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Abstract

We consider the problem of temporal view synthesis,
where the goal is to predict a future video frame from the
past frames using knowledge of the depth and relative cam-
era motion. In contrast to revealing the disoccluded regions
through intensity based infilling, we study the idea of an
infilling vector to infill by pointing to a non-disoccluded
region in the synthesized view. To exploit the structure of
disocclusions created by camera motion during their infill-
ing, we rely on two important cues, temporal correlation of
infilling directions and depth. We design a learning frame-
work to predict the infilling vector by computing a temporal
prior that reflects past infilling directions and a normalized
depth map as input to the network. We conduct extensive ex-
periments on a large scale dataset we build for evaluating
temporal view synthesis in addition to the SceneNet RGB-
D dataset. Our experiments demonstrate that our infilling
vector prediction approach achieves superior quantitative
and qualitative infilling performance compared to other ap-
proaches in literature.

1. Introduction

Suppose a user is exploring a virtual environment on a
head mounted display device. Given the past view of a ren-
dered video frame and the most recent head position, we
ask if the updated view can be generated directly without
graphically rendering the frame again. We refer to the above
problem as egomotion aware temporal view synthesis. The
problem has applications in frame rate upsampling for vir-
tual reality (VR) and gaming applications in low compute
devices through positional time warp [2], asynchronous re-
projection [1] or interleaved reprojection [4].

Given the head pose (or 6D camera pose) and the past
frame along with its depth map, we can reconstruct the next
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frame by warping the past frame through a transformation
matrix. During this warping, the disocclusion of the back-
ground leads to missing pixels in the synthesized view as
shown in Figure 1. While newer regions on the boundary
can also emerge during temporal view synthesis, VR appli-
cations can solve this by starting with a larger field of view
and cropping out the desired portion. An important distinc-
tion between novel view synthesis [48] and temporal view
synthesis is the high frame rate of the videos. This primarily
introduces disocclusions of the relative background regions
as opposed to those of the foreground object [48]. We par-
ticularly focus on the problem of revealing disocclusions of
the background during temporal view synthesis.

One solution for infilling disocclusions is based on mesh
based interpolation methods such as the reference view syn-
thesizer (RVS) provided by the moving pictures experts
group (MPEG) [15, 16] or splatting based methods [8, 49].
The disoccluded or unknown regions in such solutions tend
to get stretched, leading to geometric distortions and tem-
poral inconsistencies in the synthesized video. Novel view
synthesis methods [35, 42, 47] typically assume that the
depth maps in the past frames are not available and are de-
signed to overcome this challenge. The novel view synthe-
sis problem also does not consider the temporal dependen-
cies that can be exploited in temporal view synthesis.

Alternatively, one could employ generic image inpaint-
ing to predict the missing pixels in the warped frame
[31, 36, 45]. The causal constraint in temporal view syn-
thesis limits the application of video inpainting methods
[23, 43]. Further, both image and video inpainting methods
are not designed to exploit the extra information available
in camera motion and depth for VR applications. While
several depth image based rendering approaches (DIBR)
[14, 28] exploit depth information for infilling the disoc-
clusions, there is little work on learning based methods.

Our approach is motivated by the intuition that disoc-
cluded pixels can be infilled by copying intensities from the
spatial neighborhood. We introduce the idea of an infill-
ing vector for revealing disocclusions. An infilling vector
points to the known regions of the warped frame from where
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Figure 1. Temporal view synthesis for frame rate upsampling. Graphically rendered frame fn is pose warped using relative pose and
depth. The disocclusions in the warped frame are infilled to obtain the filled frame fn+1. Frame fn+2 is now again graphically rendered
and fn+3 is predicted and so on.

Figure 2. Infilling Vector. The disocclusions in the warped frame
can be filled using the infilling vector from the known regions to
the unknown regions.

intensities in the unknown regions can be read off as shown
in Figure 2. While deep video inpainting [23] uses flow
vectors to infill missing regions visible in the past frames, it
does not sufficiently exploit the structure of missing pixels
created due to the disocclusions caused by camera motion.

Our main contribution is in exploiting the structure of the
disocclusions created by camera motion and the available
scene depth to guide the infilling through a deep network.
The continuity of camera motion results in a similarity in
the infilling directions across frames. So we first estimate
a fictitious infilling vector in a rendered frame warped from
a previously rendered frame. We then use this estimated
infilling vector to temporally guide the prediction of the de-
sired infilling. We also observe that the disoccluded regions
can be reconstructed by pointing to the relative background
regions in their neighborhood. We encourage such infill-
ing by obtaining a normalized scene depth in a normalized
range that guides the infilling vector prediction.

While several datasets exist for studying the novel view
synthesis problem, the videos have low spatial resolutions.
Thus, we create a new Indian Institute of Science Virtual
Environment Exploration Dataset, IISc-VEED, of graphi-
cally rendered videos at a spatial resolution of 1920x1080
and a temporal resolution of 30 frames per second. Our
dataset consists of 800 video clips of 12 frames each.
We carefully designed this dataset to particularly reveal

the challenges of infilling disocclusions. We conduct de-
tailed experiments on our dataset and the SceneNet RGB-D
datasets to show that our model outperforms other compet-
ing methods. We also propose a new measure to evaluate
the temporal consistency of the infilled regions, and show
that our model generates temporally consistent infilled re-
gions.

We summarize our main contributions as follows:

1. We design a novel deep infilling vector prediction al-
gorithm that exploits the temporal correlation of infill-
ing directions in successive frames.

2. We also guide the infilling vectors to point to the rela-
tive background by computing a normalized depth map
as input to our infilling vector prediction method.

3. We construct a new dataset, IISc-VEED, to evaluate
disocclusion infilling in temporal view synthesis.

4. We benchmark several view synthesis methods
for frame-rate upsampling on our dataset and the
SceneNet RGB-D dataset [30]. We show that our
model outperforms all other competing approaches
while yielding more temporally consistent predictions.

2. Related Work

We now discuss several strands of work that are related
to our problem as follows.

Novel View Synthesis. Novel view synthesis from sin-
gle or multiple given views is relevant to our problem by
treating the past frame(s) as the given view(s) and the fu-
ture frame to be predicted as the novel view. Since the
depth is often assumed not known, these methods attempt
to estimate the depth through probabilistic depth volumes
[12], multi-plane images (MPI) [17, 37, 47] and soft 3D re-
constructions [35]. Disocclusions in novel views have been
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carefully handled during construction of MPI planes by us-
ing flow vectors that point to visible pixels [37]. Instead of
estimating depth, view synthesis methods also deal with the
use of incomplete or noisy depth information [32]. Several
view synthesis methods for generating views of individual
objects from single views exist in literature [34, 39, 48].
View synthesis of more generic scenes from single views
has also been designed [10, 42]. Depth is first estimated
and used to warp the views in either the pixel domain [10]
or the feature space [42].

Image and Video Inpainting. Off-the-shelf image in-
painting algorithms can be applied on the warped frames
containing holes. Image inpainting is a well studied topic
with rich literature ranging from classical methods [13, 19]
to modern deep learning based methods. Deep inpaint-
ing methods based on adversarial approaches have achieved
state of the art performance [31, 44]. While video inpaint-
ing and completion methods [18, 23, 26, 43] are also related
to the problem of hole filling in warped frames, these meth-
ods do not adhere to the causal constraint which exists in
temporal view synthesis. Further, they do not exploit the
structure of holes created due to disocclusions caused by
camera motion.

Depth Image based Rendering. Techniques that enable
free viewpoint 3D video through DIBR face similar chal-
lenges to the problem of temporal view synthesis. Disocclu-
sion infilling approaches in DIBR can be classified as spa-
tial infilling approaches that are depth aware [7, 11, 14] and
spatio-temporal approaches that focus on reconstructing the
background before warping and infilling [28]. Nevertheless,
all the above methods are not learning based and relevance
of deep learning has not been explored much. While deep
networks are used to correct depth errors in DIBR [9], the
problem of disocclusion infilling through deep networks has
not been studied to the best of our knowledge.

Video Prediction. Although temporal view synthesis is
close to video prediction [29, 33], our goal is disocclusion
infilling due to effective use of camera motion, depth and
scene geometry. In contrast, video prediction methods aim
to predict all the pixels in successive frames. They do not
make effective use of the camera motion and geometry.

3. Problem Statement
We now describe the temporal view synthesis problem

and the notation. We specifically focus on the scenario
where motion in the video occurs on account of egomotion
(due to a moving camera or head movement). We assume
that the scene is static and the objects are stationary. Let
frame fn be given, along with its depth map dn, and rela-
tive 4 × 4 transformation matrix Tn from fn to fn+1. Our
goal is to predict frame fn+1. To predict fn+1, we lever-
age projective geometry to first warp homogeneous pixel
coordinates in fn to the view of fn+1, by using the transfor-

mation matrix and the depth map as

pwn+1 ∼ KG{TnF{dn(pn)K−1pn}}, (1)

where K is the 3 × 3 camera intrinsic matrix, pn is a 2D
image location expressed in homogeneous form and pwn+1

is the warped image location in fn+1. F and G denote the
conversion from 3×1 to 4×1 vectors and vice versa, respec-
tively. Using the above, we reconstruct the pixel intensities
in fn+1, corresponding to the regions which can be mapped
to fn by interpolating from the transformed coordinates in
the immediate grid neighborhood. We refer to these regions
as ‘known’ regions.

Warping cannot provide intensities for the locations oc-
cluded in fn which get disoccluded in fn+1. This leads to
the creation of holes or disoccluded regions in the warped
frame as indicated by black regions in Figure 2. While
warping cannot also predict intensities of pixels correspond-
ing to the new regions that emerge in the next frame, one
can solve this problem by rendering the frames at a larger
field of view and then cropping the desired region during
display. Hence, our primary focus is on infilling the disoc-
cluded regions in frames reconstructed by warping. Thus,
the temporal view synthesis problem involves taking as in-
put fw

n+1 and generating the infilled frame f i
n+1. We note

that warping can introduce small, imperceptible errors in
the known regions due to imperfect interpolation. Further,
we assume that the frame rates are large enough that min-
imize the effect of illumination changes. Hence, we focus
mainly on infilling the disoccluded regions.

Application to frame rate upsampling. We study the
application of temporal view synthesis to frame rate upsam-
pling or interleaved reprojection. Suppose the graphics en-
gine can render alternate frames fn−4, fn−2, fn and so on,
temporal view synthesis can be used to predict fn−3, fn−1,
fn+1 and so on, from their immediate past rendered frames.
This enables doubling of frame rate in a causal manner.

4. Method
We first describe our warping to reconstruct the known

regions of frame fn+1 and then describe our approach of in-
filling the holes created due to disocclusions. Our key con-
tribution is in exploiting the structure of the disocclusions
created due to egomotion in the video to achieve superior
infilling performance. In particular, we utilize the tempo-
ral correlation of the infilling across frames and the scene
depth to effectively infill the disocclusions caused by ego-
motion. We further improve the prediction by detecting and
discarding any erroneous predictions and iteratively infill
the remaining holes.

We employ projective geometry based warping to recon-
struct known regions of the next frame fn+1 as in Equa-
tion 1. After obtaining the corresponding locations in frame

3543



fn+1, we use inverse bilinear interpolation [40] to obtain
intensities at the grid locations. In particular, for every grid
location, we take the neighbors within a grid on all sides
and combine them using inverse bilinear interpolation. Dur-
ing this interpolation, we also weigh the neighbors inversely
proportional to the depth of the warped locations. This can
also be considered as a simpler splatting method [49].

4.1. Infilling Vector Prediction (IVP)

We observe that the disoccluded regions are best infilled
based on the known regions in their neighborhood. Thus,
we resort to predicting an ‘infilling vector’ for every pixel
in the disoccluded region, which points to a pixel location
in the known region, as shown in Figure 2. The infilling
vector can then be used to predict the intensity at the de-
sired disoccluded location. If (an+1(x, y), bn+1(x, y)) are
the horizontal and vertical components of the infilling vec-
tors, then

f i
n+1(x, y) = fw

n+1(x+ an+1(x, y), y + bn+1(x, y)). (2)

Our approach of predicting infilling vectors instead of the
intensities in the disoccluded regions may not suffer from
distortions such as blur and color gradations that occur
when the intensity is directly predicted. Further, dis-
occluded regions often correspond to background pixels
and our infilling vector prediction approach can indicate
whether the infilled pixel points to a foreground or back-
ground location. Such information can be potentially used
to constrain and improve the estimates.

Our infilling vectors which point to the known regions
within the frame are quite different from flow based models
used to read off matching points from neighboring frames
in deep video inpainting [23]. In the following, we first
describe how the infilling vector prediction can benefit from
temporal guidance and then discuss depth guidance. We
show the overall architecture for our approach in Figure 3.

4.2. Temporal Guidance

Since egomotion in a video tends to be correlated across
time, the shape of the disoccluded regions and the infill-
ing direction from the background also tend to be similar
across successive frames. In order to exploit the correlation
of infilling directions across time, we input fictitious infill-
ing vectors in previously rendered frames to predict the de-
sired infilling vector in fw

n+1 as follows. Since we focus
on frame rate upsampling, the ground truth is available for
every alternate frame. Using the transformation matrix, we
warp fn−2 to the view of fn, denoted as fw

n . We then use
the ground truth fn, to estimate the infilling vectors for the
disoccluded regions in fw

n . These fictitious infilling vectors
thus estimated serve as a prior to predict the desired infilling
vectors in fw

n+1. We provide further details of each of the
above steps in the following.

Estimation of infilling vectors in previous frame. For
every disoccluded pixel at (x, y) in the warped frame fw

n ,
we search for the nearest neighbor in the known regions of
the frame, in the four cardinal directions. We compare the
intensities at these four locations with the true intensity at
(x, y), available from the ground truth frame fn. We pick
the neighbor that has the least mean squared error (MSE)
with the ground truth value, and set the infilling vector at
(x, y) to point to this optimal neighbor’s location. To avoid
noisy estimates, we consider a small patch around the pix-
els, instead of individual pixels, and compute the MSE be-
tween the patches. For our experiments, we set the patch
size to 3× 3. These estimated infilling vectors (αn, βn) act
as a strong prior to predict the infilling vectors for fn+1.

Learning infilling vectors with temporal guidance.
We exploit temporal similarity by feeding the estimated in-
filling vectors in fw

n obtained as above to a deep network.
However, the disoccluded regions in fw

n and fw
n+1 are spa-

tially displaced. We observe that the network can better uti-
lize the estimated infilling vectors if they are closer to the
disoccluded region locations. We achieve this by warping
the infilling vectors (αn, βn) to obtain (αw

n+1, β
w
n+1) in a

manner similar to the warping of intensities. This brings
the estimated infilling vectors closer to the disoccluded re-
gions in fw

n+1. Since the estimated infilling vectors fw
n may

be noisy, we smoothen the warped vectors using an averag-
ing low-pass filter. We adopt a U-Net architecture to learn
the infilling vectors (an+1, bn+1) from (αw

n+1, β
w
n+1).

4.3. Depth Guidance

Since the temporal prior may not always be relevant
when the direction of egomotion changes or when the
videos have low frame rates, we also explore the use of
depth to guide the infilling. Since infilling is often per-
formed by copying pixels from the relative background, we
believe that the scene depth can provide important cues on
where the infilling vector needs to point to. Further, when
there are multiple backgrounds at different depths, the rel-
ative depths can be carefully analyzed in conjunction with
the temporal prior to guide the infilling vector prediction.

Since the actual depth of the scene can vary across differ-
ent scenes, we process the scene depth through a few convo-
lutional layers to obtain a map that lies within 0 and 1. This
helps provide a normalized depth range that can be better
exploited along with the temporal prior to predict the infill-
ing vectors. Note that the ground truth depth map, dn+1, is
not available since that is the frame we would like to pre-
dict. Thus, we warp previous frame depth dn similar to
warping of frame fn and feed the warped depth dwn+1 to the
network. Although the warped depth will have holes in the
disoccluded regions, the depth in the known regions is avail-
able and infilling vectors will only point to these regions.
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Figure 3. Architectural pipeline of our model. The infilling vectors are predicted by U-Net, which takes in (αw
n+1, β

w
n+1) and processed

depth map as a 3-channel input and outputs the dense 2-channel infilling vector field (an+1, bn+1). The temporal prior (αw
n+1, β

w
n+1) is

estimated using fn and fw
n warped from fn−2.

4.4. Overall Architecture

We show the complete architecture of our model in Fig-
ure 3. We input the warped infilling vectors (αw

n+1, β
w
n+1)

and the processed depth to a U-Net model that outputs the
infilling vectors (an+1, bn+1) at all locations. Our U-Net
model consists of 4 sub-sampling layers and skip connec-
tions. The output infilling vectors at the disoccluded lo-
cations are then used to predict the intensities there using
Equation (2). The error in the intensity prediction in the dis-
occluded regions is used to train the U-Net. In particular, we
use a weighted combination of mean squared error (MSE)
loss, structural similarity (SSIM) and smoothness constraint

L = λ1LMSE + λ2LSSIM + λ3Lsmoothness, (3)

LMSE is given by

LMSE =
∑
x

∑
y

m(x, y)
[
fn+1(x, y)− f i

n+1(x, y)
]2

,

(4)
where m(x, y) = 1, if (x, y) belongs to a disoccluded re-
gion, and 0, otherwise. The SSIM loss term LSSIM with the
luminance and contrast terms [41] is also evaluated as above
with the mask. We obtain a smoothness loss Lsmoothness on
infilling vectors in the disoccluded region alone, weighted
by gradient of the true image, similar to optical flow esti-
mation [40]. Note that gradient propagation with respect
to the above loss function requires a differentiable spatial
transformer module [21] as popularly used in unsupervised
optical flow algorithms [22, 27, 40]. At test time, we use
the infilling vectors at the disoccluded locations to predict
the intensities at those locations.

4.5. Iterative Infilling

We observe that our model can sometimes output in-
filling vectors that incorrectly point to foreground objects.
Since the discoccluded regions come from the relative back-
ground, we adopt an iterative infilling method to correct
this. In particular, we mark all infilling vectors that point

to the foreground as incorrect, by setting them to zero, and
do not infill in these locations. We utilize the warped depth
dwn+1, which provides depth values at all known regions, to
determine if an infilling vector is pointing to a foreground
object. We now iteratively process the infilled frame where
infilling has only been performed at locations where infill-
ing vectors point to the background pixels. Thus, the size
of the disoccluded region reduces with each iteration and
in every subsequent iteration, infilling vectors predicted in
the remaining disoccluded region are used for infilling. We
perform this iterative infilling P times only at test time. In
the last iteration, we do not remove any infilling vectors.
We extend any infilling vectors pointing to the disoccluded
region until it points to a known region.

5. Experiments
5.1. Dataset

Since our work focuses on infilling the disoccluded re-
gions, we need a dataset that will present interesting chal-
lenges in this scenario. Existing datasets for view synthesis
are either only available at low spatial resolutions, or do not
sufficiently present the challenges in infilling disocclusions
or are not appropriate for the application of temporal view
synthesis in frame rate upsampling. Thus, we develop a
new dataset for the temporal view synthesis problem and its
application to frame rate upsampling.

IISc-VEED. Our dataset consists of 800 video clips of
12 frames each at a spatial resolution of 1920 × 1080.
We generate the videos using Blender by taking 200 dif-
ferent indoor and outdoor scene environments from [3]
and [6] such as classroom, bedroom, kitchen, living room,
cityscape, lake, seaside, windmill farm, mountains and sev-
eral more. In each scene, we adapt the camera trajectories
available in existing public datasets [20, 38, 46] and place
them in the given environment to generate the video. The
camera trajectories were chosen to introduce a moderate
amount of disocclusions in the warped frames as observed
for typical frame rates. This is repeated for four different
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Figure 4. Comparison of temporally synthesized views by different models. The first column shows warped frames, with disoccluded
regions in black and the last column shows the ground truth. While StereoMag blurs objects in the predicted frames, SynSin and Edge-
Connect predictions contain mixture of foreground and background object intensities in the disoccluded regions. VINet incorrectly infills
the disoccluded regions with foreground objects. Finally, our model produces sharp and accurate results with minimal artifacts.

IISc-VEED SceneNet RGB-D
Model MSE ↓ D-MSE ↓ SSIM ↑ D-SSIM ↑ TC ↓ D-MSE ↓ D-SSIM ↑ TC ↓
Copy Last Frame 862 5326 0.7058 0.3296 1312 4139 0.2555 1152
RVS Warping [16] 67 1192 0.9183 0.5899 294 2897 0.3999 710
Warping + RFR [25] 52 927 0.9251 0.7213 223 2099 0.5058 413
Warping + EC [31] 50 822 0.9238 0.6318 197 1327 0.5222 318
Warping + Cho et al. [11] 70 2382 0.9217 0.4910 570 2777 0.4414 1004
Warping + VINet. [23] 72 2568 0.9209 0.4895 621 3872 0.3414 908
StereoMag [47] 208 792 0.856 0.6607 225 2734 0.3365 1024
SynSin [42] 127 1169 0.8273 0.5786 296 1707 0.4465 440
3D Photography [36] 79 867 0.9146 0.6872 219 2605 0.4029 731
Our Model (IVP) 47 442 0.9262 0.7729 126 874 0.6230 240

Table 1. Numerical comparisons on IISc-VEED and SceneNet RGB-D

initial viewpoints to obtain four videos per scene leading to
a total of 800 videos. Out of the 200 scenes, we select 135
for training and the remaining 65 for testing.

SceneNet RGB-D Dataset. We also evaluate and
compare different methods on the SceneNet RGB-D
dataset [30]. This dataset consists of smaller resolution
videos at 320× 240 with larger motion between successive
frames due to low frame rates. As a result, large parts of
successive frames are dominated by new regions that enter
the scene. Thus, we evaluate temporal view synthesis only
in the disoccluded regions. We select 1000 videos of 12
frames from this dataset for training and 282 videos with 12

frames for testing. We observe that the depth information
was potentially incorrect in several scenes leading to incor-
rect warping. Thus, we manually filtered 282 test videos
which do not suffer from such artifacts.

Real vs. Synthetic Datasets.: The problem of infilling
disocclusions in warped frames is motivated by applications
in graphical rendering of video frames on low compute de-
vices. Since graphical rendering arises only in the context of
synthetic scenes as opposed to real world scenes, we con-
duct our experiments only on synthetic scenes. Thus the
depth is available. We find that infilling on synthetic scenes
is still challenging and we achieve superior infilling when
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Figure 5. Temporal consistency for the frame rate upsampling application. The figure shows tracking of a series of pixels in the
disoccluded regions, where the error in predicted intensity is measured across seven frames, of alternate ground truth and predicted frames.
Our model exhibits less error for the predicted frames, thereby proving that they are more temporally consistent with the ground truth
frames than the other methods.

compared to other methods.
Experimental Setup. We evaluate the temporal view

synthesis methods for frame rate upsampling on both
datasets, by assuming that (fn−2, fn) are available while
predicting fn+1. During testing, for a video sequence of
12 frames, taking into account the need for past frames (in
our model) or multiple views (in other models) and the fu-
ture frames needed for evaluating temporal consistency, we
evaluate the prediction of (f6, f8, f10).

While training our model and ablations on IISc-VEED,
we randomly crop out a 256 × 256 patch and train on
patches. For training on SceneNet RGB-D dataset, we use
the full frame, which is of resolution 320× 240. We set the
loss weights as λ1 = 1, λ2 = 1, λ3 = 0.001 and train for
50 epochs. Additionally, at test time, we infill the frames
iteratively with P = 3, to allow for infilling correction.

5.2. Benchmarks for Comparison

We compare our method with two sets of approaches for
temporal view synthesis. The first set consists of novel view
synthesis methods, such as Synsin [42], Stereo Magnifi-
cation (StereoMag) [47] and 3D Photography (3DP) [36],
which can be directly applied for temporal view synthe-
sis given the past frame(s) and the relative camera pose
and depth. While Synsin and 3DP use a single past frame
(fn) and ground truth depth (dn), StereoMag uses two
past frames (fn−2 and fn). While pre-trained models for
all three methods were available, we also fine tuned them
on the respective datasets if training code is available and
present the best results among them.

Since disocclusions in warped frames can be treated as
missing regions, we compare by applying image and video
inpainting algorithms such as Recurrent Feature Reasoning
(RFR) [25], EdgeConnect (EC) [31], DIBR based inpaint-
ing Cho et al. [11] and a deep video inpainting (VINet) [23]
model for temporal view synthesis. We modify VINet to use
only past frames and do not provide any future frames. We
also compare with two simple baselines, one which simply
copies the previous frame and RVS warping [16, 5]. We do
not include comparisons with video prediction algorithms

since they do not use the camera motion and depth and their
performance is much poorer.

5.3. Performance Measures

We evaluate the temporally synthesized frames using
mean squared error (MSE) and the structural similarity
(SSIM) [41] index. Since the disoccluded regions account
for a very small fraction of the entire frame, we also com-
pute MSE and SSIM in these disoccluded regions only
as Disoccluded-MSE (D-MSE) and Disoccluded-SSIM (D-
SSIM), respectively. Since ground truth frames appear al-
ternately during frame rate upsampling, the predictions in
the disoccluded regions surrounding foreground objects can
lead to flickering distortions.

To measure the temporal consistency of infilling, as
shown in Figure 5, we first determine a sequence of pixels
in successive frames at a given displacement from a location
in the foreground object such that all these pixels are in the
disoccluded regions in the respective frames. We then mea-
sure the variance of the error along this sequence as a mea-
sure of temporal consistency (TC). We compute this vari-
ance for several choices of the displacements and locations
in the foreground object and average them.

5.4. Performance Comparison and Analysis

Table 1 shows the performance of various models with
respect to the different QA measures. We see from the table
that our model achieves superior performance when com-
pared to inpainting and view synthesis methods, which may
be attributed to the effective use of camera and depth. Fig-
ure 4 shows the predictions by various state of the art mod-
els and our proposed model on test scenes from both IISc-
VEED and SceneNet dataset. Clearly, the quality of the in-
filled region with our algorithm is more accurate compared
to the other works considered. Since the actual video frame
will appear subsequently, we do not aim to hallucinate new
objects that will appear in the disoccluded regions. We also
note that errors in the smooth regions are more perceivable
than the errors in the textured regions due to contrast mask-
ing [24].
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Figure 6. Texture and complex pattern reproduction by our model.

Network
Prediction TG Depth Iter IISc-VEED SceneNet RGB-D

D-MSE D-SSIM TC D-MSE D-SSIM TC

Intensity ✓ ✓ 612 0.6956 158 1068 0.5633 266

IV ✓ ✓ 464 0.7599 133 906 0.6137 241

IV ✓ ✓ 457 0.7721 129 1049 0.5906 286

IV ✓ ✓ 473 0.7621 133 943 0.6068 254

IV ✓ ✓ ✓ 442 0.7729 126 874 0.6230 240
Table 2. Ablations. IV: Infilling Vector, TG: Temporal Guidance,
Iter: Interative Infilling.

Nevertheless, we observe in Figure 6 that our model can
reproduce complex patterns and textures. We also show the
infilling vectors predicted by our model in Figure 6, which
we visualize similar to optical flow. We observe that the
infilling vectors generated by our model are locally smooth.
The smoothness of the infilling vectors allows a block of
locations to be directly copied thereby preserving textures
and patterns from the neighborhood.

Inference time - The disocclusion infilling methods on
average across scenes take between 2s to 5s per full HD
frame on a single NVIDIA RTX 2080 Ti GPU, while the
corresponding graphical rendering time in Blender is 150s.
Nevertheless, infilling algorithms need to be optimized fur-
ther, both in software and hardware, for real-time use cases.

5.5. Ablations

Infilling vector prediction vs. intensity prediction. We
compare our IVP approach to intensity prediction in the dis-
occluded regions, by using a U-Net based architecture that
predicts the infilled frame directly. For fair comparison, we
provide temporal information (fn, fw

n ) and warped depth
dwn+1 along with the warped frame fw

n+1 as input to the
network. From Table 2, we see that infilling vector based
models outperform the model that predicts the intensities
directly. Figure 7 shows that predicting the intensities di-
rectly leads to blurring artifacts where the network infills the
disoccluded regions with the average intensity values of the
boundary regions. However, our approach copies intensities
from known regions, thereby leading to sharper predictions.

Importance of different components of our model.
We evaluate the benefit of temporal guidance, depth and it-
erative infilling by disabling one of them at a time. From

Figure 7. Comparison of ablation models. The first row shows
warped frames, the second row shows predictions by different ab-
lation models and the third row shows predictions by our complete
model. See Section 5.5.

Table 2, we observe that temporal guidance is highly use-
ful on IISc-VEED, where disocclusions are more correlated
due to high frame rates. Since the SceneNet dataset has
lower frame rate videos, we realize the importance of using
ground truth depth. Nevertheless, on both datasets, using
both the temporal prior and depth provides the best perfor-
mance. We also observe improvement with iterative infill-
ing which can remove and correct any errors that might have
occurred in the initial iterations of infilling.

In Figure 7, we observe that without temporal guidance,
the model can find it difficult to read from the correct back-
ground object and end up copying from an incorrect object.
We show an example where the camera trajectory changes
and the lack of use of depth can lead to poorer performance.
Finally, we also observe that iterative infilling can correct
erroneous infilling in previous iterations.

6. Conclusion

We introduced a learning based infilling vector predic-
tion model for revealing disocclusions in temporal view
synthesis. We showed how guiding the infilling vector pre-
diction using a temporal prior and depth can better exploit
the structure of the problem. We introduced a temporal con-
sistency measure to show that our predictions are tempo-
rally consistent. Since we observe that warping followed
by infilling typically consumes much less time compared to
graphically rendering video frames, temporal view synthe-
sis appears to be a promising approach to increase frame
rates in low compute VR devices.
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