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Abstract

This paper proposes a method for automatically recovering
data from chart images. In particular we focus on the task
of estimating line charts, as the most common chart type,
in a fully automatic way that handles line occlusions, as
well as lines of different styles, e.g. dashed or dotted. For
this, we first train a single semantic segmentation network
to predict probability maps for each different line styles. We
then construct a graph based on this output and formulate
the line tracing task as a minimum-cost-flow problem, opti-
mizing a cost function using linear programming. From the
traced lines, the axes, and text labels, we recover the numer-
ical values used to generate the chart. In experiments on six
datasets, containing both synthesized and crawled images,
we show significant improvements over prior work.

1. Introduction
Chart images are an abundant source of numerical data on
the web. These charts were typically created for data vi-
sualization, however the original input data may not be di-
rectly accessible. Automatically recovering this data allows
further processing and analysis, chart redesign, as well as
building large-scale systems to automatically reason and
provide insights based on this data [30, 39, 41, 42]. Chart
components form spatial and semantic relationships, which
need to be understood in order to interpret the data [30].
These relationships depend on the chart type. Chart com-
ponents themselves vary in appearance and location, or
can simply be absent. Reconstruction of the underlying
data is challenging due to differences in chart layout, oc-
clusion of chart components, and image compression arti-
facts [11, 44]. Many systems require clean images for value
extraction, such as the ReVision system, which is able to
parse different chart types and returns chart visualizations
of the same data in alternative styles [39]. Numerous practi-
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cal systems require manual input, allowing reliable data en-
try at the expense of being time consuming1. Seminal work
on full automatic chart analysis is FigureSeer, a question-
answering system for figures in academic papers [41]. It lo-
calizes figures and classifies them into different categories
using a ResNet-50. Line charts are further analyzed by ex-
tracting lines and associating each of them with the leg-
end data, which is required for the method to work. Lines
are then iteratively traced and removed using dynamic pro-
gramming. In this work we propose a method that (a) esti-
mates all lines simultaneously by optimizing a cost function
using linear programming, and (b) removes the requirement
of figure legends. As shown in Fig. 1, we estimate pixel-
wise probabilities for drawing styles and chart components
using a semantic segmentation network. Using these prob-
ability maps, we construct a graph by estimating the value
ranges of lines, and placing nodes at pixels of high fore-
ground probability. Numerical values are obtained by es-
timating axis ticks, if available, or the coordinates of text
labels, as estimated by text detection and analyzed by OCR.
We show that the proposed method advances the state of the
art in line chart extraction, automating the process to obtain
values from images.

In summary, the main contributions of this paper are as fol-
lows: (1) We propose the first framework to automatically
extract values from line chart images using a single segmen-
tation network. (2) We introduce a new line-tracing method
based on graph flow cost minimization. (3) We do not re-
quire figure legends or axis tick-marks, but use them for in-
creased precision when available. (4) Our method achieves
state-of-the-art accuracy on six datasets.

2. Prior work
In this section, we review related work on chart analysis and
its applications. More comprehensive surveys can be found
in [17, 31].

1e.g., DigitizeIt, graphreader.com, UN-SCAN-IT, WebPlotDigitizer
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Figure 1: Overview of our method. We estimate pixel-wise probabilities of different drawing styles using a segmentation network, build
a graph and apply line tracing using linear programming. In order to obtain precise coordinates and estimate the chart values, we read
the text labels using OCR and estimate the axes scales.

Source Solid Dash Dash-dot Dot Legend Tick

Figure 2: Semantic segmentation network. Our segmentation model for tracing line charts outputs six probability maps, four represent-
ing different line plotting styles, and two for legends and tick marks, respectively.

Chart classification and detection. For digitizing gen-
eral chart images crawled from the web, classification is es-
sential to remove non-chart images first, and select the value
extraction method depending on the chart type. Early work
took a rule-based approach to detect shapes such as lines
or ellipses [18, 19, 28]. Support vector machines have also
been applied, using patch-based image features [38, 39], lo-
cal binary pattern features [35] or line features [32] as in-
put. Deep networks have been shown to achieve high ac-
curacy, using a range of different architectures, such as a
simple three-layer CNN [12], an AlexNet-style deep be-
lief network [44], GoogLeNet [16, 21], VGG [9, 30],
ResNet [11, 41], MobileNet [10] and Xception [7]. These
networks achieve near perfect classification accuracy, how-
ever, there can be ambiguous cases, e.g. images contain-
ing multiple different chart types, or if a chart is embedded
within a larger different image. To handle such cases, chart
extraction has been formulated as an object detection task,
estimating the region of each chart [42].

Data extraction. Value extraction from line charts is
challenging, because lines can be thin, overlapping, and
plotted in different drawing styles. Early work used im-
age binarization and thinning [36] for single line extrac-
tion. Linear and non-linear regression based on extracted
data points from the chart region was used in [26]. For
the extraction of multiple solid lines, Lu et al. [32] pro-
posed a method based on primitive chain coding and a curve
construction algorithm. Radhakrishnan et al. [35] used a
multiple-line tracing method that handles dotted and dashed
line as well. In their method, the tracing direction was
determined based on color consistency and line smooth-
ness. FigureSeer [41] extracts main chart components us-

ing a Siamese network, followed by dynamic programming
for optimal path-finding based on both the likelihood of a
pixel to belong to a path and the path smoothness. To trace
multiple lines, the number of lines is first estimated from
the chart legend and each line is traced individually. Char-
tOCR [33] handles line charts by attaching a convolutional
embedding layer to the keypoint extraction branch, to obtain
an embedding where features for points on the same line are
close compared to points on different lines. Recently, Ma
et al. [34] applied keypoint detection to line charts using a
U-Net like segmentation network. Although these methods
based on keypoint extraction work well for simple cases,
the accuracy drops for more complex cases where lines are
partially occluded.

For data extraction from general chart images consisting of
2D components (e.g. rectangles or pie slices), early work
detected such elements using line or curve detection [18, 19,
25, 26, 28, 49]. ReVision [39] applied connected compo-
nents analysis (CCA) and RANSAC-based ellipse fitting to
extract bar and pie charts, respectively, and numerous works
have followed a similar approach [4, 5, 6, 10, 16, 21]. Liu
et al. proposed a method based on Faster R-CNN to detect
bar and pie chart components [30]. Similarly, the method
by Choi et al. [15] proposed using YOLO v2 object detec-
tors for chart components. Such detection approaches do
not generalize well to line charts. Recently, ChartOCR [33]
simplified the task of component detection by detecting
keypoints independent of the chart type by using a modified
CornerNet with an Hourglass Net backbone. Chart com-
ponents were detected using rules depending on the chart
type. These deep learning methods accurately detect uni-
formly colored chart components, as shown in [30, 15, 33].
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However, detecting components filled with dot or striped
patterns remains challenging.

We note that there are a number of practical systems for
extracting values from chart images based on user interac-
tion1. Line charts can be digitized by manually labeling
points and entering at least two values per axis. Value ex-
traction with these systems is reliable, but time consum-
ing [13].

Visual Question Answering (VQA). To answer binary
questions from images, Kahou et al. [24] released a syn-
thesized dataset consisting of chart images with annotation
and question-answer pairs. A VQA model was proposed to
extract image features and embed questions via an LSTM
and predict the answer using a Relation Network. Kafle et
al. [22] proposed a method for answering open-ended ques-
tions about bar charts by extracting ResNet features, embed-
ding questions with an LSTM. Two sub-networks composed
of a classification and an OCR sub-network were adapted
for answering generic and chart-specific questions. Other
recent work proposes extracting chart components using a
Mask-RCNN [14], or image features using a ResNet [40]
or Dense-Net [23]. Note that current VQA methods take
encoded visual features as input and do not require precise
chart value recovery.

3. Method
3.1. Chart classification

We first classify input images into six different classes, in-
cluding four chart types: vertical bar chart (v-bar), hori-
zontal bar chart (h-bar), pie chart and line chart. We use
two classes for other charts and other images, respectively,
which will not be analyzed further. Given the high accuracy
of deep learning classifiers, we use a NASNetMobile [50]
as the base network and train it with random weight initial-
ization without pre-training.

3.2. Component probability maps

We estimate probability maps of line chart compo-
nents [41]. This approach allows us to group areas and
lines of different styles, e.g. striped or dotted patterns, and
provides pixel-accurate estimation for further processing
in the following stages. A single segmentation model is
used for all chart types. We use a modified FastFCN [47]
model with an EfficientNetB3 [43] as backbone to estimate
probabilities of six labels: four different line styles (solid,
dashed, dash-dotted, dotted), as well as legend marks and
tick marks, shown in Fig. 2. An input image of shape
(H,W, 3) is first encoded by the backbone network, pro-
gressively reduced to a shape of (H/32,W/32, 1536). The
activation outputs at each resolution are fed into a joint

Sample point
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Line2

Line1

Occlusion slot Occlusion slot Occlusion slot 

Figure 3: Occlusion model schematic. At each line connecting
two sample points, we consider four possible combinations of oc-
clusion status of two connecting nodes (z, z′ = {0, 1}). The figure
represents the final estimate for the case of the blue line partially
occluding the green line. Circles represent the occlusion status,
where gray means occluded and white means visible (best viewed
in color).

pyramid upsampling (JPU) module with an output of shape
of (H/8,W/8, 256) as the standard structure of the Fast-
FCN. For more accurate segmentation, we introduce a sec-
ond JPU module with an output of shape (H/2,W/2, 64),
which we upsample using convolution layers to obtain a 32-
channel image of the original input size. We transform the
32 channels into the 6 target output channels using a convo-
lution and sigmoid activation layer.

3.3. Line Tracing Using Linear Programming

The line tracing problem is formulated as a network flow
problem, where each line corresponds to a path in a graph.
The graph is constructed by sampling pixels with high
line probability values as nodes, and connecting nodes ad-
jacent in x-direction by edges, as shown in Fig. 3 We
solve for pixel-to-line assignments using linear program-
ming (LP) [20]. In contrast to prior work in FigureSeer [41],
which uses dynamic programming to trace individual lines
sequentially, our method optimizes a cost function for all
lines simultaneously.

The input to the line tracing algorithm are the source im-
age I ∈ [0, 1]H×W×3 and the probability maps of the four
line styles S ∈ [0, 1]H×W×4. We average the pixel-wise re-
sponses of the four line probability maps into a single map
as S ∈ [0, 1]H×W . The x-coordinate range of lines is esti-
mated by summing S in the y-direction (vertical) for each
x-coordinate (horizontal) and binarizing the result by nor-
malization and thresholding.

We estimate the number of lines nline by binarizing S as Sbin
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and for each x position counting the number of connected
pixel clusters in its y-direction. This results in a vector con-
taining the estimated number of lines at each x position. To
account for segmentation errors due to grid lines or legends,
we take the number at the top 15 percentile as a robust es-
timate for the overall number of lines. If a chart contains a
legend, we obtain a second estimate for nline from the num-
ber of connected components of the legend probability map
after binarization. We take the maximum of both estimates
as more reliable estimate, as either method tends to under-
estimate the number of lines.

With estimates of the x-coordinate range and the number
of lines, we can formalize the line tracing task using lin-
ear programming (LP), analogous to the minimum cost flow
problem. We use a binary variable b ∈ {0, 1} to estimate
the connection of two points in the binarized segmentation
map Sbin. To reduce computation time, we subsample the
x-range use a skip value, d, in our case d = 3, at nsmpl

points x1+ kd, with k = 0, ..., nsmpl− 1. Starting from the
leftmost x-coordinate x1, we scan pixels vertically, select-
ing up to 2nline points for each xi by progressive farthest
point sampling. We minimize the following LP function
composed of the cost term c and binary variable b as fol-
lows:

nsmpl−1∑
i=1

∑
y∈Yi

y′∈Y ′
i

nline∑
l=1

∑
z,z′

∈{0,1}

c (xi, y, y
′, l) b (xi, y, y

′, l, z, z′) , (1)

where i is the sample point index. Yi and Y ′
i are the set

of y-coordinates at sample points xi and xi+1, respectively
(namely, Y ′

i = Yi+1). l is the line index. Variables z and z′

indicate whether or not the first point (xi, y) or second point
(xi+1, y

′), respectively, is occluded. The binary variable
b (xi, y, y

′, l, z, z′) indicates whether or not the first and the
second point are both on the l-th line.

Figure 3 shows a line tracing example, where a green line is
partially occluded by a blue line in the interval [xi+1, xi+2].
For each line connecting two sample points, we consider
four possible combinations: whether or not the first or the
second point is occluded or not (z, z′ ∈ {0, 1}). The figure
represents the correctly estimated z values after solving the
linear program defined in (1).

The cost term c of (1) is defined as follows:

c (xi, y, y
′, l) = λcolccol (·) + λstycsty (·)

+λfgcfg (·) + λsmcsm (·) + λocc, (2)

where ccol (·) is a color consistency term, csty (·) is a style
consistency term, cfg (·) is a foreground probability term,
and csm (·) is a smoothness term. Each term is multiplied
by a corresponding weight, along with an additional bias

weight λocc depending on occlusion flags z and z′. Note
that our cost function is similar to that of FigureSeer [41],
but with novel foreground and occlusion terms, to enable
simultaneous line fitting.

To calculate each cost term, we first estimate the centroids
of nline lines in 7D space [I, S]T, the direct sum of source
image I and 4D line style space S, where each centroid
corresponds to a different line. The centroid for the l-th
line is denoted as [I l, Sl]T. Cost terms in (2) are calculated
as

ccol(xi, y, y
′, l) =

(xi+1,y
′)∑

x∗,y∗=(xi,y)

wcol(x
∗, y∗, l)/∆ (3)

csty(xi, y, y
′, l) =

∑
wsty(x

∗, y∗, l)/∆ (4)

cfg(xi, y, y
′) =

∑
wfg(x

∗, y∗)/∆ (5)

csm(xi, y, y
′) = |h|/H , (6)

where h = y′ − y, ∆ = (h2 + d2)α with a constant α, H is
the image height, and (x∗, y∗) are linear interpolations be-
tween two sample points (x, y) and (xi+1, y

′), where each
y∗ is an integer.

Weights are calculated as follows:

wcol(x
∗, y∗, l) = ||I(x∗, y∗)− I l||1 (7)

wsty(x
∗, y∗, l) = ||S(x∗, y∗)− Sl||1 (8)

wfg(x
∗, y∗) = max(0, 1− ||S(x∗, y∗)||1), (9)

Note that we use bilinear interpolation for I(x∗, y∗) or
S(x∗, y∗) as x∗ and y∗ are floating point numbers.

To complete the LP formulation, equation 1 is minimized
subject to the following constraints: (1) The incoming and
outgoing degrees for each point and each line are equal. (2)
The incoming degree for each non-occluded point for each
line is at most 1. (3) The value of b during optimization
must be within the range [0, 1]. (4) The number of outgoing
degrees at the leftmost x-index is nline.

3.4. Value extraction

In the final step we extract values from line chart compo-
nents. We estimate values using correspondences between
pixel coordinates and the numbers obtained by optical char-
acter recognition (OCR).

OCR is a two-stage process, first detecting text areas,
followed by recognition. For text detection, we use the
CRAFT detector [8] and for text recognition, we use STAR-
Net [29], a deep residual network with a spatial attention
mechanism. To handle rotated text, we apply STAR-Net to
the CRAFT output region and its 90-degree rotated version
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and select the result with higher confidence score. We ex-
perimentally validated the particular choice of detection and
recognition networks.

Axis scale estimation. We estimate the scale of coordi-
nate axes to extract numerical values. Applying OCR, we
obtain locations of text boxes with numbers, and group
them vertically and horizontally using their respective cen-
troid coordinates. If tick marks are detected in the segmen-
tation step, we obtain their locations with high accuracy. In
case of missing tick marks the method falls back to using
the centroid coordinates of the bounding boxes containing
numbers. For robust scale estimation, we use RANSAC re-
gression for each axis, using the pixel coordinates and num-
bers read by OCR.

Value estimation for chart components. Given the cor-
respondence between image coordinates and values, we can
map the chart coordinates to numerical ones to acquire nu-
merical value of all points on extracted lines.

4. Datasets
In our experiments we use synthesized and real image
datasets. Synthesized images were generated using a
graph plotting library, with automatic ground truth anno-
tation.

4.1. Synthesized image datasets

CHART2019-S (CH-S) dataset. This dataset was pub-
lished for the 2019 Competition on HArvesting Raw Ta-
bles [45]. The images were generated with Matplotlib2,
and chart types include bar charts with simple, grouped
or stacked bars, line charts, pie charts, doughnut charts, box
charts and scatter charts. Due to the small size of this dataset
we used 1,000 line charts for evaluation only.

ExcelChart400K (EXC) dataset. This dataset was pub-
lished with the ChartOCR work [33]. It contains bar, pie
and line charts and was generated by crawling public Excel
files and generating chart images via API calls. From the
EXC dataset, we used 110,000, 10,000 and 4,000 images
for training, validation and testing, respectively.

SYN dataset. In order to test our method on a larger va-
riety of drawing styles in terms of layouts, values, colors,
and line styles, we generated a new dataset containing bar,
pie and line charts using Matplotlib2, together with ground
truth annotations. Title, legends, labels, and grid lines were
added, each with 50% probability. The SYN dataset con-
tains 54,000 training images, 6,000 validation images and

2https://matplotlib.org/

Figure 4: Examples from the SYN dataset, containing 40,000
automatically generated chart images with ground truth annota-
tion.

4,000 test images, see Fig. 4 for examples. Compared with
the CH-S and EXC datasets, the SYN dataset contains more
images with different patterns such as dotted or striped ele-
ment areas, as well as lines plotted with different line styles
in the same color.

4.2. Real image datasets

FigureSeer (FS) dataset. This dataset contains 997 line
chart images crawled from the CiteSeerX website [41].
The images include legend information, which the method
in [41] requires for line tracing. Annotations of line point
coordinates, text positions, and axis tick marks are avail-
able. Due to the limited size of this dataset, we used it only
for evaluating line chart analysis.

ICPR-2020-CHART-UB PMC (PMC) dataset. This
dataset was collected and manually annotated from biomed-
ical and life sciences journals, and published for the
ICPR2020 CHART-Infographics competition [46]. The
dataset includes 15 chart types, from which we select hori-
zontal and vertical bar charts and line charts for the evalu-
ation. Pie chart images were excluded because of the lack
of annotations of pie slice components. We used 1,450, 162
and 1,449 images for training, validation and testing, re-
spectively.

GOV dataset. We collected an additional dataset by
crawling 4,100 images from government websites contain-
ing statistical data3. It contains 900 vertical bar charts, 450
horizontal bar charts, 350 pie charts, 1,100 line charts as
well as 600 other charts and 700 other images (photos and
illustrations). We annotated chart components with bound-
ing boxes in 400 images, 100 for each of the four chart
types. Compared to other chart datasets, our web-crawled
dataset includes more text and color variations.

3https://www.usa.gov/statistics
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5. Results
5.1. Line Segmentation

Experimental Setup. To train the segmentation model,
we use 110,000 chart images from the SYN, EXC and PMC
datasets. Some of them are over-sampled or sub-sampled
depending on their dataset size.

Data augmentation includes changes of rotation, brightness,
contrast, and color balance. We also add compression and
Gaussian noise, and add text boxes of different sizes at ran-
dom locations in the image.

We train the model for 50 epochs using the standard
cross entropy loss function and the Ranger optimizer
(RAdam [27] and Lookahead [48]) with an initial learn-
ing rate of 0.001 and a batch size of 8. After training the
segmentation model, the parameters for estimating the plot
area and the number of lines, as well as the weights in equa-
tion (2) are determined using Optuna [3] within uniform
ranges for each weight parameter so that it maximizes the
F1 score for line tracing, using 100 images each from the
SYN, EXC and PMC datasets, respectively.

Evaluation: To check whether a line is detected correctly,
we compute the y-coordinate error for each point on the pre-
dicted line. To determine whether or not a line was traced
correctly, we apply an error threshold on the F1 score, the
same metric as used in [41]. For matching pairs of pre-
dicted and ground truth lines, we iterate over the predicted
lines and calculate F1 scores with respect to each ground
truth line. The pair with the highest F1 score is selected
as matching pair and we continue processing the remaining
lines. Unmatched predicted lines are counted as false posi-
tives, and unmatched ground truth lines are counted as false
negatives.

We compare our method to existing methods, Figure-
Seer [41] and ChartOCR [33]. For a fair evaluation, we
use the same experimental settings and evaluation metrics
as FigureSeer [41]. The FigureSeer results are taken from
the paper [41], and ChartOCR results are obtained using
public code provided by the authors [33].

Since the performance of the segmentation network is im-
portant for our method, we evaluate different backbone
models within the segmentation network in an ablation
study, i.e., UNet [37] + EfficientNetB3, and FastFCN + Ef-
ficientNetB0. We train these models using the same proce-
dure as FastFCN + EfficientNetB3.

5.2. Qualitative evaluation

Results: Table 1 shows the F1 scores at the line compo-
nent level. The error tolerance rate is set to 2%. Our method

Table 1: Segmentation results comparing methods in terms of
F1-scores on synthesized datasets (the first three: CH-S, EXC and
SYN) and real datasets (the last three: FS, PMC, and GOV), where
the error tolerance rate is set to 2%.

Dataset
Method

CH-S [45] EXC [33] SYN FS [41] PMC [46] GOV Avg.
FigureSeer [41] n/a n/a n/a 26.4 n/a n/a n/a
ChartOCR [33] 16.0 62.8 25.8 25.1 27.6 48.0 34.2
Ours 67.8 76.2 72.2 65.8 68.0 53.5 67.3

Table 2: Ablation study results to evaluate backbone architec-
tures of the segmentation model. The experimental setup is same
as that of Table 1. FastFCN+B3 achieved the best performance
on average in terms of F1 score.

Dataset
Backbone

CH-S [45] EXC [33] SYN FS [41] PMC [46] GOV Avg.
UNet+B3 81.7 66.9 82.5 59.8 53.8 40.9 64.3
FastFCN+B0 71.3 65.9 82.1 54.5 49.5 42.1 60.9
FastFCN+B3 67.8 76.2 72.2 65.8 68.0 53.5 67.3

shows a significant improvement over FigureSeer and Char-
tOCR on all datasets, with an average F1 score of 67.3%.
In the comparison of synthesized datasets (the first three:
CH-S, EXC and SYN) and real datasets (the last three: FS,
PMC, and GOV), the performance of synthesized datasets
is higher than that of real datasets. Table 2 shows the result
of ablation study comparing alternative segmentation net-
works. The proposed model (FastFCN+B3) performed best
on the most chart types across datasets.

5.3. Value extraction

Evaluation: To evaluate how accurately numerical values
can be estimated from chart images, we measure the per-
centage of charts that have a maximum error below a thresh-
old value. An error tolerance (2%) is used to calculate F1
scores for each line, where a line is regarded as correctly
parsed, if the F1 score is higher than 95%. If this is the
case for all lines, the complete chart is considered correctly
parsed. For the numerical value extraction, the pixel coor-
dinates of line charts obtained in Subsection 5.1 are mapped
to the y-axis scale using the value extraction process. In a
similar way of evaluation in pixel coordinates (Subsection
5.1), errors between predicted values and ground truth are
calculated in numerical coordinates as absolute differences
divided by the range of the y-axis, as estimated by minimum
and maximum values of y-axis tick labels .

Results: Table 4 shows the percentage of charts for which
values could be successfully estimated, given different er-
ror thresholds. The low performance on the GOV dataset is
mainly caused by the low resolution of its images. In sum-
mary, the percentages of charts that can be correctly ana-
lyzed at 5% error tolerance ranges from 23-46%, depending
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(a) Original image (b) ChartOCR [33] (c) Proposed Method

Figure 5: Example results. (Top) A line chart (a) from the EXC dataset [33] with touching lines is parsed correctly using the proposed
method (c), while ChartOCR [33] leads to an over-smoothed estimate. (Center) A monotone colored chart from EXC with different line
styles is parsed correctly using the proposed method (c). (Bottom) The method is able to successfully parse this line chart from the PMC
dataset [46].

(a) Original image (b) Proposed Method

Figure 6: Failure case examples. (Top) The method fails to accu-
rately trace a line chart from the GOV dataset with large y-value
oscillations due to insufficient number of sample points in the x-
direction. (Bottom) Complex patterned backgrounds, as in this
example from the EXC dataset [33], can lead to segmentation fail-
ures from which the method is unable to recover.

on the dataset.

For a clearer understanding of which types of line chart im-
ages the proposed method can process, we analyze success
and failure cases. Figure 5 shows successfully parsed ex-

Table 3: Percentage of correctly parsed charts vs. error toler-
ance values, in terms of extracted value accuracy. Note that the
results of EXC [33] and FS [41] do not exist in this table because
they do not contain ground truth of chart values.

Error Dataset
Tolerance CH-S [45] SYN PMC [46] GOV Avg.

10% 44.6 54.9 27.5 42.0 42.3
5% 43.8 46.2 22.6 28.0 35.2
2% 37.8 32.4 13.3 4.0 21.9

Table 4: Percentage of correctly parsed charts vs. error toler-
ance values, in terms of extracted value accuracy. Note that the
results of EXC [33] and FS [41] do not exist in this table because
they do not contain ground truth of chart values.

Error Dataset
Tolerance CH-S [45] SYN PMC [46] GOV Avg.

10% 44.6 54.9 27.5 42.0 42.3
5% 43.8 46.2 22.6 28.0 35.2
2% 37.8 32.4 13.3 4.0 21.9

ample cases for cases in which keypoint extraction methods
fail [14]. In particular, the proposed model is able to handle

2115



 Line tracing (28%)

Image segmentation 
(18%)

Centroid estimation 
(11%)

Line number estimation (8%)

OCR (5%)

Mislabeled ground truth (5%)

Line X-range estimation (2%)

Others (23%)

Figure 7: Statistical error analysis. We analyzed the causes of
failure cases on the CH-S, SYN and GOV datasets. Two major
reasons are line tracing errors and image segmentation, with ex-
amples shown in Fig. 6.

challenging cases of monotone chart images where lines are
plotted in different styles, see bottom of Fig. 5.

Failure example cases are shown in Figure 6. The method
does not work well for chart images containing jagged lines,
shown in Fig. 6, top. The main reason is the fixed subsam-
pling of the x-value range. The proposed method some-
times also fails to parse chart images with complicated
background patterns, see Fig. 6, bottom. The underlying
reason is the failure of the segmentation model to estimate
accurate probability maps. In such cases, adding a variety
of background images during the data augmentation process
may improve the results.

To quantify the causes of failures, we analyzed the results of
400 images from CH-S, SYN and GOV datasets. As shown
in Fig. 7, the major reasons are line tracing and image seg-
mentation errors, two examples cases shown in Fig. 6. In
addition, we found that the method can fail due to inaccu-
rate centroid estimation in 7D space or due to incorrect line
number estimates, particularly in the case of background
grids. Another error source is the OCR engine, which has
a large impact on value extraction as mentioned in Subsec-
tion 5.3. In summary, there remain several challenges in this
task, and our error analysis shows that multiple improve-
ments are necessary to address these.

Inference speed is another key factor for practical use. Seg-
mentation takes under 1 second on an Intel Xeon Silver
4214 machine with RTX 2080 Ti GPU. Note that this is sig-
nificantly faster than the FigureSeer approach [41], which
requires approximately 40 seconds to compute line proba-
bility maps by iterating over each line found in the figure
legend. In our case, probability maps are obtained in a sin-
gle forward pass. The processing time for linear program-
ming rapidly grows with the number of detected lines. We
measured average run times of 0.2s, 0.9s, 9.6s, and 285.3s
for 1, 2, 4, and 8 lines, respectively. Note that the LP solver
we use [1, 2] runs on a single CPU thread and run time may
be improved by changing the number of CPU cores or the

solver itself.

6. Discussion
This work focuses on extracting main components in line
chart images and the values. Currently the method does not
aim to extract chart captions or legends. One simple ap-
proach could be to associate text with its closest detected
component. Value extraction from tick labels can be more
complex in the general case. For example, date values need
to first be converted to units of time that can be continu-
ously interpolated. Axes may also have a multiplier value,
declared separately on the graph, which is applied to all
axis values. Values may also skip a range interval, indi-
cated by axis slash marks, in order to reduce the space
needed. Handling such special cases can be addressed by
post-processing the extracted chart data.

7. Conclusion
This paper proposed a novel framework to automatically re-
cover data from line chart images using a single segmenta-
tion network to extract line type probabilities. Line fitting
was formulated as cost function optimization using linear
programming. An explicit occlusion model allowed us to
trace lines simultaneously, leading to higher accuracy on six
different chart datasets. We introduced two new datasets
with realistic variations, one generated synthetically and
one crawled from the web. We also relaxed the require-
ment for legends or axes tick marks to be present. Finally,
we assessed the overall performance of correct data extrac-
tion for different error tolerances, analyzed error sources,
and highlighted potential areas of improvement.
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