPG-A (ours) 96.41 89.87

Table 3. Face detection and verification comparisons on the
CelebA from the Shen test set [32]. The best and second best
results are highlighted and underlined, respectively.

Model Per DFP FT Dis CA-Dis & Pr PSNR SSIM
B1 × × × × × 27.95 0.919
B2 ✓ × × × × 27.92 0.917
B3 × ✓ × × × 27.91 0.917
B4 × ✓ ✓ × × 28.67 0.927
B5 × ✓ ✓ ✓ × 28.87 0.929
B6 × ✓ ✓ × ✓ 29.27 0.931

Table 4. Ablation Studies on MSPL-Center [18]. The best re-
sults are highlighted. The performance is the average result of all
subsets of MSPL-Center. Our final DFPGnet is denoted as B6.

from MSPL training set. For fair comparison, we retrained
the methods [43, 42] that provide official training codes us-
ing MSPL training set [18] (termed as *). For the other
methods that only provide the test model, we simply test
with the provided model on MSPL test set. The results
show that our method significantly surpasses the existing
methods. Although retrained *Zhang et al. [43] has shown
significant improvements, their performance is still worse
than *Yasarla et al. [42], Lee et al. [18] and our DFPG-B.
This is because the method of *Zhang et al. [43] is proposed
for generic image deblurring, and they do not leverage any
facial prior information. This demonstrates that the facial
prior information plays an important role for face deblur-
ring. Our method outperforms *Yasarla et al. [42] and Lee
et al. [18], both of which are based on semantic priors and
perceptual loss [11] using VGGFace [27]. In particular, it
is remarkable that our method can restore faces more ac-
curately in pixel values (PSNR), while being perceptually
the best (SSIM, dV GG, and LPIPS). These results can be at-
tributed to our method of estimating the deep feature prior
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that is helpful for deblurring among the rich representation
of VGGFace. A comparison of the visual results in Fig.
6 shows our method is best at restoring fine-grained facial
texture components such as facial wrinkles, teeth, and hair.

The merit of our deep feature prior is that it is more
robust to non-aligned face than geometric prior [32, 42].
Since we estimate the features of the early layers of VG-
GFace [27] as the prior, it can provide local low-level facial
cues, which are not highly dependent to facial alignment.
In contrast, existing methods [32, 42] that utilize the final
outputs of segmentation model as prior are sensitive to non-
aligned face because it contain global geometric facial cues.
As shown in Fig. 7, DFPGnet can still restore more faithful
face for randomly rotated face than other methods.
Face Detection and Verification. One of the major goals
of face deblurring is to increase the accuracy of high-level
tasks when the input image is blurry. For this reason, we
compared performance of face detection and verification us-
ing deblurred images on the CelebA test set of Shen test
set [32]. For the detection test, we measured the success
rate of face detection using the OpenFace toolbox [1] sim-
ilar to [32, 42]. As listed in Table 3, the success rates of
face detection for GT images, blurry images, and deblurred
images using our model are 96.00 %, 77.40 % and 96.10
%, respectively. To compare the verification performance,
we measured the estimated mean accuracy (Acc) [10]. We
employed MobileNet [8] trained with Arcface [6] loss. As
demonstrated in Table 3, our model achieved the best per-
formance in Acc. These results prove that our method is
best suited for high-level tasks, such as detection and veri-
fication compared to other methods.
Visual comparison on real blurred images Since the
existing face deblurring methods [32, 23, 41, 42, 18]
are trained and evaluated with synthetically blurred
datasets [32, 18], it is unclear how these methods would per-
form on real-world blurry images acquired in the wild [14].
To this end, we conduct the visual comparisons using fa-
cial images collected from real-blur dataset [14] where the
ground-truth images do not exist. The comparison results
are shown in Fig. 8. DFPGnet can produce more fine tex-
tures (i.e., hair and wrinkles) and details of small facial
components (i.e., eyes, lips, and teeth) compared to other
methods. This result shows that our DFPGnet can general-
ize well to real blurred images.

4.4. Ablation Study

To investigate the effects of our method, we gradually
applied each component in the our method to the baseline
model and compared the differences. The entire quantita-
tive comparisons are presented in Table 4. Each row of the
Table 4 represents a model trained with the configurations
marked in the “Model”.
Effect of Deep Feature Prior. We set a baseline model

(B1) by removing the prior estimation stream and all other
modules except for M from the entire network. We trained
it using only Lpixel (Eq. (7)). The model B2 is the same
architecture with B1 but trained with the weighted sum of
Lpixel (Eq. (7)) and the perceptual loss function [11] using
VGGFace [27] (marked as “Per” in Table 4) similar to [17].
We then define model B3, which simply adds P (marked
as “DFP” to B1 in Table 4) without feature transformation
modules. In Table 4, the results show that the average PSNR
and SSIM values of B3 are lower than those of B1 and B2.
From this, we find that simply guiding the feature from the
VGGFace without feature transform rather interferes with
the restoration task owing to their different tasks.

Effect of Feature Transform Modules. To investigate the
impacts of them, we added the feature transform modules
(marked as ”FT” in Table 4) into the B3 model, as shown
in the 4th (B4) row in Table 4. The results of B4 show
that the average PSNR and SSIM increase by 0.74 and 0.1
compared to those of B3, respectively. These results show
that our feature transformation modules effectively reduce
the difference of feature distributions between two different
tasks of deblurring and recognition.

Effect of Channel-Attention Feature Discriminator and
Prior loss. To study the effects of our channel-attention
feature discriminator DC and prior loss, we compared the
performances of models 1) without discriminator (B4), 2)
with the feature discriminator without channel attention that
is marked as “Dis” (B5), and 3) our channel-attention fea-
ture discriminator and prior loss marked as “CA-Dis & Pr”
(B6). As shown in Table 4, the B6 model outperforms than
the other methods. The average PSNR of the B6 model in-
creases by 0.36, compared to the B4. This proves that it
is effective to weight some important channels among fea-
tures from VGGFace [27] higher, rather than to weight all
channels equally.

5. Conclusions

We propose a deep feature prior guided face deblurring
network (DFPGnet) which estimates deep features of the
face recognition network as prior that includes rich informa-
tion on sharp faces. Thanks to the feature transform mod-
ules and proposed channel attention mechanism, we can ef-
fectively utilize our prior in restoration task. In future work,
we believe that our method can be generalized well to di-
verse restoration tasks using other pre-trained networks.
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