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Abstract

Contour information plays a vital role in salient object
detection. However, excessive false positives remain in
predictions from existing contour-based models due to
insufficient contour-saliency fusion. In this work, we
designed a network for better edge quality in salient object
detection. We proposed a contour-saliency blending module
to exchange information between contour and saliency.
We adopted recursive CNN to increase contour-saliency
fusion while keeping the total trainable parameters the
same. Furthermore, we designed a stage-wise feature
extraction module to help the model pick up the most helpful
features from previous intermediate saliency predictions.
Besides, we proposed two new loss functions, namely Dual
Confinement Loss and Confidence Loss, for our model to
generate better boundary predictions. Evaluation results
on five common benchmark datasets reveal that our model
achieves competitive state-of-the-art performance.

1. Introduction
Salient object detection (SOD) aims to detect and

segment the most attention-attractive region or object in
a visual scene. Unlike eye fixation prediction (FP)
[34], SOD requires obtaining the entire region with clear
boundaries. Due to its essential role and wide applications
in image understanding [53], image captioning [8][42],
search engines [54], AR/VR [30] and video summarization
[25], recently, various methods have been proposed in the
field.

Since 2015, Convolutional Neural Networks (CNNs)
[10][15] have been adopted for SOD tasks. Though
algorithms like PiCANet [23], BMPM [45], and PAGRN
[47] achieved significantly better results, the predicted
object usually has poor boundaries. To obtain more precise
boundaries, proposed by Qin et al., BASNet [31] adopted a
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Figure 1: Visual comparisons between contour-based
models. Saliency (first row) and corresponding contour
predictions (last row) are listed. Ground truth contours are
obtained via erosion and dilation with kernel size of 5. (a)
ground truth, (b) ours, (c) ITSD [52] and (d) PoolNet [22].

boundary refinement U-Net [32] at the end of the saliency
detection network and trained their model using various
losses. In [5], Chen et al. proposed Contour Loss (CTLoss),
which was a weighted Binary Cross-Entropy (BCE) loss,
to improve the boundary predictions. Alternatively, models
like EGNet [49], PoolNet [22], and ITSD [52] fused contour
predictions with saliency by explicitly supervising a contour
branch. With contour cues, models yielded better boundary
predictions.

However, above mentioned models still hold several
problems that can be further improved. First, for better
performance, many studies have introduced a huge number
of trainable parameters. EGNet contains 108 million
parameters, BASNet and its extended work, U2Net [30],
have more than 87 and 44 million parameters, respectively
(Fig. 2). The huge number of parameters not only leads
to increased consumption of computational resource, but
also makes the model difficult to train. Second, though
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Figure 2: Mean F-score, total parameter and MAE
comparison between RCSB with 13 state-of-the-art models,
including EGNet [49], PiCANet [23], C2SNet [18],
PoolNet [22], PAGE [37], Amulet [46], ITSD [52], BASNet
[31], U2Net [30], NLDF [24], AFNet [9], F3Net [39] and
CPD [40] on DUTS-TE [35] dataset. Bubble size represents
model size.

object boundary is greatly improved for contour-based
networks [22][49][52], predictions still have excessive false
positives, as shown in Fig. 1c and 1d. Finally, to our
best knowledge, for all deep learning-based models in the
current field, intermediate saliency or contour predictions
are generated and supervised via side branches, which
introduce redundant parameters and inefficiency.

To address the abovementioned issues, we proposed
a recursive contour-saliency blending network, namely,
RCSBNet, for high accuracy salient object detection.
We adopted a recursive CNN to reduce total trainable
parameters while we can make our model deep. Unlike
previous studies [22][49][52], where the contour and
saliency are explicitly trained via two branches, we
introduced a Contour-Saliency Blending (CSB) module in
our network so that contour and saliency are intertwined
and fused every step in the recursion. Meanwhile, to further
improve the efficiency, we proposed a Stage-wise Feature
Extraction (SFE) module to directly supervise intermediate
saliency and contour predictions in the primary network
without using any side branch. Lastly, we divided the
training task into accuracy and confidence, and proposed
Dual Confinement Loss (DCLoss) and Confidence Loss
(CLoss) respectively for better model performance. To sum
up, our contributions are as follows:

(1) We proposed an efficient and accurate network,
RCSBNet. By using a recursive CNN and the proposed
Stage-wise Feature Extraction (SFE) module, contour and
saliency are fused more efficiently and effectively.

(2) We developed two loss functions, DCLoss and
CLoss, to further help the boundary prediction.

(3) Our model has only 27.9 million parameters, which is
significantly smaller and efficient than most of the networks
in the field (Fig. 2).

(4) We conducted comprehensive evaluations on 5
widely used benchmark datasets and compared with 13
state-of-the-art methods. Our method achieves competitive
state-of-the-art results among all datasets.

2. Related Work
Early approaches based on hand-crafted priors

[6][12][44] have limited effectiveness and generalization
ability. The very first deep salient object detection (SOD)
methods [17][50] used multi-layer perceptron to predict
saliency score for each image. These methods suffered
from low efficiency and damage of feature structures
due to flattening. Later, some studies introduced a fully
convolutional network (FCN) and achieved promising
results.

Recurrent Networks. In [20], a recurrent convolutional
neural network (RCNN) was proposed for object detection.
The main idea was to unfold the same convolution layer
several times while weights are shared. It had the advantage
that model depth can now be deeper by unfolding, while the
total number of trainable parameters remains the same. It
also revealed that, by increasing the number of recursions,
better results would be obtained.

In 2016, the recurrent CNN was introduced to salient
object detection task, and proposed by Wang et al.
RFCN [36] recursively refines the saliency prediction
from previous time step. Later, proposed by Kuen et
al. [16], a recurrent network was designed to refine
selected image sub-regions iteratively. In [47], Zhang et al.
designed a multi-path recurrent model for saliency detection
by transferring global information from deep layers to
shallower layers. Hu et al. [33] proposed their salient object
detection model by concatenating multi-layer deep features
recurrently. It was proved that saliency predictions will be
refined by using recurrent mechanism.

Utilizing Contour Information. In recent years some
studies explored and verified the effectiveness of involving
contour information to improve the accuracy of saliency
prediction. In [5], Chen et al. considered boundary
pixels as hard samples and proposed a contour loss,
which was a weighted BCE loss, to train their network.
Qin et al. [31] combined Structural Similarity Index
(SSIM), Intersection over Union (IOU), and BCE as their
contour-aware loss function to achieve better boundary
quality. In another seminal work, Salient Edge Detector
(SED) [37] was introduced to simultaneously generate
saliency and contour predictions by using a residual
structure. Furthermore, PoolNet [22] applied multi-task
training and fused the contour information with saliency
predictions. Later, ITSD [52] proposed a two-stream
network to convert saliency and contour interactively
and yielded good boundary predictions. These studies
further corroborated the importance of employing contour
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information to improve saliency predictions.

3. Proposed Method
3.1. Overall Architecture

In previous contour-related networks [22][49][52], either
the contour was supervised in a separate branch to guide
the saliency prediction, or it was fused with saliency stage
by stage to achieve better boundary predictions. Both
approaches gave promising results, but there are two major
disadvantages: 1) late fusion: contours are fused with
saliency at the end of each stage. 2) limited fusion: the
number of fusion is limited by the number of U-Net stages.
For late fusion, we designed a Contour-Saliency Blending
Unit (CSBU) so that contour and saliency information can
be exchanged at a much earlier stage, while for limited
fusion, a recursive mechanism was adopted to circumvent
this constraint.

As shown in Fig. 3, the proposed RCSBNet is essentially
a U-Net, where we employ pre-trained ResNet-50 as
our encoder and a customized decoder adopting recursive
CNNs. Contour and saliency are blended in the recursion
block by the Contour-Saliency Blending Unit (CSBU).
Then saliency and contour features are split and fed into the
Stage-wise Feature Extraction (SFE) module for supervised
learning. At the last stage of the decoder, we concatenate
the prediction of contour and saliency with the input image,
followed by an additional recursive block, to generate the
final predictions.

3.2. ResNet-50 as the Encoder

We employ the pre-trained ResNet-50 as our encoder.
Since it contains a large number of feature maps in high-
level blocks, same as [52], we apply channel pooling (CP)
to reduce the number of channels to 64, and the operation
can be expressed as:

CP = collectj∈[0,m−1](maxk∈[0, nm−1]X
j× n

m+k) (1)

where X represents the raw feature map with total n
channels and j, k are integers. We divide X into m groups
then apply max-pooling and concatenate allmmaps. In our
experiments, m is set to 64. A convolution layer is attached
after the channel pooling layer to prepare the features for
further processing by the decoder, as shown in Fig. 3.

3.3. Contour-Saliency Blending Unit (CSBU)

Contour information is usually supervised and fused
with saliency at the end of each U-Net stage. For us, we
want to fuse the contour and saliency at earlier stages and
as many times as possible. Inspired by Shuffle-Net [48],
where convolution was divided into groups and information
is exchanged by shuffling the weight channels, we designed
our Contour-Saliency Blending Unit (CSBU). As illustrated

in Fig. 4a, the CSBU has a contour branch and saliency
branch. Features generated by each branch are concatenated
and blended. Mathematically, let F salk×k and F ctrk×k denote
the convolution for saliency and contour with kernel size k
respectively, while (Cn−1, Sn−1) and (Cn, Sn) represent
contour and saliency features before and after CSBU. For
simplicity, we omit ReLU [2] and BatchNorm [11] in our
formula, and then the proposed CSBU can be modeled as:

CTR = F ctr3×3(Cn−1) (2)

SAL = F sal3×3(Sn−1) (3)

Cn = F ctr3×3(F
ctr
1×1([CTR, SAL])) (4)

Sn = F sal3×3(F
sal
1×1([CTR, SAL])) (5)

and thus:

Sn, Cn = CSBU(Sn−1, Cn−1) (6)

By applying CSBU, contour and saliency information
can be utilized by the network at a much earlier stage.

3.4. Recursive Block

We now introduce more details of the recursive block,
as illustrated in Fig. 4b. Firstly let us consider a single
recursive block then we extend to more general cases. We
denote R as the total number of recursions in a single
block, and fr, r ∈ [[1, R]] denote the rth recursion of the
CSBU. Based on Eq. 6, let Xn−1 denote the input tuple
of (Sn−1, Cn−1), and XR represent the output of the Rth

recursion, then we have:

XR = fR(...(f2(f1(Xn−1)+Xn−1)+Xn−1)+...+Xn−1)
(7)

note that weights for CSBU are shared in recursion, though
they have different superscripts in the formula. Then we
apply a single convolution layer, denoted as F3×3, at the
end of recursion with skip connection. Thus the output of
our recursive block, Xn, is:

Xn = F3×3(XR +Xn−1) +Xn−1 = hb(Xn−1) (8)

where hb represents the recursive block function.
Now letG represent the total number of recursive blocks,

as shown in Fig. 4c, in our network we simply stack all the
recursive blocks together. Thus given the input Rn−1, a
tuple of (Sn−1, Cn−1), the output of g-th block, Rn, is:

Rn = hgb(h
g−1
b (...h2b(hb(Rn−1)))) (9)

where hgb represents the g-th recursive block function.
By applying recursive blocks and stacking them together,

contour and saliency can now be fused G × R times at
each stage of the U-Net, which will improve the network
performance significantly. We will show more results in
Sec. 4.
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Backbone
Channel
Pooling RCSB SFE Refinement Legend

Figure 3: Network architecture for RCSBNet. Pre-trained ResNet-50 is used as the backbone, channel number is reduced to
64 via Channel Pooling (CP) layer. Recursive Contour-Saliency Blocks (RCSB) with G blocks and R recursions are then
attached and followed by Stage-wise Feature Extraction (SFE) module to generate contour and saliency predictions. At the
end of the network, a refinement module is adopted to further refine the predictions.

(a) (b) (c) (d) (e)

Figure 4: (a) Contour-Saliency Blending Unit (CSBU). It contains two streams where contour and saliency information are
blended and intertwined. (b) Single Recursive Contour-Saliency Blending (RCSB) Block. In order to increase the number
of contour-saliency fusion, recursive mechanism is applied. Weights are shared among all CSBU blocks used in the RCSB.
(c) Network branch contains G blocks of RCSB, each with R times of recursion. (d) Stage-wise Feature Extraction (SFE)
module. (e) Conventional methods for generating intermediate stage predictions by using side branches.

3.5. Stage-wise Feature Extraction (SFE) Module

It is prevalent that saliency networks are densely
supervised, where intermediate stage features are generated
and supervised against ground truths to guide the model for
better convergence. Common practices create a side branch

with a few convolution layers to generate predictions from
current U-Net stage features, following which the stage
features are passed on to the next U-Net stage in the primary
network (Fig. 4e). Different from others, we regard stage
predictions as the best result the network can obtain so far
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and apply a new round of feature extraction based on current
stage predictions. Therefore, stage predictions are now in
the network’s main branch, acting as a single channel layer,
and supervised against ground truths, as illustrated in Fig.
4d. By doing so, the next block is expected to extract
valuable features from current best results and discard all
useless features, which might otherwise be carried along by
recursion and residual connections.

To generate stage predictions, unlike previous studies
[3][22][52], we do not use max-pooling because it will
bring false positives to the next stage, nor the element-wise
multiplication between contour and saliency like SCRN
[41] due to the introduction of false negatives. Instead,
we employ a 1 × 1 convolution and a scaling factor to
help sigmoid function classify saliency and background.
To formulate the SFE module mathematically, let Ci and
Si represent incoming i channels of feature maps, and K
represent the scaling factor learned by the network, then
stage prediction P j with j channels can be expressed as:

P 1
sal = F sal1×1(S

64
n−1) ∗Ksal (10)

P 1
ctr = F ctr1×1(C

64
n−1) ∗Kctr (11)

where * represents element-wise multiplication. For
extracted feature maps M j

n with j channels:

M64
n = F3×3(Up

×2[σ(P 1
sal), σ(P

1
ctr)]) (12)

where [ ] stands for concatenating, Up×2 is up-sampling,
and σ stands for sigmoid function. SFE is a simple module
but it is very effective, we will domonstrate more in ablation
studies.

3.6. Loss Functions

Unsure prediction is very common in salient object
detection in the form of shady areas (Fig. 5b). Many studies
try to improve the performance by focusing on hard pixels
near the boundary [5][39]. Boundary pixels are indeed hard
samples, but not all the hard samples are near the boundary.
We notice that the network can correctly predict the saliency
for some images, but with low pixel values; while for some
other images, the network is confident of generating false
negatives (FN) or false positives (FP), as illustrated in Fig.
5e and 5f. It points out two kinds of difficulties encountered
by the network: 1) unconfident but accurate predictions and
2) confident but inaccurate predictions. Hence in addition
to accuracy, we factor in the confidence of predictions, and
we introduce Confidence Loss (CLoss) to our training.

Confidence Loss. Recently focal loss [21][38] has been
explored in saliency tasks due to its high weight on wrong
predictions: Wfocal = α(ŷi,j − xi,j)γ . However, focal loss
becomes less sensitive as predictions approach ground truth,
which eventually leaves a large area of unsure predictions.

(a) (b) (c)

(d) (e) (f)

Figure 5: (a) ground truth saliency. (b) predicted saliency.
(c) focal loss (α, γ = 2, 2) weight map calculated using
(a) and (b). (d) confidence loss (β, λ = 2, 1) weight map
calculated using (a) and (b). (e) unconfident but correct area
(red) in prediction. (f) confident false positives (orange)
and false negatives (green) in prediction. Compare (d)
with (c), focal loss is less sensitive to unsure predictions,
while confidence loss generates high weights especially
on object boundaries, which eventually help the model
generate sharper edges.

In order to guide the model focus more on the
unconfident predictions, we propose a confidence score,
Wc, for each predicted pixel xi,j :

Wc = β ∗ xi,j ∗ (1− xi,j) (13)

where β is empirically set to 2, and xi,j is the prediction
after sigmoid. When xi,j = 0.5 the score reaches its
maximum. Then with ground truth ŷi,j , our confidence loss
(CLoss), Lcon, is defined as:

Lcon(β, λ) = −
1

n

n∑
i=1

[Wc∗BCE(xi,j , ŷi,j)+λWc] (14)

where λ is set to 0.3 by parameter search. By applying
this loss, it will encourage the model to make more
confident predictions into either foreground (close to 1) or
background (close to 0).

Dual Confinement Loss. Most of the contour-based
models use a separate contour branch to guide saliency
predictions. In [5], and [52], a weight map generated
from contour ground truth is applied to BCE loss to
improve saliency boundary quality while the contour branch
is supervised by BCE loss without any weights. It is
reasonable because contour information is from a separate
branch and is only used to guide saliency. Since in
our network, saliency and contour streams are going to
exchange information; thus we not only use contour to
guide saliency predictions but also want to use saliency
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to guide contour predictions. Based on this, we designed
our Dual Confinement Loss (DCLoss), and losses for each
stream, Lsal and Lctr, are defined as:

Lsal = −
1

n

n∑
i=1

[Wsal ∗BCE(xsali , ŷsali )] (15)

Lctr = −
1

n

n∑
i=1

[Wctr ∗BCE(xctri , ŷctri )] (16)

where weight matrix Wsal and Wctr are calculated by:

Wsal = max(xctri , ŷctri ) ∗ θ + 1 (17)

Wctr = max(xsali , ŷsali ) ∗ θ + 1 (18)

where x, ŷ stand for prediction and ground truth. Max-
pooling is used because higher weights need to be applied
when x is not close to y. Empirically, we set θ = 4 in our
experiments. Then the DCLoss, LDC , is defined as:

LDC = Lsal + Lctr (19)

Loss for Training. Compared with low-level predictions,
it should be relatively easy to emphasize accuracy on
high-level predictions due to its small feature dimension.
Meanwhile, a failure in high-level predictions will impact
its following decoders and eventually cause false positives
or negatives. Thus, we train stages 1 to 5 of our network
against accuracy-related losses, i.e. DCLoss and weighted
IOU loss mentioned in [39], and train the refinement
module against CLoss only. Our loss functions for saliency
and contour are defined as:

Lsaliency = L1−5
DC + L1−5

wIOU + Lrefcon(β, λ = 2, 0.3) (20)

Lcontour = L1−5
DC + Lrefcon(β, λ = 2, 0.3) (21)

where superscripts 1− 5 and ref represent the five decoder
stages and refinement module in Fig. 3.

4. Experiments
4.1. Datasets

We use DUT-OMRON [44](5168 images), ECSSD
[43](1000 images), PASCAL-S [19](850 images), HKU-
IS [17](4447 images), and DUTS-TE [35](5019 Images) as
our evaluation datasets.

4.2. Implementation Details

DUTS-TR [35] is used for training with input images
resized to 256×256, then random horizontal flipping and
90◦ rotation are applied as the augmentation. We use pre-
trained ResNet-50 [10] as the encoder. The number of
recursive blocks G is set to (1,2,2,3,3,5) with recursion
R = 3 for the network (Fig. 3) by parameter seach.

Besides, we apply Leaky ReLU [13] and adopt the Adam
optimizer [14] with default hyperparameters to train our
network. Learning rates for encoder and decoder are set
to 10−5 and 10−4 respectively, and they are halved every
20 epochs with a total of 100 epochs using a batch size
of 4. During testing, images are resized to 256×256, and
the predictions (256×256) are resized back to their original
size by using bilinear interpolation. We use PyTorch
[29] and a single RTX 3090 GPU for our model and
experiments. Code is available at: https://github.
com/BarCodeReader/RCSB-PyTorch.

4.3. Evaluation Metrics

Precision-Recall (PR) curve, Fβ-measure [1], Mean
Absolute Error (MAE), Fωβ -measure [26], and Eξ-measure
[7] are adopted in our experiments.

PR-Curve. By applying different thresholds from 0 to
255, PR curve is obtained by comparing the ground truth
masks against the binarized saliency predictions.

F-measure. The Fβ-measure is calculated by
precision and recall value of saliency maps: Fβ =
(1+β2)×Precision×Recall
β2×Precision+Recall where β2 is set to 0.3 [1]. We

report the average score over all thresholds from 0 to 255
and denote as Fβ [24][45].

MAE. MAE is the mean value of the sum of pixel-
wise absolute differences between predictions x and ground
truths ŷ: MAE = 1

n

∑n
i=1 |xi − ŷi|.

Weighted F-measure. Fωβ uses weighted precision
and weighted recall to measure both exactness and
completeness of the prediction against ground truth. It is
designed to improve the existing Fβ-measure.

E-measure. By using local pixel values and the
image-wise mean, Eξ calculates the similarity between the
prediction and the ground truth.

4.4. Comparisons with State-of-the-art Results

We compare our results with 13 state-of-the-art salient
object detection networks, including EGNet [49], PoolNet
[22], ITSD [52], AFNet [9], PAGE [37], CPD [40], BASNet
[31], CAGNet [27], GateNet [51], U2Net [30], GCPA [4],
MINet [28], and F3Net [39]. Saliency maps used are
provided by authors.

Quantitative Evaluation. To compare our work with
the state-of-the-art networks, detailed experimental results
in terms of four metrics are listed in Table 1. Among all
the models, RCSBNet achieves outstanding results across
all four metrics on most datasets. Besides, PR and F-
measure curves are demonstrated in Fig. 7. Our F-measure
curves are flatter than all other models, which reveals that
our results are closer to binary predictions and invariant to
threshold changes.

Qualitative Evaluation. Visual comparisons are listed
in Fig. 6. Compare with other contour-based network
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Table 1: Quantitative comparisons between RCSBNet and other 13 methods on five benchmark datasets in terms of the
average F-measure Fβ , MAE M , Eξ and Fωβ . ↑ / ↓ means the larger/smaller the value, the better the results. Red, Green,
and Blue indicate the best, second best and third best performance.

Method DUTS-TE HKU-IS PASCAL-S ECSSD DUT-OMRON
Fβ ↑ M ↓ Eξ ↑ Fωβ ↑ Fβ ↑ M ↓ Eξ ↑ Fωβ ↑ Fβ ↑ M ↓ Eξ ↑ Fωβ ↑ Fβ ↑ M ↓ Eξ ↑ Fωβ ↑ Fβ ↑ M ↓ Eξ ↑ Fωβ ↑

Contour-based Methods
EGNet19 [49] .815 .039 .891 .816 .901 .031 .950 .887 .817 .073 .848 .795 .920 .037 .927 .903 .755 .053 .867 .725

PoolNet19 [22] .819 .037 .896 .817 .903 .030 .953 .889 .826 .064 .852 .809 .919 .035 .925 .904 .752 .054 .868 .725
ITSD20 [52] .804 .041 .895 .824 .899 .031 .952 .894 .785 .065 .850 .812 .895 .034 .927 .911 .756 .061 .863 .750

Ours .855 .034 .903 .840 .923 .027 .954 .909 .842 .058 .852 .816 .927 .033 .923 .916 .773 .045 .855 .752
Non-Contour-based Methods

AFNet19 [9] .793 .046 .879 .785 .889 .036 .942 .872 .828 .078 .846 .804 .908 .042 .918 .886 .739 .057 .853 .717
PAGE19 [37] .777 .051 .854 .769 .884 .037 .940 .868 .817 .078 .835 .792 .906 .042 .920 .886 .736 .066 .853 .722
CPD19 [40] .805 .043 .886 .795 .891 .034 .944 .876 .831 .072 .849 .803 .917 .037 .924 .898 .747 .056 .866 .719

BASNet19 [31] .791 .047 .884 .803 .898 .032 .946 .890 .781 .076 .847 .800 .879 .037 .921 .904 .756 .056 .869 .751
CAGNet20 [27] .837 .040 .897 .817 .909 .030 .945 .893 .833 .066 .857 .808 .921 .037 .916 .902 .752 .054 .856 .728
GateNet20 [51] .806 .040 .889 .809 .898 .033 .949 .879 .819 .068 .852 .797 .916 .040 .924 .894 .746 .055 .862 .729
U2Net20 [30] .792 .045 .886 .804 .896 .031 .948 .889 .770 .076 .841 .792 .892 .033 .924 .910 .761 .054 .870 .751
GCPA20 [4] .817 .038 .891 .821 .898 .031 .949 .888 .826 .061 .847 .808 .919 .035 .920 .903 .748 .056 .860 .734

MINet20 [28] .828 .037 .898 .825 .909 .029 .953 .897 .829 .063 .851 .809 .924 .033 .927 .911 .755 .055 .865 .738
F3Net20 [39] .839 .035 .902 .835 .909 .028 .953 .900 .835 .062 .859 .816 .925 .033 .927 .912 .766 .053 .870 .747

Ours .855 .034 .903 .840 .923 .027 .954 .909 .842 .058 .852 .816 .927 .033 .923 .916 .773 .045 .855 .752

Image GT Ours* ITSD* PoolNet* EGNet* MINet F3Net U2Net BASNet PAGE GCPA CAGNet

Figure 6: Visual comparisons between our method and 10 state-of-the-art networks. * stands for models utilizing contour
information. More comparisons are provided in the supplementary material.

Figure 7: First row: Precision-Recall Curves comparison on five saliency benchmark datasets. Second row: F-measure
Curves comparison on five saliency benchmark datasets.
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results, our method yields better boundary predictions. As
shown in the graph, our model can produce accurate and
complete saliency maps with better edges.

4.5. Ablation Studies

Effectiveness of the early fusion (EF). To prove that
early fusion of contour and saliency information will
boost model performance, an experiment was conducted
by removing the fusion branch illustrated in Fig. 4a and
make it into two seperate streams. We list both quantitative
and qualitative measures between the two approaches on
DUTS-TE and ECSSD datasets, as shown in Table 2 and
Fig. 8.

(a) GT (b) w/ EF (c) w/o EF (d) w/ EF (e) w/o EF

Figure 8: Qualitative comparisons for early fusion. (a)
Ground-truth. (b) & (d) Saliency and contour prediction
with early fusion. (c) & (e) Saliency and contour prediction
without early fusion. As can be seen with early fusion,
results are more complete for both contour and saliency
predictions.

Table 2: Quantitative comparisons for the effectiveness of
early fusion.

DUTS-TE ECSSD
Fβ ↑M ↓Eξ ↑Fωβ ↑Fβ ↑M ↓Eξ ↑Fωβ ↑

w/ early fusion .855 .034 .903 .840 .927 .033 .923 .916
w/o early fusion.849 .037 .897 .833 .925 .035 .919 .908

Effectiveness of refinement module and supervised
on confidence. To study the importance of the refinement
module and prove the effectiveness of supervision on
confidence, we conducted 4 experiments on DUTS-TE and
ECSSD datasets covering all the cases for our comparison,
as listed in Table 3. For conciseness, we denote reference
module and supervision on confidence as Ref. and Conf..

It can be observed that each approach will boost the
performance, and when they are combined, we obtained the
best results.

Effectiveness of SFE module and different loss
functions. To study the importance of each loss function
and SFE module, we conduct a series of controlled
experiments on the DUTS-TE dataset. We train the model
by using BCE loss only, then include weighted IOU Loss
[39], DCLoss, and CLoss step by step. Detailed results are
listed in Table 4.

Table 3: Quantitative comparisons for different model
configurations.

Ref. Conf. DUTS-TE ECSSD
Fβ ↑M ↓Eξ ↑ Fωβ ↑ Fβ ↑M ↓Eξ ↑ Fωβ ↑

7 7 .842 .039 .849 .825 .916 .037 .914 .902
3 7 .848 .038 .861 .830 .920 .036 .916 .908
7 3 .849 .037 .870 .837 .922 .035 .921 .909
3 3 .855 .034 .903 .840 .927 .033 .923 .916

Table 4: Ablation study for different loss functions and
presence of SFE module.

BCE wIOU DCLoss CLoss SFE DUTS-TE
Fβ ↑ M ↓ Eξ ↑ Fωβ ↑

3 .788 .058 .862 .776
3 3 .793 .047 .881 .789

3 3 .829 .043 .890 .813
3 3 3 .847 .040 .896 .825
3 3 3 3 .855 .034 .903 .840

To prove the effectiveness of SFE module, qualitative
comparisons are illustrated in Fig. 9. As can be seen, with
SFE module, model can effectively suppress execessive
wrong predictions. Though SFE is a simple feature
extraction module, it improves overall performance.

(a) GT (b) w/ SFE (c) w/o SFE (d) w/ SFE (e) w/o SFE

Figure 9: Qualitative comparisons for SFE module. (a)
Ground-truth. (b) & (d) Saliency and contour prediction
with SFE module. (c) & (e) Saliency and contour prediction
without SFE module.

5. Conclusions

In this paper, we have introduced an efficient and
accurate model using a recursive CNN together with a
Contour-Saliency Blending (CSB) module. To further
improve the model’s efficiency, a Stage-wise Feature
Extraction (SFE) module is adopted. It is a simple
module but can suppress wrong predictions effectively.
Furthermore, we divided the training objectives into
accuracy and confidence and proposed two loss functions
to guide model convergence. The predicted salient
objects achieved comparable state-of-the-art results on five
benchmark datasets.
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