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Abstract

In this paper, we present T-Net, a fully convolutional net-
work particularly well suited for resource constrained and
mobile devices, which cannot cater for the computational
resources often required by much larger networks. T-NET’s
design allows for dual-stream information flow both inside
as well as outside of the encoder-decoder pair. Here, we
use group convolutions to increase the width of the network
and, in doing so, learn a larger number of low and inter-
mediate level features. We have also employed skip connec-
tions in order to keep spatial information loss to a minimum.
T-Net uses a dice loss for pixel-wise classification which al-
leviates the effect of class imbalance. We have performed
experiments with three different applications, retinal vessel
segmentation, skin lesion segmentation and digestive tract
polyp segmentation. In our experiments, T-Net is quite com-
petitive, outperforming alternatives with two or even three
orders of magnitude more trainable parameters.

1. Introduction

The correct segmentation of anatomical structures in the
medical image field is an important success factor in diag-
nosis and eventual treatment [1]. Medical image segmenta-
tion can be challenging even to seasoned experts with ample
experience [2]. This is due to the structural boundary ambi-
guity, heterogeneous texture, segmented area uncertainties,
intensity inhomogeneity and large contrast variations often
found in medical imagery.

Existing methods for the segmentation of medical im-
ages can be divided into unsupervised and supervised meth-
ods. Unsupervised methods employ low-level features and
ad-hoc rules that are manually designed and, therefore, of-
ten show poor generalisation properties. Supervised meth-
ods use human annotated training images and generally
have greater segmentation accuracy than unsupervised ap-

Figure 1: From left-to-right: A sample retinal image from
the DRIVE drive data set, the vessel segmentation yielded
by U-Net [14] and that delivered by T-Net. Despite being
two orders of magnitude smaller, our network provides a
margin of improvement.

proaches. Of these supervised methods, deep learning has
been particularly effective, allowing for end-to-end segmen-
tation with high accuracy and better generalisation proper-
ties than other alternatives [3].

Thus, many convolutional neural networks (CNNs) have
been proposed for medical image segmentation [4–9]. Fully
Convolutional Networks (FCN) for semantic segmentation
with skip-layers to preserve spatial localization information
were proposed in [4]. Inspired by FCNs, U-Net was pro-
posed in [5]. Guo et al [10] have proposed a CNN model
based upon a reinforcement strategy. To improve segmen-
tation results, Li et al [11] proposed a connection-sensitive
U-Net. In a related development, a pre-trained CNN model
has been used in [12] for retinal image segmentation. Not-
ing that, in [12], the segmentation task can become cumber-
some if images are corrupted by noise, Yan et al [13] pro-
pose the use of segmentation-level as well as a pixel-level
joint loss.

Despite these methods generate supervised segmentation
results of a quality well beyond their unsupervised counter-
parts, training and testing these networks can be compu-
tationally expensive. This is compounded by the limited
amounts of densely annotated data for a wide variety of
conditions and imaging modalities. Moreover, in medical
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Figure 2: Diagram showing the structure of T-Net.

imaging, usually the image size is large, further increasing
computational complexity. As a result, most of the CNN ar-
chitectures above fail to train on high-resolution data sets on
a single mid-range GPU. For such approaches, either mul-
tiple GPU’s with much larger memory are required or the
data set under consideration must be down-sampled before
training. This is particularly undesirable in medical imag-
ing, where down-sampling of images is discouraged as criti-
cal features may be downgraded to the point of affecting the
diagnosis. An alternative, in terms of complexity, is shallow
alternatives with a reduced number of layers [15, 16]. In
these lightweight networks, the number of filters per layer
is often been reduced by search, stemming from hardware
needs [15].

This paper presents an effective tiny neural network ar-
chitecture which we call T-Net. T-Net is a general architec-
ture specifically tailored for resource-constrained environ-
ments and mobile platforms with limited memory and com-
putational resources. This is due to the small number of pa-
rameters in T-Net, which requires a much smaller memory
and GPU footprint for testing as compared to alternatives
with much larger number of parameters.

2. T-Net

T-Net aims at preserving boundary information and de-
tail by using the least possible number of pooling layers.
This is since these often reduce the dimension of the fea-
ture maps and can also cause the loss of spatial information.
Further, we have also employed skip connections and, so as

to keep the complexity low, we have used a small number
of convolutional layers. We have also reduced the overall
number of convolutional filters within each layer and used
grouped convolutions to further reduce the complexity of
the network. Finally, but not least, we have addressed the
problem of class imbalance by using a Dice loss in the pixel
classification layer. To illustrate the utility of our method
for purposes of medical image segmentation, we have per-
formed experiments in three different medical applications.
These are retinal vessel segmentation, intestinal polyp de-
tection and skin lesion segmentation.

In Figure 2 we show the structure of T-Net. Note that
our network has six convolutional blocks, where the first
block of these is the input one, followed by two down-
sampling convolutional blocks. There is an intermediate
convolutional block which bridges between the down and
up-sampling blocks. There are two up-sampling convo-
lutional blocks followed by the final convolutional output
block which is equipped with the essential final layers re-
sponsible of creating the pixel-wise segmentation map. All
the encoder blocks generate the respective collection of fea-
tures making use of convolutions between the input fea-
ture maps and the filter banks. Following [17] we have
performed batch normalisation on these features followed
by the application of a ReLU. The resulting feature maps
are then passed on to the max-pooling or unpooling lay-
ers, depending upon whether the block under consideration
is a down-sampling or up-sampling one. All max-pooling
and unpooling layers have set to be a size of 2×2, non-
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overlapping with a stride of size 2. In our network, we have
used only two max-pooling and two unpooling layers. All
the convolutional filters in our network are of size 3× 3.

2.1. Preserving Boundary Information

In our network, we preserve the boundary structure of
the foreground regions making use of two different strate-
gies. Firstly, boundary information at the convolutional
block level is preserved through residual skip connections
comprised of a 1 × 1 convolutions and a batch normalisa-
tion operation. For the structural information preservation,
we have also employed identity skip connections between
the encoder and the corresponding decoder blocks. Our mo-
tivation to use identity skip connections as an alternative to
dense skip pathways also stems from the notion that fea-
ture preservation within each convolutional block can help
bridging the semantic gap between the encoder and decoder
while helping to maintain computational overhead under
check. Recall that grouped convolution is an important fac-
tor in reducing CNN complexity and thus facilitating train-
ing of larger neural networks. Here we use grouped con-
volutional layers for channel-wise separable (also known
as depth-wise separable) convolution. The layers are con-
volved with the input for each group by moving the filters
vertically and horizontally along the input, computing the
dot product of the weights and the input, and then adding a
bias term.

2.2. Dice Coefficient Loss

Note that it is not uncommon in medical image segmen-
tation for the anatomy of interest to occupy only a small re-
gion of the scan. This frequently causes the learning process
to become trapped in local minima of the loss function, re-
sulting in a network with predictions that are heavily biased
towards the background. As a result, the foreground region
is frequently missing or detected only partially. In this pa-
per, we employ an L-2 loss on the Dice coefficient so as to
attain the advantage of avoiding the need to assign weights
to balance the contribution to the loss of pixels arising from
different classes to balance foreground and background.

Thus, we use the loss given by:

L =
∑
I∈I

(1−DI)
2 (1)

where DI is the Dice coefficient for the image I in the
dataset I under consideration.

Recall the Dice coefficient is a scalar ranging from 0 to
1 which can be written as:

DI =
2
∑
i∈I yiŷi∑

i∈I yi
2 +

∑
i∈I ŷ

2
i

where yj represents the predicted binary segmentation label
for to the ith pixel in the image I ∈ I and ŷi denotes the
corresponding ground truth.

With these ingredients, its straightforward to compute
the gradient of the loss in Equation 1 with respect to the
predicted segmentation label, which is given by

∇yiL = 2(1−DI)
∂DI

∂yi

where, as before, the pixel indexed i belongs to the image
I . In the equation above, the partial derivative of the Dice
coefficient can be directly computed using the following ex-
pression
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3. Experimental Setup

3.1. Datasets

We have evaluated our network using six publicly avail-
able databases across three medical imaging segmentation
applications. These are retinal vessel and skin lesion seg-
mentation and digestive tract polyp detection. For the reti-
nal vessel segmentation, we have evaluated our network us-
ing four publicly available image data sets: CHASE–DB1
[18]1, DRIVE [19]2, STARE [20]3 and e high-resolution
fundus (HRF) 4. The DRIVE data set originated from a di-
abetic retinopathy screening program held in the Nether-
lands. It covers a wide age range of diabetic patients and
consists of 20 color images for training and 20 color images
for testing that are saved in JPEG format with an image size
of 584×565 pixels. Among these 40 images, only seven im-
ages have small signs of mild early diabetic retinopathy. A
binary field of view (FOV) mask for each image is available.
Both training and test images are equipped with manual ves-
sel segmentation as ground truth that has been annotated by
experts.

The STARE data set is a collection of 20 color retinal
fundus images captured at 35◦ FOV with an image size of
700×605 pixels. Out of these 20 images, 10 images contain
pathologies. Two different manual segmentation maps are
available for each of these images. Here we employ the first
expert segmentation as ground truth. The CHASE data set
consists of 28 color images of 14 school children in Eng-
land. A 30◦ FOV centered at optic disc is used to capture
each image with an image resolution of 999×960 pixels.
Two different manual segmentation maps are available as

1The data set can found at https://blogs.kingston.ac.uk/
retinal/chasedb1/

2The data set is widely available at https://drive.
grand-challenge.org/

3More information regarding the STARE project can be found at
https://cecas.clemson.edu/˜ahoover/stare/

4The dataset can be found at https://www5.cs.fau.de/
research/data/fundus-images/
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ground truth. Again, here we employ the first experts seg-
mentation for our experiments. The CHASE dataset doesn’t
contain any dedicated training or testing sets. Here we have
used the first 20 images for training and the last 8 images
for testing.

HRF consists of 45 high resolution images of
3504×2336 pixels (15 images of glaucomatous patients, 15
images of patients with diabetic retinopathy and 15 images
of healthy patients) [21]. For a fair comparison, we con-
structed the same training set comprising the first 5 images
of each subset and tested on all remaining images, as re-
ported in [21, 22].

For the skin lesion segmentation, we have used the PH2
[23] and the ISBI 2016 Skin Lesion Challenge data set [24].
These are public data sets 5. The ISBI 2016 dataset corre-
sponds to the ”Skin Lesion Analysis Towards Melanoma
Detection” challenge. This dataset contains 900 images of
different sizes. The dataset of PH2 includes 200 dermo-
scopic images acquired at the Dermatology Service of Hos-
pital Pedro Hispano, Matosinhos, Portugal.

Finally, for the polyp detection, we have used the CVC-
ClinicDB dataset [25] 6. The CVC-ClinicDB is a database
of frames extracted from 29 colorectal colonoscopy videos,
all of which have at least one polyp. In addition to the
frames, ground truth is provided. The dataset hence con-
tains 612 images in tiff format of size 384 × 288 pixels
with its corresponding label maps.

3.2. Implementation and Training

All our experiments have been effected on an Intel(R)
Xeon(R) W-2133 3.6 GHz CPU with 96GB RAM and a
GeForce GTX2080TI GPU. Our implementation of T-Net
used stochastic gradient descent with a fixed learning rate.

For all our experiments, a weighted cross-entropy loss is
used as an objective function for training. This choice stems
from the observation that, in vessel segmentation, the “non-
vessel” pixels in each retinal image heavily outweigh the
“vessel” pixels. For the assignment of the loss weights, dif-
ferent methods can be used. Here, we calculate class asso-
ciation weights by using median frequency balancing [26].

Note that there is no dedicated test set available for
STARE or CHASE data sets. For STARE, in the literature,
typically a “leave-one-out” approach is used [27]. Here,
we have used both “leave-one-out” and a 50%-50% data
split, i.e. 10 images for training and 10 for testing. For
the CHASE data set we have used the first 20 images for
training and the last 8 images for testing.

5The data sets are accessible at https://challenge.
kitware.com/#phase/566744dccad3a56fac786787 and
https://www.fc.up.pt/addi/ph2database.html, respec-
tively

6The dataset is available at https://polyp.
grand-challenge.org/CVCClinicDB/

Also, since the retinal vessel segmentation data sets used
here are quite small in nature, we have used data augmen-
tation to generate enough data for training. For the data
augmentation, we have used rotation and contrast enhance-
ment. For the rotations, each training image is rotated by
1 degree. The contrast enhancement has been done by ran-
domly increasing and decreasing the image brightness. This
yields 7600 images for the DRIVE and CHASE DB data
sets and 7000 images for each of the leave-one-out trails of
the STARE data.

Here we have followed the experimental protocols in
[28] for the PH2+ISBI 2016 data set, whereby the 900 im-
ages from the ISBI 2016 data set are employed for train-
ing and, for testing, the 200 images from the PH2 data set
are used. For the CVC-ClinicDB data set [25] we have
used a similar training and testing strategy as that adopted
by [29, 30]. Thus, we have selected 80% images randomly
for training, 10% are used for validation and 10% for test-
ing.

3.3. Evaluation Criteria

Recall that vessel segmentation maps are binary,
whereby a pixel is marked as corresponding to a vessel or
the background. The “ground truth” provided with pub-
licly available datasets are manually marked by expert clin-
ician. Thus, in each image, each pixel is classified into
an area of interest (retinal vessels, skin lesions, intestinal
polyps, etc.) if present. Note that, for each output image,
there are four results: pixels which are correctly predicted
as an area of interest (true positive (TP)), pixels which are
correctly predicted as non-interesting (true negative (TN)),
non-interesting pixels incorrectly predicted as such (false
positive (FP)) and, finally, interesting pixels incorrectly pre-
dicted as such (false negative (FN). Making use of this in-
gredients, in the literature, four common parameters (Sensi-
tivity, Specificity, Accuracy and F1) are often used to com-
pare methods with one another.

In our experiments hereafter we denote the accuracy,
showing the ratio of the pixels segmented correctly to the
total number of pixels in the expertly annotated mask, as
Acc. The Se and Sp reflect the sensitivity and specificity
that show how the vessel and non-vessel pixels are iden-
tified accurately in the model. In our vessel segmentation
results we also show the area under the curve (AUC) for the
receiver operating characteristic (ROC). We have done this
since these data sets have an unbalanced distribution of pos-
itives and negatives [31], where the AUC-ROC is often con-
sidered to be a good indicator of how the model can sepa-
rate positive and negative classes in segmentation problems.
Also, note that, for segmentation, and viewing it as binary
classification task the Sørensen–Dice (Dice) coefficient is
equivalent to the F1 score.

Finally, in our polyp segmentation experiments, we fol-
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low [29], where the weighted Dice metric Fωβ is used to
amend Dice’s “Eual-importance flaw”. The mean absolute
error (MAE) is used to evaluate the pixel-level accuracy and
the Sα the similarity between the predicted segmentation
and the ground-truth [32]. We evaluate the pixel-level and
global level similarity making use of a recently proposed
measure called enhanced-alignment metric (Emax

ϕ ) [29] 7.

4. Ablation Study

We commence by presenting an ablation study for our
network. To do this, we tested different hyper-parameters,
the number of filters used in the convolutional layers and
the influence of the skip connections. We have done this
to assess both their impact on the performance as well as
on the number of trainable parameters. Table 1 shows the
impact of number of filters across different convolutional
layers. As shown in Figure 2, T-Net has 21 convolutional
layers (12 in the encoder and 9 in the decoder) distributed
across 7 blocks (4 in the encoder and 3 in the decoder). Each
of these blocks is comprised by two single and one group
convolution.

Also, note that the blocks corresponding to the encoder-
decoder pairs have the same number of filters. Following
this structure, in Table 1 we show the results yielded by T-
Net for different filter configurations when applied to the
DRIVE dataset. In the table, each of the variants of our net-
work has been denoted using the triplet {b1, b2, b3}, where
bi, i ∈ {1, 2, 3} corresponds to the number of filters in each
block, whereby the fourth block on the encoder has the same
number of filters as the third block of the encoder and the
decoder, i.e. b3 filters. From the table, we can conclude that
reducing the number of filters in the convolutional layers
does not overly affect the performance but it significantly
reduces the overall size of the network. Moreover, the often
used filter triplet size of {64, 128, 256} yields a number of

7We have used the implementation available at https://github.
com/DengPingFan/PraNet. For our evaluation results we used the
default parameters in the implementation by the authors.

Figure 3: Sample retinal vessel segmentation results on the
DRIVE dataset. From left-to-right, we show the input im-
ages, the ground truth vessel map manually annotated by
an expert and the results yielded by T-Net, SegNet [33] and
U-Net [14].

Figure 4: Sample retinal vessel segmentation results on the
STARE dataset. From left-to-right, we show the input im-
ages, the ground truth vessel map manually annotated by
an expert and the results yielded by T-Net, SegNet [33] and
U-Net [5].

trainable parameters of more then 2 million. However, if
this is reduced to {8, 16, 24}, then the number of trainable
parameters is reduced nearly two orders of magnitude while
the overall performance remains quite comparable. More-
over, the removal of the skip connections does have a detri-
mental effect on the performance. Further, skip connections
only add 1186 trainable parameters to the {8, 16, 24} con-
figuration.

Following our results, we have employed the {8, 16, 24}
configuration in all our experiments. We have also
tested this configuration with different initial learning rates
(ILRs). As shown in Table 2, an ILR of 1e−03 gives the best
results and, hence, we have used this value in all our exper-
iments. Its also worth noting, however, that our network is
quite robust to different values of ILR, whereby the varia-
tions in performance in the table are quite minor across the
range of learning rates we tested.

5. Results and Comparison
5.1. Medical Image Segmentation

We now present results obtained on the five data sets un-
der consideration. We commence by presenting qualitative
retinal vessel segmentation results on the DRIVE dataset in
Figure 3. In the figure, we show, from left-to-right, the input
images, the expertly annotated vessel map (ground truth)
and the segmentation results yielded by our method, Seg-
Net [33] and U-Net [14]. In the figure, and in all our quali-
tative results hereafter, we use green and black for the cor-
rectly predicted vessel pixels and red and blue for the false
positives and false negatives, respectively. In Table 3, we
show the corresponding qualitative results, now also includ-
ing alternatives such as Image BTS-DSN [37] and Vessel-
Net [38]. Note that, our network delivers a marginal perfor-
mance improvement over all the alternatives even when its
much smaller in terms of its number of parameters. This is
consistent with our qualitative results, which show the three
networks deliver segmentation maps which are quite com-
parable.

We now turn our attention to the STARE data set. In Fig-
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Filters Se Sp Acc F1-score Layers Parameters

T-Net {64, 128, 256} 0.8258 0.9834 0.9695 0.8257 81 2228870
T-Net {32, 64, 128} 0.8284 0.9828 0.9693 0.8250 81 596482
T-Net {16, 32, 64} 0.8281 0.9825 0.9689 0.8233 81 150278
T-Net {8, 16, 32} 0.8251 0.9816 0.9678 0.8180 81 35270
T-Net {8, 16, 24} 0.8262 0.9862 0.9697 0.8269 81 25910

T-Net {8, 16, 24} without skip connections 0.8270 0.9822 0.9689 0.8232 66 23886

Table 1: Results yielded by T-Net for different filter configurations when applied to the DRIVE dataset

ure 4 we show sample results as delivered by our network,
SegNet [33] and U-Net [14]. We show quantitative results
in Table 4. Again, note that our method performs quite
competitively against all the alternatives for both, leave-
one-out and 50%-50% training strategies while being much
more economical in terms of size as compared to all the
other methods under consideration. For instance, the second
best F1 score after T-Net on leave-one-out is Patch BTS-
DSN [37], whose trainable parameters are almost 200 times
as many as those in our network. U-Net [14], which has the
best accuracy in leave-one-out has over 3.4 million param-
eters. T-Net comes second with more than 100 times less
parameters.

In Figure 5 we show qualitative results on the CHASE
data set. In the figure we have followed the same sequence

ILR Se Sp Acc F1 score

3e−04 0.8263 0.9828 0.9690 0.8235
4e−04 0.8307 0.9825 0.9691 0.8250
5e−04 0.8283 0.9828 0.9693 0.8251
6e−04 0.8254 0.9826 0.9689 0.8225
7e−04 0.8277 0.9825 0.9689 0.8233
8e−04 0.8313 0.9821 0.9688 0.8237
1e−03 0.8262 0.9862 0.9697 0.8269
2e−03 0.8281 0.9826 0.9690 0.8238

Table 2: Results for different initial learning rates (ILR) on
the DRIVE dataset

Figure 5: Sample retinal vessel segmentation results on the
CHASE dataset. From left-to-right, we show the input im-
ages, the ground truth vessel map manually annotated by
an expert and the results yielded by T-Net, SegNet [33] and
U-Net [14].

of presentation as that in Figures 3 and 4. The qualitative
results for the CHASE data set are presented in Table 5.
T-Net is the best performer by all measures except for the
specificity (Sp), where its outperformed by MS-NFN [39].
Nonetheless, T-Net is still quite competitive regardless of
having approximately 14 times less parameters.

The qualitative results of T-Net on the HRF dataset are
presented in Figure 6. It is worth noting that, for our experi-
ments, we have used then original image size (3504×2336).
This is possible due to the low overhead of T-Net. This con-
trasts with the common practice of downsampling the im-
ages and labels for training and testing by a factor of 4 [21].
It is also noteworthy that T-Net can capture tiny vessel in-
formation on high-resolution images. Table 6 summarises
the quantitative results of the proposed T-Net with existing
state-of-the-art methods. T-Net achieves far better accuracy
and specificity with comparable sensitivity as compared to
methods using Pixel-wise loss [21], Joint losses [21], the
random field in [22] and M2U-Net [42].

In Figure 7 we show sample segmentation maps yielded
by our method when applied to skin lesion segmentation
using the PH2+ISBI 2016 challenge data set. Note that our
method can cope well with a wide variety of lesion size,
shape, colour and texture. Table 7 presents the quantitative
comparison of our method against other five state-of-the-
art segmentation methods. As per the table, our method
achieves the overall best performance on both, the F1-score
(DICE) and Jaccard coefficient. Moreover, overall, our ap-
proach achieves much better performance than all the other
methods under consideration in Table 7 despite being, by
far, the smaller in size.

Figure 6: Retinal vessel segmentation results on the HRF
dataset. From left-to-right: input images, ground truth, re-
sult obtained by M2-UNet [42] and that yielded by T-Net.
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Method Se Sp Acc AUC F1 score Params(M)

SegNet [33] 0.7949 0.9738 0.9579 0.9720 0.8182 28.4
Three-stage FCN [34] 0.7631 0.982 0.9538 0.9750 N.A 20.4

VessNet [35] 0.8022 0.9810 0.9655 0.9820 N.A 9
DRIU [36] 0.7855 0.9799 0.9552 0.9793 0.8220 7.8

Image BTS-DSN [37] 0.78 0.9806 0.9551 0.9796 0.8208 7.8
U-Net [14] 0.7849 0.9802 0.9554 0.9761 0.8175 3.4

Vessel-Net [38] 0.8038 0.9802 0.9578 0.9821 N.A 1.7
MS-NFN [39] 0.7844 0.9819 0.9567 0.9807 N.A 0.4

FCN [40] 0.8039 0.9804 0.9576 0.9821 N.A 0.2
T-Net 0.8262 0.9862 0.9697 0.9867 0.8269 0.026

Table 3: Comparison results on the DRIVE dataset

Method Se Sp Acc AUC F1 score Dataset split

DRIU [36] 0.8036 0.9845 0.9658 0.9970 0.831 50%/50% (train/test)
Patch BTS-DSN [37] 0.8212 0.9843 0.9674 0.9859 0.8421 50%/50% (train/test)
Image BTS-DSN [37] 0.8201 0.9828 0.966 0.9872 0.8362 50%/50% (train/test)

SegNet [33] 0.8118 0.9738 0.9543 0.9728 0.8162 50%/50% (train/test)
T-Net 0.8249 0.9875 0.9754 0.9890 0.8333 50%/50% (train/test)

U-Net [14] 0.764 0.9867 0.9637 0.9789 0.8133 leave-one-out
VessNet [35] 0.8526 0.9791 0.9697 0.9883 N.A leave-one-out

Three-stage FCN [34] 0.7735 0.9857 0.9638 0.9833 N.A leave-one-out
T-Net 0.8319 0.9871 0.9741 0.9875 0.8311 leave-one-out

Table 4: Results on the STARE dataset. Best results are in bold.

Method Se Sp Acc AUC F1 score

Three-stage FCN [34] 0.7641 0.9806 0.9607 0.9776 N.A
MS-NFN [39] 0.7538 0.9847 0.9637 0.9825 N.A

Vessel-Net [38] 0.8132 0.9814 0.9661 0.9860 N.A
BTS-DSN [37] 0.7888 0.9801 0.9627 0.9840 0.7983
DEU-Net [41] 0.8074 0.9821 0.9661 0.9812 0.8037
SegNet [33] 0.8190 0.9735 0.9638 0.9780 0.7981
U-Net [14] 0.8355 0.9698 0.9578 0.9784 0.7792
Proposed 0.8323 0.9844 0.9739 0.9889 0.8143

Table 5: Comparison results on the CHASE dataset. Best
results are in bold.

Method Se Sp Acc Pr

Pixel-wise loss [21], 0.8084 0.9417 0.9298 0.5930
Joint losses [21] 0.7881 0.9592 0.9437 0.6647
Orlando [22] 0.7874 0.9584 – 0.6630
Laibacher [42] – – 0.9635 –
T-Net 0.8024 0.9822 0.9685 0.7936

Table 6: Comparison results on the HRF dataset. Best re-
sults are in bold.

Method F1 score Jacc Params(M)

JCLMM [43] 82.85 - NA
MSCA [44] 81.57 72.33 NA
SCDRR [45] 86 76 NA

Multistage FCN [28] 90.66 83.99 10
FCN+BPB+SBE [46] 91.84 84.3 8

T-Net 0.9282 0.8696 0.026

Table 7: F1 score and Jaccard coefficient comparison on
PH2+ISBI 2016 challenge dataset. Best results are in bold.
The first three alternatives are not based upon neural net-
works and, hence, the number of parameters does not apply
(NA)

Finally, we present example intestinal polyp results on
the CVC-ClinicDB data set [25] in Figure 8. Table 8
presents the quantitative comparison of our method with
five state-of-the-art segmentation methods. Table 8 shows
that the performance of T-Net is the best in terms of Mean
F1-score and Emax

ϕ . For Fωβ and Sα and accuracy (Acc)
PraNet [29] performs better while our network comes sec-
ond best. SFA [48] yields the best mean absolute error
(MAE) with our method being again the second. These

650



Methods Mean F1 score Sα Fωβ Acc Emax
ϕ MAE Params(M)

U-Net++ [47] 0.794 0.729 0.785 0.873 0.931 0.022 9
SFA [48] 0.701 0.607 0.647 0.793 0.885 0.042 19.8

PraNet [29] 0.899 0.849 0.896 0.936 0.979 0.009 32.5
T-Net 0.931 0.852 0.901 0.9781 0.996 0.010 0.026

Table 8: Quantitative results on the CVC-ClinicDB data set. Best results are in bold.

DRIVE CHASE
Method Dice Acc AUC Dice Acc AUC

M2U-Net [42] 0.8091 0.9630 0.9714 0.8006 0.9703 0.9666
ERFNet [49] 0.7652 0.9598 0.9633 0.7872 0.9716 0.9785

MobileNet-V3-Small [15] 0.6575 0.9371 0.9376 0.6837 0.9571 0.9673
T-Net 0.8269 0.9697 0.9867 0.8143 0.9739 0.9889

Table 9: Comparison with recent light-weight networks in
terms of quantitative performance on DRIVE and CHASE
datasets. Best results are highlighted in bold font.

Model Params Size Platform
MobileNet-V3-Small [15] 2.5M 11.0MB NVIDIA GTX 1080Ti

ERFNet [49] 2.06M 8.0MB Tegra TX1
M2U-Net [42] 0.55M 2.2MB NVIDIA GTX 1080Ti

T-Net 0.026M 0.11MB NVIDIA GTX 1080Ti

Table 10: Comparison of computational requirements of re-
cent light-weight networks and T-Net. Lower values are
preferred.

results are consistent with those presented throughout the
section, where our network is quite competitive and often
outperforms the alternatives.

5.2. Comparison with Light-weight Architectures

We now turn our attention to the comparison of T-Net
with recent light-weight networks on retinal vessel segmen-
tation. In Table 9, we present the Dice, Acc and AUC deliv-
ered by a number of these networks as compared to T-Net
when applied to the DRIVE and CHASE datasets.

It can be seen from Table 9 that T-Net outperforms the
alternatives in terms of all three quantitative measures as

Figure 7: Qualitative results on images from the PH2+ISBI
2016 challenge data set. From left-to-right: input images,
ground truth and segmentation map delivered by T-Net and
accuracy map showing correctly segmented pixels (black
and green), false positives (red) and false negatives (blue).

Figure 8: Example results on images from the CVC-
ClinicDB data set. From left-to-right: input images, ground
truth and segmentation map delivered by T-Net and accu-
racy map showing correctly segmented pixels (black and
green), false positives (red) and false negatives (blue).

compared with the state-of-the-art light-weight networks in
the table. This is consistent with the results presented ear-
lier in the section. A potential reason for the low perfor-
mance of the MobileNet-V3-Small [15] can be attributed
to its light-weight segmentation head, which features large
pooling kernel and a large stride [15], thus, failing to cap-
ture information at finer scales. Moreover, current state-
of-the-art networks are not well-suited to high resolution
medical images due to their large memory footprint during
training. For instance, ERFNet [49] can not be trained on
the HRF dataset using our training setup, i.e. a GPU with
11GB of RAM. This also applies to M2U-Net [42].

6. Conclusions

In this paper, we have presented T-Net, a convolutional
neural network for medical image segmentation which is
quite small as compared to alternatives elsewhere in the lit-
erature. Our network is particularly well suited for resource
constrained and mobile devices, which cannot accommo-
date much larger networks. Here, we have kept pooling op-
erations to a minimum and integrated skip connections into
the network so as to preserve spatial information. Our net-
work also employs a small number of kernels per convolu-
tional layer. We have illustrated the utility of T-Net in reti-
nal vessel segmentation and skin lesion segmentation and
intestinal polyp recognition. In our experiments, T-Net is
quite competitive, outperforming a number of alternatives
that are much larger in terms of trainable parameters.
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