
Spatiotemporal Initialization for 3D CNNs with Generated Motion Patterns

Hirokatsu Kataoka, Kensho Hara, Ryusuke Hayashi
National Institute of Advanced Industrial Science and Technology (AIST)

{hirokatsu.kataoka, kensho.hara, r-hayashi}@aist.go.jp

Eisuke Yamagata, Nakamasa Inoue
Tokyo Institute of Technology

eisukeyamagata@gmail.com, inoue@c.titech.ac.jp

Abstract

The paper proposes a framework of Formula-Driven Su-
pervised Learning (FDSL) for spatiotemporal initialization.
Our FDSL approach enables to automatically and simul-
taneously generate motion patterns and their video labels
with a simple formula which is based on Perlin noise. We
designed a dataset of generated motion patterns adequate
for the 3D CNNs to learn a better basis set of natural videos.
The constructed Video Perlin Noise (VPN) dataset can be
applied to initialize a model before pre-training with large-
scale video datasets such as Kinetics-400/700, to enhance
target task performance. Our spatiotemporal initialization
with VPN dataset (VPN initialization) outperforms the pre-
vious initialization method with the inflated 3D ConvNet
(I3D) using 2D ImageNet dataset. Our proposed method
increased the top-1 video-level accuracy of Kinetics-400
pre-trained model on {Kinetics-400, UCF-101, HMDB-51,
ActivityNet} datasets. Especially, the proposed method in-
creased the performance rate of Kinetics-400 pre-trained
model by 10.3 pt on ActivityNet. We also report that the
relative performance improvements from the baseline are
greater in 3D CNNs rather than other models. Our VPN
initialization mainly helps to enhance the performance in
spatiotemporal 3D kernels. The datasets, codes and pre-
trained models used in this study will be publicly available1.

1. Introduction

In recent years, although the use of deep neural networks
has become the mainstream of video recognition research,
there are two major different options available for network
architecture, namely, 2D and 3D CNNs, which are the meth-
ods for processing either only a space (x, y) volume or

1https://hirokatsukataoka16.github.io/
Spatiotemporal-Initialization-for-3DCNNs/

both a space and temporal (t) volume with a convolutional
kernel. Initially, Two-stream ConvNets [30] were the reli-
able method and 2D CNNs with optical flows surpassed the
methods with spatiotemporal 3D CNNs (e.g., [15, 32]).

One of the main reasons why the early 3D CNNs were
not able to perform better than 2D CNNs is that 3D
CNNs have more parameters to be optimized and proper
pre-training using a large-scale video dataset is critical to
achieve meaningful learning. Indeed, even 2D CNNs, such
as two-stream ConvNets were pre-trained with ImageNet
dataset [7] followed by the transfer learning for video recog-
nition. In the context of network initialization in spatiotem-
poral 3D CNNs, Inflated 3D ConvNet (I3D) has been pro-
posed to improve the video recognition performance [5].
I3D employs network initialization with the parameters of
2D CNNs pre-trained using ImageNet; the parameters of
2D kernels are iteratively copied in temporal order for ini-
tializing 3D kernels. Thus a spatiotemporal initialization
dedicated to 3D CNNs has not been considered thoroughly
yet.

We also consider that designing a pre-training dataset
that make the 3D CNNs acquire a feature representation
relevant for motion perception in a biological brain would
lead to better performance in video recognition tasks. It is
known that visual images on the retina are encoded as elec-
trophysiological activities of neurons and projected first to
area V1, located in the posterior part of the brain [14]. Then
visual information is hierarchically processed along the dor-
sal visual pathway including areas MT and MST for visual
motion perception and action recognition [10, 34]. The neu-
rons related to motion processing have receptive-field prop-
erties, such as orientation selectivity for stripes/bars or di-
rection selectivity for moving visual stimuli, which can be
characterized as localized oriented bandpass filters, com-
parable with the basis functions of Gabor wavelet trans-
forms [1, 2]. Since these receptive-field properties are ac-
counted for as being the results of sparse coding in response

98761279

https://hirokatsukataoka16.github.io/Spatiotemporal-Initialization-for-3DCNNs/
https://hirokatsukataoka16.github.io/Spatiotemporal-Initialization-for-3DCNNs/


3D CNN

VPN initialized
3D CNN

Conv 1 after 
VPN initialization

Conv 1 after 
Kinetics pre-training

Perlin 
Noise
Label

Video
Label

Video Perlin 
Noise (VPN)

Kinetics-400/700

(O
ur

s)
 V

P
N

in
it

ia
liz

at
io

n
K

in
et

ic
s

pr
e-

tr
ai

ni
ng

VPN initialized &
Kinetics pre-trained

3D CNN

Conv 1 after Fine-tuning
Video
Label

{UCF, HMDB, 
ActivityNet}

Fi
ne

-t
un

in
g

(a) The flow of the proposed network training procedure. Video
Perlin Noise(VPN) dataset consists of dynamic random textures de-
termined only by frequencies in space and time dimensions. The
dataset predispose a CNN to classify motion categories defined by
the frequency characteristics of the noises (VPN initialization). The
feature representation through the VPN initialization and Kinetics
pre-training shows a more well-organized structure and clearer mod-
ulation in spatiotemporal dimensions. In fact, the video representa-
tion with VPN→Kinetics-400 is changed from those with the sim-
ple Kinetics-400 pre-training and acquires direction selectivity (see
also Figure 5 and supplementary video).

25 50 75 100 125 150
Layer (#)

54

56

58

60

62

64

66

To
p-

1 
Ac

cu
ra

cy
 (%

)

(2+1)D ResNet: Scratch
(2+1)D ResNet: VPN init.
3D ResNet: Scratch
3D ResNet: VPN init.

(b) 3D and (2+1)D CNNs performances on Kinetics-400 recogni-
tion as function of #layer on Kinetics-400. The VPN initialization
relatively enhances the performance of 3D ResNets more compared
with those of (2+1)D ResNets. The accuracy gap is up to +4.5 pt.

Figure 1. The effects of VPN initialization.

to natural images [25], it is reasonable to think that the
motion patterns made of naturalistic textures and temporal
dynamics enable efficient initialization/pre-training for 3D
CNNs.

One more important direction in computer vision must
be Formula-Driven Supervised Learning (FDSL). The
FDSL framework is highly expected to replace self-
supervised learning since this does not require any natural
images taken by a sensor. Although the related work [16, 3]
have treated how to train visual representations, we believe
that the FDSL framework must be applied in video recog-
nition. Especially, by considering the work [16], the dataset
pre-trained by Perlin noise can be extended into a video

Categories on VPN dataset

x-dim category division

y-dim
 cate

gory division

Figure 2. All categories in VPN dataset. The x and y coordinates
correspond to the number of spatial divisions in (W,H).

dataset in perspective of its original usage [27, 28]. More-
over, as mentioned above, the rendering engine with Perlin
noise allows us to generate similar motion patterns in terms
of the mechanism of human brain, namely orientation se-
lectivity and direction selectivity for moving visual stimuli.

In this paper, we use Perlin noise [27, 28] to generate
frequency-defined dynamically changing textures to con-
duct training for initializing 3D CNNs. The advantages of
using Perlin noise are that 1) the calculation cost for gen-
erating Perlin noise is low and the method is widely used
in the computer graphics community; and 2) we can ma-
nipulate the spatiotemporal frequency of the Perlin noise to
focus 3D CNNs on learning useful frequency characteris-
tics such as orientation selectivity and direction selectivity.
Here, we define the category of each motion pattern in the
Video Perlin Noise (VPN) dataset based on its frequency in
the (x, y, t) dimensions and conduct pretext training of the
3D CNNs to classify the defined categories to learn elemen-
tal features useful for motion processing in general2.

The paper contributes to initializing spatiotemporal 3D
CNNs by using the proposed synthetic movies (see also
Figure 1(a)). Our network initialization method with the
VPN dataset (see Figure 2) successfully improves the video-
level classification accuracy by comparing to I3D initial-
ization. Our method is also effective for various repre-
sentative models with R(2+1)D [33] and 3D-ResNet [11]
(see Figure 1(b)). According to our experimental results,
the proposed method increases the top-1 video-level accu-
racy in the Kinetics-400 pre-training and in fine-tuning on
{Kinetics-400 [18], UCF-101 [31], HMDB-51 [20], Activi-
tyNet [13]} datasets (see Table 5). Especially in fine-tuning
on ActivityNet, the accuracy is improved +10.3 pt by our
method. The observed top-1 accuracies are all better than
the performance of combined 3D-ResNet-50 and I3D [5]3.

2In the paper, we refer to the process as ‘VPN initialization’.
3For a fair comparison, we have implemented ImageNet inflation on the

3D ResNet architecture since the original I3D was trained on InceptionV1
with many GPUs.

98771280



2. Related work

Spatiotemporal models. In the early approaches in video
recognition, sparse [21, 23] and dense [35, 36] keypoint de-
tection was used for spatiotemporal feature representations.
After the rise of CNNs, video recognition studies had fol-
lowed roughly two approaches: 2D (e.g., [30, 37]) and 3D
CNNs (e.g., [5, 11, 32]). Then, recent video recognition
technologies have shifted toward 3D CNNs. Specifically,
3D CNNs pre-trained with the Kinetics datasets [6, 18] al-
low successful transfer learning for many video recogni-
tion tasks. Furthermore, a method that initialize network
parameters before pre-traing was proposed to improve the
recognition performance. However, the previous method,
I3D [5], merely used the parameters of 2D CNN trained
with 2D images for the network initialization. Therefore,
in order to exploit the advantages of using 3D kernels, we
consider that a initialization method dedicated to learn a
spatiotemporal representation should be applied before pre-
training 3D CNNs on a large-scale video dataset.

Training with generated patterns. Recently, an interest-
ing approach, FDSL was proposed [16] as an alternative
framework to self-supervised learning. The paper discussed
how to pre-train a 2D CNN without any natural images in
order to prevent dataset-related problems such as offensive
labels, privacy preservation, and annotation labor. The au-
thors concluded that fractal geometry images [4, 22] are
useful for pre-training a 2D CNN model compared to Perlin
noises [27, 28] and Bezier curves [8].

Here, we make use of the idea that Perlin noise [27, 28]
gives a better initial representation through pretext task
training with spatiotemporal 3D CNNs. The proposed
method enables us to easily generate various controllable
motion patterns and their labels/categories for training. In
what follows, we discuss how to construct the VPN dataset
in terms of effective pretext task training for 3D CNNs to
acquire adequate spatiotemporal frequency. Moreover, we
compare our proposed method with video-extended Frac-
talDB in the experimental section (see Table 10).

3. Video Perlin Noise (VPN) dataset

3.1. Overview

The proposed dataset is inspired by the knowledge of
FDSL. Especially, we considered that the Perlin noise must
be applied to construct video dataset as the original usage
of animation generation. The proper initialization using a
synthetic video dataset designed to effectively learn a visual
representation must be useful for spatiotemporal 3D CNNs
to improve the performance of video recognition.

Here, we use Perlin noise [27, 28] in order to generate
motion patterns with minimal orientations and directions

but various spatiotemporal frequencies based on a simple al-
gorithm. Perlin noise is capable of generating natural mov-
ing textures based on the frequency only in the x, y, and t
dimensions that are complex enough to give a proper initial
representation for a network to further learn the target video
recognition tasks.

In the network initialization, we introduce pretext task
training to classify the categories of VPN dataset shown in
Figure 2. Hereafter, we conduct Kinetics pre-training after
the VPN initialization (VPN→Kinetics-400/700 (K4/K7))
for evaluation. Regarding the procedure see also Section 4
and Table 1 for more details.

3.2. Dataset construction with Perlin noise

Perlin noise. Perlin noise [27, 28] is random textured
motion pattern that can be automatically generated from a
set of parameters in the spatial (x, y) and temporal (t) di-
mensions through the following three steps. 1) We define
a 3D grid of W × H × D in terms of (x, y, t) dimen-
sions. The 3D grid is initialized by random gradient vec-
tors vp,q,r at each grid point, i.e., for p = 0, 1, 2, · · · ,W ,
q = 0, 1, 2, · · · , H , and r = 0, 1, 2, · · · , D. 2) Motion
patterns are generated as gradients in the 3D grid. For each
pixel, this step computes the dot product of the gradient vec-
tors at the eight corners of the cube that the pixel belongs
to and the distance vectors between the pixel and the corre-
sponding corners. 3) Finally, the luminance value of each
pixel is determined through linear interpolation between the
eight values computed in the previous step.

How to divide a spatiotemporal category. The param-
eters in the Perlin noise constitute f⃗ = [W,H,D] and cor-
respond to the frequencies of the motion patterns in the x,
y, and t dimensions of the video clips. We assign one of 20
parameter values to each coordinate of (W,H) which cor-
respond to the spatial (x, y) divisions in Figure 2: {1, 2, 3,
4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120,
240}. The parameter (D) which corresponds to temporal
dimension t is set to either {4, 8, 16}. The temporal param-
eter indicates the loop speed; D = 16 indicates 16 frames
per motion loop. The parameter triplet of the video size is
(240, 240, 240) in terms of (x, y, t). This corresponds to
240 temporal frames of 240×240-pixel images. We explore
the settings of motion categories defined by these spatial
and temporal parameters in Section 5.1 (ii).

In order to prevent overfitting to the Perlin noise pretext
classification task and to increase the number of instances
per category for training, we add together several randomly
generated frequency noises of different frequencies to form
a single video instance v,

v =

n∑
k=1

akGenerator(f⃗k), (1)

where Generator(f⃗) is the function that generates the Per-

98781281



Table 1. Training procedures in the proposed and baseline meth-
ods. The dataset (task) associations are as follows: ImageNet
(image classification), VPN (video classification in automatically
generated videos), Kinetics-400 (video classification), {UCF-101,
HMDB-51, ActivityNet} (video classification).

K4 I3D→K4 VPN→K4
Initialization – ImageNet VPN
Pre-training Kinetics-400
Fine-tuning {UCF-101, HMDB-51, ActivityNet}

lin noise based on frequencies f⃗ and ak is the amplitude of
noise nk = Generator(f⃗k). Here, f⃗1 indicates the param-
eters for the primal Perlin noise and the other terms (f⃗2, f⃗3
. . . ) for the randomly generated frequency noises. These
frequency noises are randomly generated by assigning pa-
rameter values of either {1, 2, 4, 8, 16} in the (x, y, t) di-
mensions and are overlapped with the primal Perlin noise.
Adding the random frequency noises also serves as video
instance augmentation. We set the amplitude parameter
(ak) as either {0.01, 0.02, 0.05, 0.1, 0.2}. Moreover, the
number of overlapping random frequencies is set as 2 (i.e.,
we use f⃗2 and f⃗3 for the random frequency noises). We
evaluate the effectiveness of adding the randomly generated
frequency noises in Section 5.1 (iii).

The category of video v is defined by the parameters
[W,H,D] of f1 in Eq. (2). To let the primal Perlin noise
determine the category of each video instance and to scale
the pixel values as ordinary grayscale images, ak are con-
strained as follows:

n∑
k=1

ak = 1, (0 < ak < a1, (k = 2, 3, · · · , n)) (2)

4. Training settings
Training procedures. The datasets used in the exper-

imental section can be roughly divided into pretext task
training for network initialization, pre-training, and fine-
tuning. As described in previous reports [11, 17], we em-
ploy Kinetics-400 (K4) as a main pre-training dataset. We
only use Kinetics-700 (K7) as pre-training dataset in the
final performance comparison part (see Section 5.3). We
use UCF-101, HMDB-51, and ActivityNet as fine-tuning
datasets for video recognition according to the standard
evaluation method. We summarize the procedure of the
proposed method (VPN→K4) and baseline methods (K4,
I3D→K4) in Table 1. However, in consideration of com-
putational resources, we first explored optimal dataset con-
struction without Kinetics-400 pre-training, i.e. the pro-
cedure consists of VPN→{UCF-101, HMDB-51, Activi-
tyNet} in Section 5.1.

Model architecture. In exploratory experiments for
dataset configuration, we mainly use 3D-ResNet-50 since
its architecture is the basic model in video recognition [11].
For a fair comparison between our VPN initialization and

Table 2. Effectiveness of VPN initialization.
UCF-101 HMDB-51 ActivityNet

Scratch 33.9 16.9 20.3
VPN 46.3 19.8 30.7

the conventional I3D, we implement the ImageNet inflation
in the 3D-ResNet-50 architecture. We additionally employ
and compare other 3D ResNet and (2+1)D ResNet archi-
tectures in Section 5.2 (iv). Finally, we further investigate
larger video inputs such as 3D-ResNet-50 with 64 temporal
frames and 224×224 pixels in Section 5.3.

Implementation details. An input image sequence con-
sists of 112 pixels × 112 pixels × 3 channels × 16 frames
obtained by cropping an original video sample. The 16-
frame video clip is cropped from a random time position
in the video. We apply ×10 data augmentation, i.e. images
generated by adopting four-corner/center cropping and their
horizontal flipping. In the training phase, we use stochas-
tic gradient descent (SGD) and cross-entropy loss as an op-
timizer and loss function, respectively. The weight decay
and momentum are set to 0.001 and 0.9, respectively. The
learning rate starts at 0.3 and is then updated if the valida-
tion loss is saturated for 10 epochs in a row. The batch size
for SGD is fixed as 128.

5. Evaluation

We evaluate the optimum settings of the categories in the
VPN dataset. In Section 5.1, we first explore several con-
figurations of VPN by changing the categories included for
pretext task in a procedure of VPN→{UCF-101, HMDB-
51, ActivityNet}. In Section 5.2, we report experiments
conducted for initializing spatiotemporal 3D CNNs for fur-
ther improvement of video recognition performance in a
procedure of (VPN→K4→{UCF-101, HMDB-51, Activi-
tyNet}).

5.1. Exploration of VPN configuration

We carried out a parameter exploration on the VPN. We
conduct (i) comparisons against scratch training (Table 2),
(ii) spatial and temporal #category (Figure 3 and Table 3),
(iii) with and without randomly generated frequency noise
(Table 4), and (iv) freezing layers.
(i) Comparison against scratch training. We confirm the
effectiveness of the VPN initialization (400 categories, 200
instances per category), compared with the training from
scratch in Table 2. The results clearly show how the perfor-
mances increase with VPN initialization.
(ii) Spatial and temporal #category. We illustrate the
relationship between several variations of the dataset with
different spatial categories/instances and their performance
rates in Figure 3. We investigated spatial divisions (W,H)
up to 400 categories with {0, 16, 32, 64, 128, 256, 400}

98791282



(a) #Category (b) #Instance
Figure 3. Training accuracy as a function of the number of cate-
gories or instances on UCF-101, HMDB-51, and ActivityNet.

Table 3. The effect of temporal category settings.
UCF-101 HMDB-51 ActivityNet

Slow 44.1 20.7 32.2
Middle 49.9 21.5 33.0
Fast 43.5 19.4 27.6
Full 46.5 20.2 29.3

Table 4. With or without randomly generated frequency noise.
UCF-101 HMDB-51 ActivityNet

w/o frequency 49.9 21.5 33.0
w/ frequency 49.9 23.0 33.9

with 200 instances per category. Where 0 category indi-
cates a training from scratch. Because of the construction
method, we set #category up to 400. #category is deter-
mined from the 20 values {1, 2, ..., 120, 240} of spatial
division in each of the x and y dimensions described in Sec-
tion 3.2. We also examine the effect of varying #instances
per category among {0, 16, 32, 64, 128, 256, 512} with
the fixed 256 categories. Although there is a tendency of
performance improvements as #category increase, 256 cat-
egories condition performs best. On the other hand, bigger
#instances performs better than smaller #instances.

Next, we examine the effect of employing different tem-
poral categories to be learned or not on the performance
rate. Here, we divide the dataset into the temporal cat-
egories of {fast, middle, slow} which correspond to the
values of {4, 8, 16} in the temporal dimension shown in
Section 3.2. Table 3 shows the comparisons between three
values + the combined temporal category variations (Full).
We confirm that the involvement of Full temporal frequency
variations gives no significant improvement even though
#category is three times larger than in the baseline method
(Middle).

Based on our experimental results, we used mainly a
dataset of 256 categories, 512 instances per category, and
a temporal parameter value of D = 8 in the initialization
phase for further experiment in order to save computational
time. Thus, we only change the spatial parameters (W,H)
and keep temporal parameter D fixed hereafter.
(iii) With and without randomly generated frequency
noise. Training on the pretext task classifying the category
of Perlin noise may cause overfitting that is not valuable for

more general video recognition task. Therefore, we overlap
randomly generated frequency noises onto the primal Perlin
noises in the basic VPN dataset as described in Section 3.2.
Table 4 shows top-1 video-level accuracies with and with-
out randomly generated frequency noise. The results clearly
show the effectiveness of adding randomly generated fre-
quency noises. In the case of Perlin noise without randomly
generated frequency noise, we don’t have a sufficient num-
ber of instance per category. Adding the randomly gener-
ated frequency noises allows us to give diverse instances to
highly improve the fine-tuning rate. The performance rates
in top-1 video-level accuracy are increased by {+1.5, +0.9}
on the datasets {HMDB-51, ActivityNet}.
(iv) Freezing layers. To check the feature representa-
tion through the VPN initialization, we freeze parameters
at each convolutional layer. The video-level accuracy of
the full fine-tuning and freezing layer 1–4 are respectively
{49.9, 46.1, 47.2, 47.3, 47.0} on UCF-101, {23.0, 22.0,
21.8, 21.9, 21.9} on HMDB-51, and {33.9, 33.6, 33.7, 33.1,
32.1} on ActivityNet. The scores show that the trained pa-
rameters serve as a good network initialization and the ear-
lier layers tend to obtain good representations for general
video recognition tasks, although full fine-tuning tends to
give the best score.
Summary of exploration. We showed 1) Initialization of
spatiotemporal 3D CNNs with the VPN dataset is much bet-
ter than training from scratch (see Table 2). 2) Initialization
using wider varieties of spatial frequency categories than
those of temporal frequency are more critical, which is con-
sistent with the properties of human motion perception. We
also found that 3) we can improve the performance rates
by adding randomly generated frequency patterns to Perlin
noise. 4) Earlier convolutional layers tend to acquire good
feature representations by VPN initialization.
Comparisons to self-supervised video representation.
The setting of this exploration study is similar to self-
supervised learning in videos. Essentially, we initialize 3D
CNNs without any natural videos. Though we don’t in-
clude self-supervised learning into our method, the VPN
initialization and additional training recorded the accu-
racy of 50.4 on UCF-101 (VPN→UCF-101). In Compar-
ison between the 3D-ResNet-based methods from [19], our
method is equivalent to 3D Auto-Encoder + future predic-
tion (50.1) [40] and 3D inpainting (50.9) [26].

5.2. Network initialization + K4 pre-training

In the context of network initialization, I3D achieved
great success with ImageNet inflation for improving pre-
training on the Kinetics datasets. In order to confirm that
a spatiotemporal initialization of 3D CNNs surpasses a 2D
initialization with ImageNet pre-trained model, we compare
the results of network initialization with VPN→Kinetics-
400 (K4)→{UCF-101, HMDB-51, ActivityNet} and those

98801283



���	���������
� 
�	���������
���	���������

Figure 4. Validation accuracy transition.

of I3D→K4→{UCF-101, HMDB-51, ActivityNet}.
In this section, we show the experimental results with

(i) accuracy transition (Figure 4), (ii) performance compari-
son between different network initializations (Table 5), (iii)
high- and low-frequency VPN datasets (Table 6), and (iv)
other architectures (Figure 1(b)).
(i) Accuracy transition. Figure 4 illustrates the accuracy
transitions of the Kinetics-400 dataset training from scratch
and training with ImageNet inflation and with our VPN ini-
tialization. Our VPN→K4 improves the final accuracy.
(ii) Performance comparison between different network
initializations. We investigate the spatiotemporal initializa-
tion effects of 3D CNNs on video recognition performance.
Table 5 lists the averaged top-1 accuracies in three trials4 on
Kinetics-400 (K4), UCF-101, HMDB-51, and ActivityNet
(ANet). We conducted fine-tuning based on the Kinetics-
400 pre-trained model on UCF-101, HMDB-51, and Activ-
ityNet. The results in the table indicate that I3D and VPN
initialized 3D-ResNet-50 improves the video-level accura-
cies compared with the scratch condition. Our method in-
creases the scores by {+0.7, +0.6, +0.3, +1.2} relative to
I3D→K4 and {+0.9, +4.8, +6.2, +10.3} relative to K4 on
{Kinetics-400, UCF-101, HMDB-51, ActivityNet}.
(iii) High- and low-frequency (freq) datasets. Accord-
ing to the report [38], an accurate and robust CNN in im-
age recognition tends to rely on low-spatial frequency fea-
tures [38]. To test the frequency-dependency of our ini-
tialization method, we construct two subsets, high-freq and
low-freq, from the VPN dataset. For the low- or high-freq
dataset, we select 12 lowest or highest parameter values
from the 20 spatial divisions, respectively. We adjust the
#category for the initialization to 144, at both high- and low-
freq settings. Table 6 compares the results of the high- and
low-freq VPN datasets used in network initialization. The
scores with the low-freq VPN dataset (64.9@K4) are higher
than those with the high-freq VPN dataset (64.0@K4) and
the full VPN dataset (64.4@K4 using 256 categories rather

4The performance rates are the most important point in the paper, there-
fore, we calculated and showed averaged scores and variants in Table 5

Table 5. Comparison between Kinetics-400 (K4), I3D→K4, and
VPN→K4 pre-trained models. ANet denotes ActivityNet dataset.

K4 UCF-101 HMDB-51 ANet
K4 63.4±.11 85.1±.20 55.6±.26 62.3±.23
I3D 63.6±.15 89.3±.10 61.5±.65 71.4±.10
VPN 64.3±.05 89.9±.10 61.8±.20 72.6±.17

Table 6. High- and low-freq VPN datasets. We carry out classi-
fication of Kinetics-400 (K4) as well as fine-tuning classification
on {UCF-101, HMDB-51, ActivityNet (ANet)} with the Kinetics-
400 pre-trained model.

K4 UCF-101 HMDB-51 ANet
High-freq 64.0 89.2 63.3 72.7
Low-freq 64.9 90.2 64.1 73.3
Full VPN 64.4 89.9 64.2 73.2

Table 7. Training from scratch (Scratch) and VPN initialization
(VPN init.) with SlowFast [9].

Scratch VPN init. ∆

SlowFast 67.7 67.2 -0.5
Slow-pathway 65.1 64.4 -0.7
Fast-pathway 48.9 49.2 +0.3

than 144 categories).
(iv) Performances in other architectures. The effects of
initialization using the proposed dataset with other network
architectures are shown in Figure 1(b). We use 3D-ResNet
(R3D)-{18, 34, 50, 101, 152} and (2+1)D-ResNet-{18, 34,
50, 101, 152}. The results summarized in the table indi-
cate that our initialization method with the VPN dataset is
more effective than scratch training for all tested architec-
tures. Though the 3D CNNs have more parameters than the
(2+1)D CNNs, the VPN initialization and Kinetics-400 pre-
training successfully improve the video recognition accura-
cies. The 3D-ResNet models are worse than the (2+1)D-
CNN models in the case of training from scratch. Our spa-
tiotemporal initialization allows us to improve the learning
in 3D CNNs, especially with deeper layers. As the fig-
ure shows, fine-tuning accuracies of VPN initialized 3D-
ResNet is better than those of (2+1)D conv.

Table 7 shows the comparisons between scratch training
and VPN initialization with state-of-art models, i.e. Slow-
Fast [9]. Two models in the table decreased the perfor-
mance rates from scratch training when introducing VPN
initialization. VPN initialized Fast-pathway in SlowFast,
on the other hand, improved the score from scratch training
by +0.3 pt. The architecture in Fast-pathway uses the 3D
kernel in the first convolutional layer with (7, 7, 5) which
is similar to the kernel in 3D ResNet and biological brain,
while SlowFast (Slow-pathway) employs the (x, y, t) ker-
nels with (3, 3, 1) in the first layer, thus practically not using
3D kernels. Therefore, it is considerable that the VPN ini-
tialization helps to train a relatively larger architecture with
many 3D kernels like 3D ResNet rather than SlowFast.

98811284



Table 8. Comparison in architectures, pre-training datasets, and fine-tuning datasets. R3D indicates 3D ResNet. In the left column, we
indicate the number of temporal frames (f) or spatial pixels (p) for an input if we utilize a larger video size, e.g., (64f, 224p), (128f, 256p).

Method Pre-training UCF-101 HMDB-51 ActivityNet K4 K7
InceptionV1 (64f, 224p) Kinetics-400 93.3 72.1 75.3 69.6 –
InceptionV1 (64f, 224p) VPN→Kinetics-400 93.9 74.0 76.3 70.4 –
InceptionV1 (64f, 224p) VPN→Kinetics-700 95.7 76.5 80.9 – 62.0
R3D-50 Kinetics-400 89.3 61.0 63.3 61.3 –
R3D-50 I3D→Kinetics-400 89.3 61.6 71.4 63.3 –
R3D-50 VPN→Kinetics-400 90.2 64.1 73.3 64.9 –
R3D-50 (64f, 224p) VPN→Kinetics-400 93.8 71.0 75.1 69.5 –
R3D-50 Kinetics-700 92.0 66.0 75.9 – 54.7
R3D-50 I3D→Kinetics-700 92.1 66.7 76.8 – 55.9
R3D-50 VPN→Kinetics-700 92.8 68.7 77.8 – 56.5
R3D-50 (64f, 224p) VPN→Kinetics-700 96.0 76.0 81.4 – 62.6
R3D-50 (128f, 256p) VPN→Kinetics-700 96.5 80.3 82.8 – 63.9

Table 9. Comparison between VPN and Video Fractal (VF) as a
pretext task training without K4 pre-training. The FractalDB pro-
posed in [16] was upgraded to capture at every 1,000 points for
video rendering.

UCF-101 HMDB-51 ANet
VF 45.0 19.6 27.9
VPN 49.9 23.0 33.9

Table 10. Comparison between VPN and Video Fractal (VF). The
FractalDB proposed in [16] was upgraded to capture at every 1,000
points for video rendering.

K4 UCF-101 HMDB-51 ANet
I3D→K4 63.3 89.3 61.6 71.4
VF→K4 63.4 88.8 63.6 72.4
VPN→K4 64.9 90.2 64.1 73.3

5.3. Results using larger video input and dataset

We summarize the results in our experiments and list ad-
ditional scores in Table 8. We show InceptionV1 and 3D-
ResNet-50 (R3D-50) on K4/K7 pre-training. Although we
cannot reproduce the results of InceptionV1 on I3D→K4
such as 95.6 (RGB input) on UCF-101 [5] due to the dif-
ferent computational resources, our VPN→K4 performed
better than K4 baseline. In 3D-ResNet-50, we further im-
plement a larger video input with 64 temporal frames and
224×224 pixels (64f, 224p), and K7 pre-training. We can
confirm the improvements with VPN initialization for the
larger video inputs with (64f, 224p) and (128f, 256p).

5.4. Additional experiments

Comparison of another FDSL method. We compare
our VPN dataset to another FDSL method (FractalDB-1k
dataset) in context of pretext task training with and without
K4 pre-training. In order to expand 2D FractalDB to the
dataset for 3D CNNs initialization, we upgraded the dataset
as a video rendering engine (Video Fractal (VF) dataset).
We record a checkpoint frame every 1,000 points rendered,
of a total of 100k points. Therefore, each video contains 100

frames in temporal order. Following the original FractalDB-
1k, we also set the number of categories/instances to 1k/1k,
and generate a total of 1 million videos for network initial-
ization. Tables 9 and 10 list the scores for using the VPN
and VF datasets. The recognition accuracy with VF initial-
ization is lower than VPN initialization and is comparable
to the performance rates with I3D initialization in Table 10.
Note that the VPN intialization achieved the rates with rel-
atively fewer videos (28,800 videos in 144 categories and
200 instances) against to 1M videos in the VF initialization.
Visualization of first convolutional layer. Figure 5 illus-
trates the weight of each convolutional kernel at the first
layer in 3D-ResNet-50 with various initialization and pre-
training conditions. Figures 5(a) and 5(b) are convolutional
filters initialized with high-freq and low-freq VPN datasets
respectively. These panels indicate that the acquired weight
pattern in the model trained with a low-spatial-freq VPN
is coarser than those in the model trained with a high-
spatial-freq VPN, as expected. In our experimental re-
sults, the low-freq VPN dataset performed well. More-
over, the three different initialization and pre-training com-
binations, Kinetics-400 (K4) (Figure 5(d)), I3D→K4 (Fig-
ure 5(e)), and VPN→K4 (Figure 5(f)) show different fea-
ture representations at the first convolutional layer. Though
I3D→K4 maintains ImageNet-like feature representations
(Figure 5(c)), our VPN→K4 inherits the K4 filters while
showing a more well-organized structure and clearer modu-
lation in both the space and time dimensions.

6. Conclusion and discussion
The paper proposes a network initialization method for

improving the video recognition performance of spatiotem-
poral 3D CNNs. Our proposed initialization method with
the Video Perlin Noise (VPN) dataset surpasses ImageNet
inflation with I3D in several aspects. We designed the
dataset containing motion patterns of various directions and
randomly generated frequencies. According to our exper-
imental results, our VPN dataset performs better when we

98821285



VPN (High-freq) VPN (Low-freq)

VPN→K4K4 ImageNet→K4

(a) VPN (High-freq)VPN (High-freq) VPN (Low-freq)

VPN→K4K4 ImageNet→K4

(b) VPN (Low-freq) (c) ImageNet

VPN (High-freq) VPN (Low-freq)

VPN→K4K4 ImageNet→K4(d) K4

VPN (High-freq) VPN (Low-freq)

VPN→K4K4 ImageNet→K4(e) I3D→K4

VPN (High-freq) VPN (Low-freq)

VPN→K4K4 ImageNet→K4 (f) VPN→K4

Figure 5. Visualization of the first convolutional layer on 3D-ResNet-50.

apply low-frequency categories rather than high-frequency
categories. Also, the performance rates with VPN initial-
ization tend to be better than the rate with I3D initializa-
tion. We verified that the VPN initialization is also effective
for a bigger video-clip input (e.g. 64/128 [frame], 224/256
[pixel]) and a larger pre-training datasets. Finally, the VPN
initialized 3D-ResNet-50 achieved a top-level performance
rate (96.5 on UCF-101, 80.3 on HMDB-51 in Table 8) with-
out additional modalities like optical flow images.

According to the experimental results (e.g. Figure 1(b)
and Table 7), the VPN initialization especially improve the
performance of spatiotemporal models which consist of 3D
kernels but not the other architectures including (2+1)D
CNN and SlowFast, whose convolution kernels are sepa-
rated in space and time dimensions. We can also visually
confirm that the VPN initialization let the 3D CNN learn
good spatiotemporal video representations for movie recog-
nition tasks (see Figure 5 and supplementary video).

Our method is intended as an complementary frame-
work to self-supervised learning (see ‘comparison with self-
supervised learning’ in Section 5.1). In our method, we
automatically generate videos and training labels (motion
categories) as pretext task training datasets for network ini-
tialization, while ordinary self-supervised learning methods
requires training datasets beforehand and need to define pre-
text task based on the datasets. It would be interesting to
combine a method generating pretext task datasets as our
approach with a self-supervised learning method to improve
the performance of the neural networks mainly consists of
3D kernels in the future.

The properties of neurons in area V1 and other areas
related to visual motion perception show selective activa-
tion in response to a certain orientation, direction or the
specific integration/combination of the spatiotemporal fre-
quency distribution [24, 29]. Thus, leveraging the initial
state of the network toward the same elementary properties
as observed in the human motion system would be benefi-
cial for acquiring a feature representation useful for further
complex video recognition. In the paper, we discovered the
following findings in terms of biological brain:
Freezing layers (see Section 5.1 (iv)). These results are
consistent with the findings of psychophysical experiments,
i.e. temporal frequency tuning for human motion perception

exhibits the same properties as band-pass filtering and the
temporal frequency channels involved are estimated to be
much fewer than the spatial frequency channels [39, 12].
Low- and high-freq (see Table 6). These results are con-
sistent with our expectation that Perlin noise is adequate for
3D CNNs to learn a similar feature representation as area
V1, which handles the initial stage of motion processing in
the cortex.
Visualization (see Figure 5). VPN→K4 illustrates an
well-organized structure and clearer modulation in spatio-
temporal dimensions, showing similar orientation and di-
rection selectivity as neurons in area V1.

Instance-wise, a single Perlin noise consists of motions
patterns in various speed with horizontal or vertical direc-
tion, which, in turn, helps to investigate the property of the
trained model in terms of spatiotemporal frequency in de-
tail. To prevent overfitting to the Perlin noise classifica-
tion task at the phase of learning initialization parameters,
we add multiple noises of different frequencies to the gen-
erated Perlin noise. By training 3D CNNs to classify the
category defined by the spatiotemporal frequency configu-
ration of Perlin noise, the networks are expected to acquire
a representation similar to the visual system of the human
brain. Although VPN initialization is shown to be effective
to initialize spatiotemporal 3D kernels, Perlin noise is lim-
ited in the variation of orientations (either horizontal or ver-
tical axes) and is not useful to learn more complex motion
features. We would like to explore an initialization method
using more complex textures such as those generated by Ga-
bor functions that describe better the property of the neurons
in V1 [1, 2] in the future work.

Acknowledgement
This paper is based on results obtained from a project,

JPNP20006, commissioned by the New Energy and Indus-
trial Technology Development Organization (NEDO). This
work was supported by JSPS KAKENHI Grant Number
JP19H01134, 20H04597, 19H04200, and JST Moonshot
RD JPMJMS2012. Computational resource of AI Bridg-
ing Cloud Infrastructure (ABCI) provided by National Insti-
tute of Advanced Industrial Science and Technology (AIST)
was used. We want to thank Seitaro Shinagawa and So
Uchida for their helpful comments in research discussions.

98831286



References
[1] E. H. Adelson and J. R. Bergen. Spatiotemporal energy mod-

els for the perception of motion. J Opt Soc Am A, 2(284-299),
1985.

[2] Watson A. B. and Ahumada A. J. Jr. Model of human visual-
motion sensing. J Opt Soc Am A, 2, 1985.

[3] Manel Baradad, Jonas Wulff, Tongzhou Wang, Phillip Isola,
and Antonio Torralba. Learning to see by looking at noise,
2021.

[4] M. F. Barnsley. Fractals Everywhere. Academic Press. New
York, 1988.

[5] A. Carreira and A. Zisserman. Quo Vadis, Action Recog-
nition? A New Model and the Kinetics Dataset. In IEEE
International Conference on Computer Vision and Pattern
Recognition (CVPR), pages 6299–6308, 2017.

[6] J. Carreira, E. Noland, C. Hillier, and A. Zisserman. A Short
Note on the Kinetics-700 Human Action Dataset. In arXiv
pre-print arXiv:1907.06987, 2019.

[7] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. ImageNet: A Large-Scale Hierarchical Image Database.
In IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pages 248–255, 2009.

[8] G. Farin. Curves and surfaces for computer aided geometric
design: A practical guide. Academic Press, 1993.

[9] C. Feichtenhofer, H. Fan, J. Malik, and K. He. SlowFast
Networks for Video Recognition. In International Confer-
ence on Computer Vision (ICCV), 2019.

[10] M. A. Goodale and A. D. Milner. Separate visual pathways
for perception and action. Trends Neurosci., 15(1), 1992.

[11] K. Hara, H. Kataoka, and Y. Satoh. Can Spatiotemporal 3D
CNNs Retrace the History of 2D CNNs and ImageNet? In
IEEE International Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 6546–6555, 2018.

[12] R. Hayashi, Y. Sugita, S. Nishida, and K. Kawano. How
motion signals are integrated across frequencies: Study on
motion perception and ocular following responses using
multiple-slit stimuli. Journal of Neurophysiology, 103(1),
2010.

[13] F. C. Heilbron, V. Escorcia, B. Ghanem, and J. C. Niebles.
ActivityNet: A Large-Scale Video Benchmark for Human
Activity Understanding. In IEEE International Conference
on Computer Vision and Pattern Recognition (CVPR), pages
961–970, 2015.

[14] D. H. Hubel and T. N. Wiesel. Receptive fields and func-
tional architecture of monkey striate cortex. J Physiol, 195,
1968.

[15] S. Ji, W. Xu, M. Yang, and K. Yu. 3D Convolutional Neural
Networks for Human Action Recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence (TPAMI),
35(1):221–231, 2013.

[16] H. Kataoka, K. Okayasu, A. Matsumoto, E. Yamagata, R.
Yamada, N. Inoue, A. Nakamura, and Y. Satoh. Pre-training
without Natural Images. In Asian Conference on Computer
Vision (ACCV), 2020.

[17] H. Kataoka, T. Wakamiya, K. Hara, and Y. Satoh. Would
Mega-scale Datasets Further Enhance Spatiotemporal 3D
CNNs? In arXiv pre-print:2004.04968, 2020.

[18] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S.
Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev, Su-
leyman M., and A. Zisserman. The Kinetics Human Action
Video Dataset. In arXiv pre-print arXiv:1705.06950, 2017.

[19] D. Kim, D. Cho, and I. S. Kweon. Self-supervised video
representation learning with space-time cubic puzzles. In
AAAI, 2019.

[20] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
HMDB: A large video database for human motion recogni-
tion. In IEEE International Conference on Computer Vision
(ICCV), pages 2556–2563, 2011.

[21] I. Laptev and T. Lindeberg. Space-time Interest Points. In
International Conference on Comuter Vision (ICCV), pages
432–439, 2003.

[22] B. Mandelbrot. The fractal geometry of nature. American
Journal of Physics, 51(3), 1983.

[23] M. Marszałek, I. Laptev, and C. Schmid. Actions in Context.
In IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2929–2936, 2009.

[24] Shinji Nishimoto and Jack L. Gallant. A three-dimensional
spatiotemporal receptive field model explains responses of
area mt neurons to naturalistic movies. Journal of Neuro-
science, 31(41), 2011.

[25] B. A. Olshausen and D. J. Field. Emergence of simple-cell
receptive field properties by learning a sparse code for natu-
ral images. Nature, 381, 1996.

[26] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A.
Efros. Context encoders: Feature learning by inpainting. In
IEEE International Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2016.

[27] K. Perlin. An image synthesizer. ACM SIGGRAPH Com-
puter Graphics, 19(3):287–296, 1985.

[28] K. Perlin. Improving noise. In Computer Graphics and In-
teractive Techniques, 2002.

[29] E. P. Simoncelli and D. J. Heeger. A model of neuronal re-
sponses in visual area mt. Vision Res, 38, 1998.

[30] K. Simonyan and A. Zisserman. Two-Stream Convolutional
Networks for Action Recognition in Videos. In Advances in
Neural Information Processing Systems (NIPS), pages 568–
576, 2014.

[31] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A Dataset
of 101 Human Action Classes From Videos in The Wild.
CRCV-TR-12-01, 2012.

[32] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.
Learning Spatiotemporal Features with 3D Convolutional
Networks. In IEEE International Conference on Comuter
Vision (ICCV), pages 4489–4497, 2015.

[33] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M.
Paluri. A Closer Look at Spatiotemporal Convolutions for
Action Recognition. In IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR), pages
6450–6459, 2018.

[34] L. G. Ungerleider and M. Mishkin. Two mechanisms of vi-
sion in primates. Psychologische Forschung, 31, 1982.

[35] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action
Recognition by Dense Trajectories. In IEEE International
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3169–3176, 2011.

98841287



[36] H. Wang and C. Schmid. Action Recognition with Improved
Trajectories. In International Conference on Comuter Vision
(ICCV), pages 3551–3558, 2013.

[37] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and
L. V. Gool. Temporal Segment Networks: Towards Good
Practices for Deep Action Recognition. In European Con-
ference on Computer Vision (ECCV), pages 20–36, 2016.

[38] Z. Wang, Y. Yang, A. Shrivastava, V. Rawal, and Z. Ding.
Towards Frequency-Based Explanatin for Robust CNN. In
arXiv pre-print:2005.03141, 2020.

[39] A. B. Watson and J. G. Robson. Discrimination at threshold:
Labelled detectors in human vision, Vision Research(21),
1981.

[40] Y. Zhao, B. Deng, C. Shen, Y. Liu, H. Lu, and X.-S. Hua.
Spatio-temporal autoencoder for video anomaly detection. In
Multimedia Conference, 2017.

98851288


	. Introduction
	. Related work
	. Video Perlin Noise (VPN) dataset
	. Overview
	. Dataset construction with Perlin noise

	. Training settings
	. Evaluation
	. Exploration of VPN configuration
	. Network initialization + K4 pre-training
	. Results using larger video input and dataset
	. Additional experiments

	. Conclusion and discussion

