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Abstract

We present a modern solution to the multi-view photo-
metric stereo problem (MVPS). Our work suitably exploits
the image formation model in a MVPS experimental setup
to recover the dense 3D reconstruction of an object from
images. We procure the surface orientation using a photo-
metric stereo (PS) image formation model and blend it with
a multi-view neural radiance field representation to recover
the object’s surface geometry. Contrary to the previous
multi-staged framework to MVPS, where the position, iso-
depth contours, or orientation measurements are estimated
independently and then fused later, our method is simple to
implement and realize. Our method performs neural ren-
dering of multi-view images while utilizing surface normals
estimated by a deep photometric stereo network. We ren-
der the MVPS images by considering the object’s surface
normals for each 3D sample point along the viewing di-
rection rather than explicitly using the density gradient in
the volume space via 3D occupancy information. We opti-
mize the proposed neural radiance field representation for
the MVPS setup efficiently using a fully connected deep net-
work to recover the 3D geometry of an object. Extensive
evaluation on the DiLiGenT-MV benchmark dataset shows
that our method performs better than the approaches that
perform only PS or only multi-view stereo (MVS) and pro-
vides comparable results against the state-of-the-art multi-
stage fusion methods.

1. Introduction

Estimating the 3D geometry of an object from images
has been a fundamental research problem in computer vi-
sion for several decades [6, 44, 45]. A reliable solution
has many real-world applications such as shape analysis,
shape manipulation, molding, image rendering, forensics,
etc. Even though there exist several ways to solve this prob-
lem, multi-view photometric stereo is one of the popular
setups to recover the 3D geometry of the object (see Fig.1).

In the past, many active and passive 3D reconstruction
approaches or pipelines were proposed to solve 3D recon-
struction of objects [78, 100, 24, 129, 75, 56, 55]. However,

when it comes to the accuracy of recovered 3D shapes for
its use in scientific and engineering purposes (metrology),
methods that use only MVS or PS suffer [76, 90, 25, 26].
As a result, a mixed experimental setup such as multi-view
photometric stereo (MVPS) is generally employed [65]. In
such a setup, complementary modalities are used to obtain
better surface measurements, which are otherwise unavail-
able from an individual sensor or method. Accordingly,
similar fusion-based strategies gained popularity for surface
estimation [79, 129, 61, 82, 12]. One may also prefer to use
two or more active sensors to receive the surface data es-
timates for fusion. Nevertheless, this paper focuses on the
MVPS setup, where the subject is placed on a rotating base
and for each rotation multiple images are captured using
one LED light source at a time. The major motivation for
such an approach is that the active range scanning strate-
gies used for object’s 3D acquisition, such as structured
light [28, 122, 123], 3D laser scanners [21], RGB-D sen-
sors [129] are either complex to calibrate or provide noisy
measurements or both. Further, these measuring techniques
generally provide incomplete range data with outliers that
require serious efforts for refinement.

Among the passive methods [91, 107, 25, 102, 12, 57,
58, 59], Multi-View Stereo (MVS) is a key approach in the
automated acquisition of 3D objects from a set of images
taken from different viewpoints [25]. Under the assumption
of scene rigidity (rigid Lambertian textured surfaces), tra-
ditional MVS uses feature correspondences across images
to reconstruct dense object geometry [24]. Recently, neu-
ral view synthesis methods have shown great potential for
this task. However, the quality of their 3D reconstruction
is far from satisfactory and several follow-ups are trying to
address them for different scenarios [76, 118, 117, 116, 13].

An alternative approach to recover surface details is pho-
tometric stereo (PS), a.k.a shape from shading [106, 5].
PS methods estimate the object’s surface normals given
multiple images illuminated by different light sources, but
all captured from the same camera viewpoint [106]. It
is excellent at recovering surface normals independent of
depth estimates and works well for untextured objects, non-
Lambertian surfaces with fine details [35, 108, 42, 41, 10,
14]. To estimate the overall shape of the object, we can
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directly integrate the high-resolution normal map. How-
ever, the absence of constraints between surface elements
and the lack of global geometric constraints fails to de-
termine each of those surface components’ relative posi-
tions correctly. Further, most photometric stereo meth-
ods assume isotropic material objects and may fail to han-
dle objects with anisotropic material like a piece of wood
[41, 101, 95, 42].

Hence, MVS and PS complementary behavior in surface
reconstruction from images helps us efficiently recover ob-
ject shape. Using MVPS images, we utilize a CNN-based
PS method to estimate surface normals using multiple light
sources from a fixed viewpoint. For each view, multiple
light sources are used to estimate the surface normal. We
blend those surface normal estimates with a neural radi-
ance field representation of the scene to recover the 3D re-
construction of the object. Existing state-of-the-art meth-
ods to this problem generally apply a sequence of steps
[82, 65, 88] (i) procure the 3D position measurement using
multi-view images or 3D scanner (ii) estimate surface orien-
tation or iso-depth contours using photometric stereo meth-
ods, and (iii) fuse the surface orientation and 3D position
estimates to recover 3D geometry using appropriate math-
ematical optimization. Now, several fusion strategies exist
that can combine these alternate sources of information for
better 3D shape reconstruction. [82, 79, 8, 83, 65, 88]. Of
course, the precise steps taken by such approaches can pro-
vide better results, yet they rely heavily on explicit mathe-
matical modeling [8, 82, 12, 119, 34, 83, 65], and complex
multi-staged network design [88] which are complicated
to execute. In contrast, our work provides a simple and
general method that can suitably introduce the surface de-
tails coming from PS to neural radiance field representation
of the scene for favorable performance gain.

Our work is inspired by the idea of local region-based
techniques for volumetric illumination, which can render
more realistic images [62, 48]. The ray-traced volume ren-
dering approximates the surface normals using the gradient
of the density along each (x, y, z) direction in volumetric
space [84, 48]. However, to use such a notion for our prob-
lem setup, we must know the occupancy of the point in the
volume space. To keep it simple, we utilize the surface nor-
mal from PS as the gradient density information for each
sample point along the ray to reconstruct MVPS images as
close as possible and recover 3D geometry. While one could
recover depth from surface normals and then infer the occu-
pancy of the volume density, we know that normal integra-
tion may lead to inaccurate depth estimates, hence incorrect
occupancy information. So, we adhere to the proposed idea
of using local gradients and show the validity of our method
via experimental evaluations.

Our approach first estimates the surface normal for all
the views using a deep photometric stereo network which

Figure 1. General setup for multi-view photometric stereo. The
object is placed on a base with fixed rotation. A camera is placed
at the center of the disk to capture images. LEDs are placed in a
concentric ring for controlled light setup [65].

is trained independently in a supervised setting. We use
sample spatial location xi, the viewing direction d, and
the object’s surface normal for our MVPS representation.
Surface normals for each 3D sample point along all known
view directions are employed. For 3D reconstruction, our
method optimizes a multi-layer perceptron that regresses
from the position, view direction, and surface normal to
single volume density and view-consistent RGB color. We
use Fourier feature encoding on both positional and surface
orientation data before passing them to the network [86].
Experimental results show that our method provides com-
parable or better results than previously proposed complex
multi-view photometric stereo methods [8, 82, 12, 119, 34,
79], stand-alone state-of-the-art multi-view method [105],
and view synthesis approach [76]. We evaluate the results
on the DiLiGenT MVPS benchmark dataset [65, 94]1. We
make the following contributions:
• While previous multi-stage fusion methods to MVPS are

very complex, we propose a much simpler continuous
volumetric rendering approach that uses the local density
gradient effects in MVPS image formation.

• Our work takes an opportunistic approach that exploits
the complementary source of information in MVPS setup
via two sets of representation i.e., volumetric and surface.

• Despite being much simpler than fusion methods, our
approach achieves better or comparable results than the
state-of-the-art [83, 65], as well as stand-alone methods
such as multi-view [105, 116], photometric stereo [41],
and continuous volumetric rendering [73] methods.

2. Related Work
Here, we review important MVS, PS, view-synthesis and

fusion based methods related to our work.
1. Multi-View Stereo (MVS) Methods. It aims at recon-
structing a plausible 3D geometry of the object from a set

1This dataset is publicly available for research purpose at:
https://sites.google.com/site/photometricstereodata/mv
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of images alone [24]. The working principle of MVS gener-
ally pivots around improving the dense image feature corre-
spondence (local similarity) and camera parameters across
images for triangulation [24, 60, 25, 7, 57, 58]. Recent de-
velopments in machine learning have led to the renovation
of traditional MVS methods via deep-learning frameworks.

Roughly, it can be divided into four to five categories
[24, 32]. (i) Volumetric methods require bounding box
knowledge containing the subject. These methods estimate
the relation between each voxel and the surface element,
and their accuracy is greatly affected by voxel grid resolu-
tion [47, 51, 93, 23, 103]. (ii) Patch-based approach utilize
the Barnes et al. [3] randomized correspondence idea in the
scene space. Generally, these methods generate random 3D
planes in the scene space and refine the depth representa-
tion and normal fields based on photo-consistency measures
[7, 26, 25, 68]. (iii) Depth map reconstruction-based meth-
ods use a reference image with different source images un-
der calibrated settings to improve the overall depth estima-
tion [30, 99, 9, 92, 26, 110]. (iv) Point cloud-based methods
operate on the 3D points and process the initial sparse point
sets to densify the results [25, 63]. (v) Distributed structure-
from-motion methods utilize the notion of motion averag-
ing to improve large-scale 3D reconstruction [11, 125, 127].
Recently, deep neural networks have been widely adopted
for MVS, which provide better performance than traditional
MVS methods [32]. Earlier work in this area uses CNN’s
for two-view [121] and multi-view stereo [33]. Lately, the
learning-based MVS rely on the construction of 3D cost
volume and use the deep neural networks for regulariza-
tion and depth regression [18, 38, 113, 46, 71, 114, 111].
As most of these approaches utilize 3D CNN for cost vol-
ume regularization —which in general is computationally
expensive, the majority of the recent work is motivated to
meet the computational requirement with it. Few methods
attempt to address it by down-sampling the input [114, 111].
Other attempts to improve the computational requirements
uses sequential processing of cost volume [115], cascade of
3D cost volumes [19, 32, 112, 105], small cost volume with
point-based refinement [18], sparse cost volume with RGB
and 2D CNN to densify the result [120], learning-based
patch-wise matching [71, 105] with RGB guided depth map
super-resolution [105].

2. Photometric Stereo (PS) Methods. It is an alternative
approach to infer the surface geometry from light-varying
images. Those images are captured from a camera placed at
a fixed viewpoint [106]. Although PS requires a controlled
experimental setup, it prevails in recovering surface details
independent of the depth knowledge. Similar to MVS, ad-
vancements in deep learning have led to the development of
deep PS methods [41, 15, 101, 14]. The primary motive of
the deep PS method is to let the neural network learn the
complicated surface reflectance from data, which otherwise

is a challenging modeling task for surfaces with unknown
BRDF’s [101, 52].

Woodham’s introduced PS for Lambertian surfaces
[106]. Since then, the majority of the work in PS pivot
around improving it for non-Lambertian surfaces [29, 20,
31, 42, 108]. In general, traditional PS can be categorized
into four groups. (i) Robust methods recover surface nor-
mals by assuming the simple diffuse reflectance property of
the object. It treats non-Lambertian reflectance components
to be local and sparse, hence treated as outliers. Accord-
ingly, rank minimization [108], expectation-maximization
[109], sparse Bayesian regression [43], RANSAC [80], and
other outlier filtering mechanisms [77] are used to esti-
mate surface normals. Yet, these methods cannot handle
material with soft and broad specularity [94]. (ii) Ana-
lytic BRDF modeling methods explicitly model the object’s
specularity as a sum of diffused and specular components
[29, 20, 31]. Still, it applies only to a limited class of ob-
jects due to the hand-crafted modeling strategy. (iii) Gen-
eral reflectance modeling-based methods utilize the objects
isotropic [95, 43] and anisotropic [36] properties to esti-
mate unknown BRDF rather than explicitly modeling it.
(iv) the example-based method uses known object’s mate-
rial knowledge for reflectance modeling [97]. While some
work also assumes that the object’s material can be ex-
pressed using a small number of basis material [35], oth-
ers take advantage of virtual sphere rendered with different
materials without using any physical reference object [40].
Recent PS research is aimed at learning the complex surface
reflectance using data via deep neural networks. Early deep
PS methods aimed at learning the mapping between sur-
face normals and reflectance measurements in a calibrated
setting i.e., light sources direction is given at train and test
time [89, 101, 41, 16, 126, 64]. Recently, uncalibrated deep
PS methods have been proposed to overcome the challenges
associated with light sources calibration [15, 14, 52] and re-
solve GBR ambiguity in photometric stereo [17].

3. View Synthesis for 3D reconstruction. In recent years,
view synthesis methods, in particular, the Neural Radiance
Fields (NeRF) method for scene representation, have pro-
posed an interesting idea to recover the 3D geometry of
the scene using multi-view images [76]. NeRF has gen-
erated a new wave of interest in 3D computer vision and
has led to several follow-ups in 3D data acquisition from
images [118, 73, 81, 85, 98, 117, 87, 13]. NeRF uses a
fully-connected deep neural network to represent the scene
geometry and radiance information implicitly. It renders
photo-realistic views by implicitly encoding surface volume
density and color via a multi-layer perceptron (MLP). Once
MLP is trained, the 3D shape can be recovered by using the
estimated volume density. One can model the implicit ob-
ject’s surface normals and radiance field in a unified way
but may need volume occupancy information. Further, to
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couple the surface normals term with the surface 3D point
coming from the same measurement source may not pro-
vide significant gain [116], especially when dealing with
PS images, where shading plays a critical role.
4. Fusion based Methods. Although the developments in
RGB-D and other portable active sensors have led to suc-
cess with volumetric methods on shading-based refinement
[8, 72, 128], our work relies on image data for this problem.
Much of the existing work that utilizes the images for com-
plementary measurements uses explicit mathematical mod-
eling for precise 3D geometry [34, 83, 65, 69, 66, 88]. On
the contrary, our work utilizes photometric stereo to esti-
mate surface normals and then blends it with the shape vol-
ume density in neural radiance field representation to syn-
thesize multi-view images and recover shapes. Table (1)
summarizes some of the recent and early developments in
the area of multi-view photometric stereo.

3. Proposed Approach
We denote Iv = {Iv1 , .., IvNp

} as the set of Np PS images
for a given view v ∈ [1, Nm]. Our method assumes a cali-
brated setting for MVPS, i.e., all the light source directions
and camera calibrations are known. The proposed approach
considers the notable image formation models used in com-
puter vision and computer graphics i.e., photometric stereo
image formation model [106] and the rendering equation
[49]. These imaging models has its advantage depending
on the experimental setup. Since we are solving the well-
known MVPS problem, we can exploit the benefit of both
photometric and multi-view stereo setup. For our work, we
assume that the subject under study is a solid texture-less
object, which is often studied in photometric stereo research
[65]. Next, we describe the deep PS network, followed by
our neural radiance field modeling for a multi-view photo-
metric stereo setup.
Deep Photometric Stereo. For simplicity, let’s assume a
single view case for an object with reflective surface, whose
appearance can be encoded by a bidirectional reflectance
distribution function (BRDF) Φs with surface normals N ∈
R3×p [101, 52]. Here, p symbolizes the total number of
pixels. When object’s surface is illuminated by a point light
source positioned in the direction li ∈ R3×1, then the image
Ii ∈ Rc×r captured by a camera in the view direction v ∈
R3×1 can be modeled as

Ivi = ei · Φs(N, li, v) ·max(NT li, 0) + ϵi (1)

where, ei ∈ R+ denotes the intensity, (c, r) symbolizes the
columns and rows of an image, ϵi is an additive error and
max(NT li, 0) accounts for the attached shadows. Eq.(1)
image formation model for photometric stereo has led to
outstanding developments in recovering fine details of the
surface [96]. Yet, modeling unknown reflectance proper-
ties of different objects remains a fundamental challenge.

Method Base data Shape representation Optimization
Mostafa et al. [79] Laser, PS images Neural Network Back-Propagation + EKF [104]
Nehab et al. [82] Scanner [21], PS images Mesh Mesh (Linear)

Hernandez et al. [34] MVPS images Mesh Mesh (Coupled)
Park et al. [83] MVPS images Mesh + 2D displacement Parameterized 2D (Sparse Linear)
Li et al. [65] MVPS images Depth Contour + 3D points Poisson surface [53] + [82]

Logothetis et al. [69] MVPS images and SDF Parameterized SDF Variational Approach
Ours MVPS images Multi-layer Perceptron Adam [54]

Table 1. Previous work on passive approach to 3D shape recovery
using orientation and range estimates. Despite Mostafa et al. [79]
and Nehab et al. [82] use active modality, we included them for
completeness.

Consequently, we utilize deep neural networks to learn the
complicated BRDF’s from input data. We leverage the ob-
servation map based CNN model to estimate surface nor-
mal under a calibrated setting [41]. Unlike other supervised
methods, it has rotational invariance property for isotropic
material, handles unstructured images and lights well, and
above all provides best performance known to us with ac-
ceptable inference time.

▷ Observation map: For each pixel, this map contains
the normalized observed intensity values due to all the light
sources. In a general PS setup, the light sources are located
in a concentric way. Thus, a one-to-one mapping between
the light source position (lx, ly, lz) ∈ R3 and correspond-
ing x-y coordinate projection (lx, ly) ∈ R2 is possible. Note
that l2x+l2y+l2z = 1 ∀ li i.e., the unit vector in the direction of
source. We construct the observation map Ωj ∈ Rw×w for
each pixel j using its intensity value across all the Np im-
ages as outlined in Algorithm 1. Here, w is the size of the
observation map and the function ζ : R 7→ Z0+. The scalar
ηj for jth pixel is ηj = max(e1/I

v
1 (j), .., eNp

/IvNp
(j)) is

the normalizing constant. Since the projected source vec-
tors can take values from [−1, 1], they are scaled appropri-
ately to get positive integer values.

Algorithm 1 Observation Map Construction

for j ← {1, ., p}
for i← {1, ., Np}

Ωj

(
ζ
(
w · (l

i
x+1)

2

)
, ζ

(
w ·

(liy+1)

2

))
= ηj

Ivi (j)

ei
end

end

▷ PS Neural Network Architecture Details: Inspired by
the DenseNet design [39], the PS network first performs a
convolution with 16 output channels on the input observa-
tion maps. The other part of the network consists of two
dense blocks, a transition layer, and two dense layers, which
is then followed by a normalization layer to recover sur-
face normals as output. The dense block is composed of
one ReLU layer, one 3 × 3 convolutional layer and a 0.2
dropout layer. The transition layer is composed of a ReLU
layer, 1 × 1 convolutional layer, 0.2 dropout layer, and an
average pooling layer, which is placed in between the two
dense blocks to modify the feature map size. We train PS
network end-to-end separately in a supervised setting. The
l2 (MSE) loss between estimated and the ground-truth nor-
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mals is minimized using Adam optimizer [54] (see Fig. 2).
Neural Radiance Field Representation for Multi-View
Photometric Stereo. Recently, volume rendering tech-
niques for view synthesis, in particular NeRF [76] has
shown a great potential for 3D data-acquisition from multi-
view images. It represent a continuous scene as a 5D vector-
valued function i.e., x = (x, y, z) for each 3D location and
(θ, ϕ) for every 2D viewing direction. Given multi-view
images with known camera pose, NeRF approximate the
assumed continuous 5D scene representation with a MLP
that maps the (x, θ, ϕ) to RGB color c and volume den-
sity σ ∈ R+. Using the classical volume rendering work
[50], it models the expected color C(r) of the camera ray
r(t) = o+ td with near and far bound tn, tf as:

C(r) =

∫ tf

tn

T (t)σ
(
r(t)

)
c
(
r(t),d

)
dt, (2)

where T (t) = exp
(
−
∫ t

tn

σ
(
r(s)

)
ds
)
. (3)

Here, d is the unit viewing direction. T (t) is the accumu-
lated transmittance along ray from tn to t which caters the
notion that how much light is blocked earlier along the ray.
Given N samples along the ray, the continuous integral in
Eq:(2) is approximated using the quadrature rule [74]:

C̃(r) ≈
N∑
i=1

Tiαi(xi)ci(xi,d), (4)

where αi(xi) =
(
1− exp

(
σ(xi)δi

))
, (5)

and Ti =

i−1∏
j=1

(1− αj). (6)

Here, δi is the distance between the adjacent discrete sam-
ples and αi encapsulate how much light is contributed by
the ray i. By construction, Eq.(4) approximates the alpha
composited color as a weighted combination of all sampled
colors ci along the ray. For more details we refer the read-
ers to Mildenhall et al. work [76]. Now, lets have a closer
look at the following rendering equation [49, 116]:

Lo(xi, ωo) = Le(xi, ωo)

+

∫
S
Φr(xi,ni, ωj , ωo)Lj(xi, ωj)(ni · ωj)dωj .

(7)

The above equation suggests that the rendering of a surface
element xi depends on the emitted light in the scene and
the bidirectional reflectance distribution function (BRDF)
Φr describing reflectance and the color property of the sur-
face accumulated over the half-sphere S centered at ni. The
significance of including surface normal to Φr in the ren-
dering equation is put forward by IDR work [116]. Here,

ωo, ωj is the outgoing light direction and negative direction
of the incoming light, respectively. Φr accounts for propor-
tion of light reflected from ωj towards ωo at xi. Lo the ra-
diance directed outward along ωo from a particular position
xi, and Le is the emitted radiance of the light. In general,
the light does not always hit the surface orthogonally, and so
the dot product between the ni and ωj attenuates the incom-
ing light at xi. Hence, by restricting Φr and light radiance
functions (Lo, Le), which the radiance fields approximation
can represent, we condition the color function to include
the notion of density gradient for image rendering. Conse-
quently, we use the normal estimated from PS to condition
ci in Eq.(4). We rely on a deep photometric stereo net-
work to estimate surface normals, overcoming BRDF mod-
eling complications and providing us an excellent surface
detail. Hence, our method has the inherent benefit over an
entangled surface normal representation in image rendering
[116]. Accordingly, we modify the Eq.(4) as follows:

C̃(r) ≈
N∑
i=1

Tiαi(xi)ci(xi,n
ps
i ,d). (8)

Further, adding image features in Eq.(8) could be advan-
tageous as in [118, 13]. However, MVPS setup generally
deals with non-textured surfaces where using image fea-
tures is not much of help. Still, an obvious advantage with
the setup is that better surface details can be captured from
shading. For simplicity, we use surface normals to condition
volume rendering and refrain from relying on image fea-
tures. So, our approach blends density gradient information
into the continuous volume rendering formulation bypass-
ing the explicit volume occupancy information. Concretely,
we feed surface normals for each 3D sample point along the
viewing direction to the neural rendering network.
Optimization and Loss Function. Following neural radi-
ance fields optimization strategy [76], we encode each sam-
pled position xi along the ray, viewing direction d, and pho-
tometric stereo surface normal nps

i using the Fourier fea-
tures γ(x) = [sin(x), cos(x), .., sin(2L−1x), cos(2L−1x)].
We used L = 10 for γ(xi), L = 4 for γ(nps

i ) and L = 4
for γ(d). For efficient estimation of continuous integral
(Eq.(8)) using quadrature rule, we use the stratified sam-
pling approach to partition the near and far bound [tn, tf ]
into N evenly-spaced discrete samples [74].

ti ∼ U
[
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

]
. (9)

We employed MLPs (Multi-layer Perceptron) to opti-
mize the following loss function.

Lmvps =
∑
r∈B

∥C̃c(r)− C(r)∥22 + ∥C̃f (r)− C(r)∥22.

(10)

1969



(𝒙𝑖)

𝒅

γ(𝒙𝑖)

σ

RGB

σ

Ray Distance

ሚ𝐶𝑐 𝒓 − 𝐶(𝒓)
2

2

+

ሚ𝐶𝑓 𝒓 − 𝐶(𝒓)
2

2

Volume Rendering Rendering Loss

γ(𝒏𝑖
𝑝𝑠
)γ(𝒅)

Fully-Connected LayerTransition Layer: ReLU+Conv(1×1)+Dropout(0.2)+Ave.Pool. Dense Block Layer: ReLU+Conv(3×3)+Dropout(0.2)Conv(1×1)

Deep Photometric Stereo Network

Observation Map Ω𝑖

𝒏𝑖
𝑝𝑠

Conv(3×3)

256 256 256 256 256256 256 256 256 128

128 3

16 16 16 48 16 16 80

Figure 2. Overview: The deep photometric stereo network predicts surface normals of the object from each viewpoint using PS images.
We model multi-view neural radiance fields by introducing gradient knowledge from PS network output in the density space for solving
MVPS. Our work takes a much simpler approach than existing state-of-the-art multi-staged MVPS methods showing comparable accuracy.

where, B denotes set of all rays in the batch. We used hierar-
chical volume sampling strategy to densely evaluate neural
radiance field network for N query point along each ray.
To that end, we first sample Nc points using the stratified
sampling strategy and optimize the coarse network C̃c(r)
(Eq.(8)). With the known output distribution of the coarse
network, we sample Nf points using inverse transform sam-
pling to optimize the fine network C̃f (r). In Eq.(10), the
variable C(r) is the observed color for the pixel (see Fig.2).

4. Experiment and Ablations

We conducted our experiments, statistical evaluations,
and ablation study on the DiLiGenT-MV benchmark dataset
[65, 94]. It consists of complex BRDF images taken from
20 viewpoints. For each viewpoint, 96 images are captured,
each illuminated by a light source in a different known po-
sition (calibrated). The dataset includes 5 objects (BEAR,
BUDDHA, COW, POT2, READING) with complex sur-
face profiles and its images are captured under large illu-
mination changes. For creating this dataset, the distance
between the camera and object is set to 1500 mm [65].

Implementation Details. (a) Deep-Photometric Stereo:
We train the deep photometric stereo network on the Cy-
clesPS dataset [41]. We used the Adam optimizer [54] with
a learning rate of 10−3 and trained for 10 epochs. A per-
pixel observation map with a size of 32× 32 is used at train
and test time. During testing, we applied the network on
96 PS images per subject from DiLiGenT-MV dataset. (b)
MLP Optimization for MVPS: For each object in DiLiGenT-
MV dataset, we optimize a dense fully-connected neural
network that is composed of 8 fully-connected ReLU lay-
ers. Each layer is composed of 256 channels. In addition to
the density output from the 8th layer, 24 dimensional view-
direction and surface normal Fourier features are then fed
at the 9th layer for rendering (see Fig.2). We use Nc = 64
points for the coarse network and Nf = 128 points for the

fine network. We optimize the network parameters for 30
epochs with a batch size of 1024 rays and an initial learning
rate of 10−4. This takes 7 hours per object on an NVIDIA
GeForce RTX 2080 Ti with 11GB RAM.

4.1. Baseline Comparison

For comparison against the baseline methods, we classi-
fied them into two categories: (a) Standalone methods: It
either uses MVS or PS set up to recover the 3D shapes of
an object. (b) Multi-Staged Fusion methods: It first recov-
ers the sparse 3D point cloud of the object using multi-view
images and surface orientation using fixed viewpoint PS im-
ages for each view. These spatial positions and orientations
are then fused using a different method/pipeline to recover
the 3D geometry. To compare against the standalone meth-
ods, we pick the 4th light source in DiLiGenT-MV setup.
To recover the 3D shape using our method, we run our fine
model by sampling points in 5123 volumetric space uni-
formly. The recovered density is queried using marching-
cube algorithm [70] with σ = 10. Table 2 compares the 3D
reconstruction accuracy of our method to standalone and
multi-stage fusion methods. We evaluate accuracy using
the standard Chamfer-L1 distance metric between the re-
covered shape and the ground-truth shape after registration.
(a) Standalone Methods. For standalone baselines com-
parison, we compare our method with the recent state-of-
the-art in MVS, PS, and View-Synthesis.
(1) PatchMatch Network [105]: This method has recently
shown state-of-the-art performance in MVS. PatchMatch-
Net proposed an end-to-end trainable network that has fast
inference time and works well even for high-resolution im-
ages. It is trained on the DTU dataset [1]. We empirically
observed that using two source frames per reference view
on the DiLiGenT-MV dataset results in more accurate depth
estimation. After getting the depth map from the network
for each view, we transform the results to a point cloud by
back-projecting the depth values to 3D space.
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Method Type → Standalone Methods (↓) Multi-Stage Fusion Methods (↓)
Dataset PM-Net [105] IDR [116] NeRF [76] Ours R-MVPS [83] B-MVPS [65] Ours
BEAR 2.13 10.97 0.62 0.66 0.89 0.63 0.66

BUDDHA 0.72 5.18 0.99 1.00 0.64 0.40 1.00
COW 1.68 6.45 0.92 0.71 0.42 0.54 0.71
POT2 1.30 6.68 0.64 0.63 1.29 0.55 0.63

READING 1.64 7.05 1.22 0.82 0.98 0.85 0.82
Table 2. Quantitative 3D reconstruction accuracy comparison against the competing methods on DiLiGenT-MV benchmark. We used
Chamfer-L1 metric to compute the accuracy. The statistics show that our method is better and comparable to the stand-alone methods and
Multi-Stage fusion methods respectively. Generally, Multi-Stage fusion methods are heuristic in nature and require careful execution
at different stages. On the contrary, our method is much simpler to realize and implement. Note: Even though we tried our best to make
sure that IDR codes are compiled the way it’s on their paper code, we are surprised by IDR results and we are still investigating it. The
above result is the best we achieved out of its publicly available code after several trials.

Method BEAR BUDDHA COW POT2 READING
CNN-PS [41] 0.78 0.83 0.87 0.86 0.89

Ours 0.09 0.11 0.11 0.07 0.06
Table 3. Multi-view depth error comparison against CNN-PS [41].
For comparison, we integrate the surface normals from CNN-PS
to recover its depth which is scaled appropriately to compute the l1
depth accuracy. For ours, we projected the recovered shape recon-
struction to the estimated depth and corresponding depth accuracy.

(2) IDR [116]: This recently published method proposes
a differentiable rendering formulation that is capable of
implicitly modeling variety of lights and surface materi-
als. IDR demonstrated state-of-the-art results on the DTU
dataset and showed impressive 3D reconstructions from
MVS images. For comparison, we train the model on
DiLiGenT-MV for 2000 epochs. During training and test-
ing, we maintained the default settings introduced by [116].
(3) NeRF [73]: Even though it is developed for novel view
synthesis, recently NeRF has been widely used as a baseline
for multi-view 3D reconstruction [118]. By sampling the
volume density σ, it is possible to recover 3D geometry. We
use an initial learning rate of 10−4 and batch size of 1024
rays. We run the optimization for 30 epochs and threshold
the density values (5123) at 10 to recover the 3D geometry.
(4) CNN-PS [41]: This method proposes a dense convo-
lution neural network to learn the mapping between PS im-
ages and surface normals directly. It can handle non-convex
surfaces and complicated BRDFs. We integrate the ob-
tained surface normals using Horn and Brooks’ method [37]
to get the depth map, and scale it to [-1, 1]. Next, we also
project our 3D shape to the different cameras and recover
the depth on a similar scale for statistical comparison. Ta-
ble 3 shows our performance comparison against CNN-PS.
(b) Multi-Stage Fusion Methods. Fusion approaches to
MVPS usually comprise several steps that are heuristic in
nature, and proper care must be taken to execute all the steps
well. For evaluation, we compared against the two well-
known baselines in MVPS (see Table 2).
(1) Robust MVPS [83]. It employs a series of different algo-
rithms to solve MVPS. It first uses multi-view images to re-
cover the coarse 3D mesh of the object using structure from
motion. Next, this mesh is projected to 2D planar space
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Figure 3. Training and validation loss curve on BUDDHA seq.

for parameterization to estimate multi-view consistent sur-
face normals using photometric stereo setup. Finally, the
estimated surface normals are used for mesh refinement to
recover the fine-detailed geometry of the object.
(2) Benchmark MVPS [65]. This method takes a set of steps
to estimate a fine-detailed 3D reconstruction of an object
from MVPS images. It first estimates iso-depth contours
from the PS images [2] and then uses a structure-from-
motion algorithm to recover a sparse point cloud from the
MVS images. Later the depth of these 3D points is prop-
agated along the iso-depth contour to recover the complete
3D shape. The spatially varying BRDF is computed once
the 3D shape is recovered.

4.2. Analysis and Ablation

(a) Training and Validation Analysis: To demonstrate the
effect of surface normal information on image rendering,
we compare our method with NeRF. Fig.3 provides training
and validation curves for both methods on BUDDHA. As
expected, our method provides much higher image render-
ing quality during the learning process. Additionally, Table
4 provides PSNR and LPIPS [124] scores for IDR, NeRF
and our method. These results show that our rendering qual-
ity is much better than other view-synthesis approaches.
(b) Effect of Volume Sampling: We test the importance of
the sampling strategy by performing an ablation study on
the BEAR dataset. In the first experiment, we reduced the
number of coarse samples Nc to 16. This increased our
reconstruction error from 0.66 to 0.84, indicating that an
accurate coarse geometry is needed for better performance.
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Dataset → BEAR BUDDHA COW POT2 READING
Method PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

IDR [116] 4.43 0.2370 9.87 0.2261 9.15 0.1571 7.71 0.1662 6.66 0.1815
NeRF [76] 29.97 0.0235 29.00 0.0455 30.80 0.0192 28.88 0.0269 28.12 0.0346

Ours 37.16 0.0122 33.59 0.0162 34.49 0.0134 30.47 0.0258 30.46 0.0311
Table 4. Quantitative image rendering quality comparison on DiLiGenT-MV benchmark. Our method can render much better images as it
utilizes the surface normal information acquired with PS.

BUDDHA

COW

READING

IDR NeRF Ours Ground-Truth

PSNR: 9.87 PSNR: 29.00 PSNR: 33.59
LPIPS: 0.2261 LPIPS: 0.0455 LPIPS: 0.0162

PSNR: 9.15 PSNR: 30.80 PSNR: 34.49
LPIPS: 0.1571 LPIPS: 0.0192 LPIPS: 0.0134

PSNR: 6.66 PSNR: 28.12 PSNR: 30.46
LPIPS: 0.1815 LPIPS: 0.0346 LPIPS: 0.0311

Figure 4. Comparison of volume rendering on DiLiGenT-MV
achieved by IDR [116], NeRF [76] and our method. Without sur-
face normals, NeRF lacks in details and produces blurry render-
ings. On the other hand, our method recovers fine surface details
and renders accurate images by blending surface normal informa-
tion in the volume rendering process. PSNR (higher the better),
LPIPS (lower the better).

As a second experiment, we increased Nc to 256, but we
did not use fine sampling. Here, the reconstruction error re-
mained at 0.66, showing that more samples must get similar
reconstruction quality.
(c) Effects of multiple light sources on NeRF: Since our
method uses multiple light sources for normal estimation
using deep PS, one could think about supplying multiple
light source images to NeRF. So, rather than choosing the
single best light source and apply NeRF to multi-view im-
ages, we test here what happens if we provide multiple light
source images to it. The motivation of this experiment is
to study the generalization of NeRF to (i) different light
sources, however, for each experiment the light is consis-
tent throughout the image sequence. (ii) what if the source
is changing over the image sequence of the dataset. For
this experiment, we sampled 20 lights out of 96 and ex-
perimented on the DiLiGenT-MV dataset. The minimal
condition for PS to work is having more than three im-
ages [106] under Lambertian assumptions, and therefore,
20 light source is good enough. Table 5 shows the empiri-
cal results for setup (i). For more results, see supp. material.

Dataset BEAR BUDDHA COW POT2 READING
NeRF [76] 0.80 1.07 0.78 0.81 1.18

Ours 0.70 1.06 0.79 0.73 0.98
Table 5. Quantitative 3D reconstruction accuracy against NeRF
[76]. We tested both approaches with 20 different light configura-
tions. We provide average scores using Chamfer-L1 metric.

Limitations and Further Study. Our method combines
two independent research fields that practice precise 3D re-
construction of an object from images. We demonstrated
that the proposed method provides favorable results against
the competing methods. However. we make a few assump-
tions, such as calibrated MVPS setup and solid objects,
which limit our approach to broader adoption. Further, we
do not explicitly model inter-reflections. Consequently, it
would be interesting to extend our work to the uncalibrated
settings. Also, exploring joint modeling of PS normal and
surface normal from the implicit surface representation is
left as a future extension. To improve the convergence time
and modeling of uncertainty, we are in process of assessing
[67, 4, 117, 27, 22].

5. Conclusion

We introduced a straightforward method that takes an
opportunistic approach to solve the multi-view photometric
stereo problem. We conclude that by exploiting the photo-
metric stereo image formation model and the recent contin-
uous volume rendering for multi-view image synthesis, we
can reconstruct the 3D geometry of the object with high ac-
curacy. Further, our formulation inherently utilizes the no-
tion of the density gradient by leveraging the photometric
stereo response and hence bypasses the explicit modeling
of 3D occupancy information. Of course, using prior from
structure-from-motion and its variants could be beneficial,
as it could provide surface occupancy directly, but it would
make the framework more complex. We demonstrated
that introducing knowledge about the density gradient to
the neural radiance field representation provides encourag-
ing improvements in MVPS. We assessed the suitability of
our work via extensive experiments on the DiLiGenT-MV
benchmark dataset. We believe that our work can open up
a new direction for study in multi-view photometric stereo
for further developments.
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