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Abstract

Advancements in adaptive object detection can lead to
tremendous improvements in applications like autonomous
navigation, as they alleviate the distributional shifts along
the detection pipeline. Prior works adopt adversarial learn-
ing to align image features at global and local levels, yet
the instance-specific misalignment persists. Also, adaptive
object detection remains challenging due to visual diver-
sity in background scenes and intricate combinations of ob-
jects. Motivated by structural importance, we aim to attend
prominent instance-specific regions, overcoming the feature
misalignment issue. We propose a novel resIduaL seLf-
attentive featUre alignMEnt (ILLUME) method for adaptive
object detection. ILLUME comprises Self-Attention Fea-
ture Map (SAFM) module that enhances structural atten-
tion to object-related regions and thereby generates domain
invariant features. Our approach significantly reduces the
domain distance with the improved feature alignment of
the instances. Qualitative results demonstrate the ability
of ILLUME to attend important object instances required
for alignment. Experimental results on several benchmark
datasets show that our method outperforms the existing
state-of-the-art approaches.

1. Introduction

Object detection has shown significant improvement in
the deep learning era. Mostly the two-stage detectors such
as Faster R-CNN [30] are widely used in domain adaptation.
However, they usually rely on a large amount of training
data, which requires task-specific annotation efforts and is
also cost-intensive. Also, they work well only on label-rich
domains with no domain gaps and often fail to generalize
well in universal settings due to the dataset bias.

Unsupervised Domain Adaptation (UDA) attempts to
handle the problem of dataset bias for different tasks. Re-

Figure 1: Top: Visualization of the self-attention feature
map (right) for Foggy cityscapes [33] target sample (left)
enhancing the prominent structural regions - instances like
person/car. Middle: State-of-the-art (left) unsuccessfully
detects multiple bicycles as a single instance compared to
ours (right) which correctly detects multiple bicycles as dif-
ferent instances. Bottom: Instance-level feature visualiza-
tions using tsne. State-of-the-art (left) misalign source and
target instance features, compared to our method (right).
Misalignment error and domain distance are significantly
reduced using our approach which improves detection per-
formance. Refer section 4.4 for further details.

cently UDA methods have been widely used in multiple
tasks that involve deep learning. UDA also offers an appeal-
ing solution by adapting object detectors from label-rich
source domains to unlabeled target domains. Among the
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widely used UDA methods [48, 59], adversarial training has
shown significant results. The feature extractor is trained
to generate domain invariant features, thereby deceiving the
domain classifier, which tries to focus on correctly classify-
ing source and target domains. In the literature, adversarial
training has been well-studied for domain adaptive image
classification, semantic segmentation, and object detection.
Complex localization due to intricate combinations of ob-
jects and multiple scales, makes detection a challenging task
as compared to others like classification. Of many domain
adaptive detection methods, [3] is a representative work that
trains Faster R-CNN in an adversarial manner to be domain
adaptive. To address the domain shift problem, the adaptive
detector aligns image and instance distributions across do-
mains with adversarial training. Recently, the domain adap-
tive Faster R-CNN has rapidly evolved into successful meth-
ods [21, 40, 2, 32, 48]. We note that object detection also
focuses on local regions that may contain objects of interest.
Subsequently, although instance-level alignment can match
object proposals in both domains, current practices do not
address the problem of misaligned label spaces effectively,
resulting in low detection performance.

To overcome this, we propose an adaptive object detec-
tion method based on self-attention. Our method improves
instance-specific feature alignment by significantly reduc-
ing the misalignment error. The learning process is in-
spired by the structural importance of memorizing an ob-
ject irrespective of domain/background differences. Align-
ing feature distributions of prominent object-related regions
to train the Faster R-CNN detector helps it generalize well.

We design a novel architecture that comprises a residual
self-attentive feature alignment module to generate i) self-
attention feature maps, and ii) a pixel-wise domain classi-
fier output. These components are combined to generate
domain invariant attention feature maps. Finally, these at-
tention feature maps are combined with initial feature maps
of the image in a residual manner, giving instance-specific
attentive feature maps as shown in Fig. 1 (top). With en-
hanced structural attention and improved feature alignment,
our model detects multiple instances correctly. As shown in
Fig. 1 (middle), state-of-the-art model [21] detects multiple
instances of the bicycle as a single object, in contrast, our
model correctly detects them as different objects. To sum-
marize, following are the main contributions of our work:

• We propose a novel ILLUME method to effectively en-
hance the instance feature alignment. We are the first
to investigate self-attention based feature alignment for
detection task in domain adaptation.

• We propose a simple yet effective SAFM module that
focuses on attending the instances that are necessary
for adaptation with prominence to object-related struc-
tural regions, without any need of regularisation.

• We tackle the instance-specific misalignment issue
with the incorporation of multi-stage residual self-
attentive alignment that significantly reduces domain
distance between source and target instance features.

• The proposed method is evaluated on several bench-
mark datasets and outperforms recent domain adap-
tive detection approaches. Additionally, we conduct
detailed ablation studies to disambiguate the role of
SAFM for achieving improved detection performance.

2. Related Work
Object detection. Object detection problems are widely

studied in computer vision. In the era of deep learning and
CNNs’ success, object detection can be categorized into two
classes: one-stage detectors [29, 24] and two-stage ones
[30]. Although one-stage detectors have high efficiency
and have become popular, two-stage detectors are widely
adopted for pursuing much higher performance. In particu-
lar, Faster R-CNN [30] is a classical two-stage object detec-
tor and is widely adopted for domain adaptive detection.

Unsupervised domain adaptation. Domain shift prob-
lem is frequently encountered in the real world when mod-
els are deployed in slightly different conditions compared
to the training data. This issue is addressed using UDA ap-
proaches resulting in better generalization. A lot of UDA
methods based on adversarial learning have been proposed.
Previous work in the UDA setting are investigated in differ-
ent topics including image classification [26, 9, 14, 22, 25,
37, 51], semantic segmentation [6, 16, 28, 41, 42, 54].

Domain adaptation for object detection. Researches
on domain adaptation in object detection are still in the early
stage. With the achievement of domain adaptation in classi-
fication, Chen et al. [3] proposed a pioneering framework of
domain adaptive Faster R-CNN. For domain adaptive Faster
R-CNN, [32] focuses the adversarial alignment loss on glob-
ally similar images. As stated in the paper, the method does
not work right when the appearance of the objects is largely
different. The unsuccessful detection results also suggest
that structural importance is necessary for alignment. Xu et
al. [48] recently explored categorical consistency between
image and instance-level prediction, aligning relevant ob-
ject regions. But they use an additional instance-level clas-
sifier as a regulariser. Chen et al. [2] proposed a method
for harmonizing transferability and discriminability of fea-
tures. CycleGAN was used to generate interpolated im-
ages to reduce global discriminability. Vibashan et al. [40]
proposed a method to ensure category-aware feature align-
ment for learning domain-invariant features. They generate
category-specific attention maps since category information
is not available for target samples. Li et al. [21] proposed
a self-training paradigm to reduce the domain gap. This re-
quires pseudo-labels as ground truth to exploit the unlabeled
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Figure 2: Proposed architecture of the ILLUME. Initial image features are fed to the SAFM module to generate self-attentive
feature maps and pixel-wise domain classifier output, combined to form final attention feature maps. They are combined with
initial feature maps of the image in a residual manner. The SAFM module is incorporated at multiple stages in our network
thereby generating domain invariant features and enhancing structural importance during feature alignment.

target data. These state-of-the-art methods require addi-
tional modeling or regularisation for better alignment of in-
stances. Comparatively, our method is simple yet efficient,
with focus on aligning important instances using residual
self-attention and does not require any regularisation.

Attention in domain adaptation. The self-attention
mechanism hasn’t been explored in domain adaptive ob-
ject detection space. Prior works [2, 40, 41, 34, 44, 19, 43,
27, 20] have focused on using attention or entropy maps
for various tasks like classification, detection, and segmen-
tation. Such works require additional pseudo-labeling in
the target domain [34, 2, 43] or use attention only at the
local level [44] or to optimize the relationships of multi-
ple domain samples for better semantic transfer [50]. [19]
uses cycleGAN for domain translation. [40] use category-
specific attention to route features to the category discrim-
inator. [20] employ the task-specific semantic information
to guide pyramid attention. Some works use self-attention
in classification/segmentation task - to augment source fea-
tures by selectively aggregating target features based on
their similarities [49] or to eliminate the influence of un-
transferable features [53] or just as a regularizer indepen-
dent of the adaptation [45]. These are entirely different from
the way we use self-attention for detection task to improve
instance feature alignment. We also don’t require additional
regularisation or augmentation, given the ability of ILLUME
to align the instances well.

Some of the prior works in UDA also focus on the fea-
ture misalignment issue. [18] performs class-aware domain

alignment. [47] weights the learning losses of alignment
to guarantee information balance. [10] proposed an uncer-
tainty metric that assesses the alignment of each sample. IL-
LUME effectively outperforms these works as well as meth-
ods using attention for classification as shown in Table 6.

3. Approach
We design a novel architecture that comprises the self-

attention feature alignment module. We aim to align feature
distributions of instances that are prominent for the adap-
tive detection instead of background as discussed in Sec-
tion 1. Initially, the features are extracted from a batch of
training data, comprised of one source and one target im-
age. These features are then fed to the Self-Attentive Fea-
ture Map (SAFM) module. SAFM generates self-attentive
feature maps and pixel-wise domain classifier output using
the Gradient Reversal Layer (GRL) [8] used by the domain
classifier. These features are further combined to form do-
main invariant feature maps and then combined in a residual
manner where the final attention feature maps are combined
with the initially extracted feature maps of the image. Fur-
ther SAFM module is incorporated at multiple stages in our
network thereby generating domain invariant features.

3.1. Problem Formulation
In Unsupervised Domain Adaptation (UDA), we have la-

beled source data Ds = (Xs
i , Y

s
i ) where X represents the

source images and Y ∈ Rm×5 represents the list of bound-
ing boxes and corresponding class labels. Similarly, we
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have unlabelled target data Dt = Xt
i for training the de-

tector. Despite sharing similar label space, the source and
target data are sampled from different distributions which
contribute to the large domain gap between them. ILLUME
helps to generate self-attentive domain invariant features,
necessary for alignment in DA. Our proposed method is
based on the Faster R-CNN framework.

3.2. Residual Self-attentive Feature Alignment
Our proposed method comprises a novel residual self-

attentive feature alignment module shown in the architec-
ture diagram (Fig. 2). This method generates self-attention
feature maps and a pixel-level domain classifier output, dis-
cussed in detail in the next section.

3.2.1 Self-Attentive Feature Map Module (SAFM)

Initially, the image is fed to the feature extractor F1 as
shown in Fig. 2. F1 extracts image-level features f1, which
are then passed to the SAFM module. In the SAFM, we use
a self-attention module and a domain classifier to produce
the combined self-attentive domain invariant feature maps.
The domain classifier is trained in an adversarial manner
with loss function L1 as shown in the equation below,

L1 =

ns∑
i=1

log(D1(F1(x
s
i )))

2 +

nt∑
i=1

log(1−D1(F1(x
t
i)))

2

(1)
where F1(x

s) denotes extracted features of source training
data and F1(x

s) denotes extracted features of target training
data respectively. D1 is a domain classifier that produces a
pixel-wise probability output map for the source and tar-
get input features. The gradient reversal layer is used in
between the feature extractor and domain classifier of an
adaptive object detector in an adversarial manner, which
reverses the gradients during backpropagation. The self-
attentive feature maps are generated using the self-attention
module where we use key, query, and value vectors. The
Q (query) and K (key) undergo a matrix multiplication and
pass through a softmax which converts the resultant vector
into a probability distribution, and then it finally gets mul-
tiplied by V (value). In self-attention, the query, the key
and, the value is all same. Here we pass the features f1
extracted from feature extractor F1 to the SAFM module
to generate self-attention feature maps enhancing structural
importance, necessary for alignment, where Q1 = K1 =
V1 = f1. The Query Q1 and Key K1 undergo matrix multi-
plication as shown in Eq.(2). Further, they undergo softmax
and finally are multiplied to value vector V1 as shown in
Eq.(3). which gives the final self-attentive feature maps.

QK1 = Q1 ×K1 (2)

ATmap1
= softmax(QK1)× V1 (3)

The pixel-wise probability output of discriminatorD1 is de-
noted as shown in Eq.(4). Finally the features from SAFM
module ATmap1

and domain classifier output D1 are com-
bined to form the final domain invariant self-attention fea-
ture maps SAmap1 as shown in equation below,

D1 = Dcls1(f1) (4)

SAmap1
= ATmap1

×D1 (5)

3.2.2 Residual Connectivity and Multi Stage SAFM

We now combine the self-attentive feature maps SAmap1

and the initial image features f1 in a residual manner, as
shown in the Eq. (6). Resultant features RSmap1 are do-
main invariant. Such incorporation of SAFM module to
generate domain invariant features at multiple stages of the
network can be very efficient in terms of the transferabil-
ity of features. Hence we incorporate SAFM module in our
network at multiple stages as shown in the Eq. (7) and (8).

RSmap1
= SAmap1

× f1 (6)

We show the attention feature maps RSmap1 in Fig. 1. At-
tention feature maps quantify the importance of structural
alignment necessary for aligning features of instances in-
stead of background like road/sky. Final features f3 which
are the output of the detection backbone network are then
passed to the RPN layer to train the Faster R-CNN for UDA.

f2 = F2(RSmap1
) (7)

RSmap2
= SAmap2

× f2 (8)

f3 = F3(RSmap2
) (9)

The adversarial loss L2 can be derived as,

L2 = E[log(D2(F2(RS
s
map1

)))+

log(1−D2(F2(RS
t
map1

)))] (10)

RSmap1
and RSmap2

are the final domain invariant at-
tention feature maps passed to feature extractors F2 and F3,
respectively. The transformed features f3 form the final out-
put of the backbone detection network which are fed to the
Region Proposal Network (RPN) of Faster R-CNN detector
for object detection. Finally, the instance level features fins
are fed to the instance level domain classifier Dins giving
the instance level domain classifier loss. The instance-level
adversarial domain classifier loss is as follows,

Lins = −
ns∑
i=1

∑
j

log(Dins(f
s
ins)j)

−
nt∑
i=1

∑
j

log(1−Dins(f
t
ins)j) (11)
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3.3. Training Loss

The training loss is the combination of the detection loss
and the adversarial loss. The detection loss is as shown,

Ldet = Lcls + Lreg (12)

where Lcls and Lreg denotes the classification and regres-
sion losses respectively for object detection. Note that this
detection loss is calculated only on source samples and not
the target samples as in UDA we consider unlabelled target
samples. The adversarial loss is a combination of multistage
detector training losses given as follows,

Ladv = L1 + L2 + Lins (13)

where, L1, L2 and Lins are the multi-stage losses of the do-
main classifiers D1, D2 and Dins as discussed in previous
section. Finally, the overall training loss can be derived as,

Loss = max
Di

min
Fi

Ldet + λ · Ladv (14)

where λ is a hyperparameter used for balancing detection
and adversarial losses while training.

4. Experiments
4.1. Datasets

To perform different experiments we utilized six differ-
ent datasets. Cityscapes [4] has variational data of outdoor
street scenes captured in normal weather conditions from
different cities. It contains 2975 training and 500 validation
images. The bounding box annotations for object detection
have been generated by transforming the instance segmen-
tation annotations in the dataset for our experiments. Foggy
Cityscapes [33] is inherited from the Cityscapes dataset by
using depth information to simulate the foggy weather with
three levels of foggy weather suitable for weather adapta-
tion experiments. BDD100K [52] contains 100K images,
70K training, and 30K validation images with annotated
bounding boxes. We use a daytime subset of this data for
scene adaptation experiments consisting of 36,728 training
and 5,258 validation images. Sim10K [17] is a synthetic
dataset that is rendered from the game Grand Theft Auto V
(GTA V). It consists of 10,000 images of street scenes with
58,701 bounding box annotations for cars. Pascal VOC [7]
is a dataset containing real-world image data of 20 different
common object categories along with bounding box annota-
tions. We use both Pascal VOC 2007 as well as 2012 train-
ing and validation data (16,551 training images in total) for
our experiments. Clipart1K [15] consists of 1K training
images with the same classes as Pascal VOC but exhibits a
significant domain gap between them. We use all the train-
ing and testing images in clipart1K for experiments.

4.2. Implementation Details

We use the PyTorch framework for all the tasks. Fol-
lowing the practices in [38, 48] we employ VGG-16 [35]
as backbone network where their weights are pre-trained on
the Imagenet Dataset [5], but for dissimilar domain adap-
tation experiments for Pascal VOC [7] to Clipart1K [15],
we follow practices of [32, 48] and use ResNet-101 [12]
as backbone network for detection. In all our experi-
ments the shorter side of all the training and testing im-
ages is resized to 600 following practices in [3, 32, 48].
Each batch in our training data is composed of two im-
ages, one from the source and another from target samples.
We fine-tune the detection network with a learning rate of
1 × 10−3 for 50K iterations and then reduce the learning
rate to 1 × 10−4 for the other 20K iterations. The momen-
tum of 0.9 and the weight decay of 5 × 10−4 is used for
VGG-16 [35] based detectors, while for ResNet-101 [12]
based detectors, we set it to 1 × 10−4. In all experiments,
we use RoIAlign [11] for RoI feature extraction. The hy-
perparameter λ is set to 0.1 for synthetic to real adapta-
tion task (Sim10K [17] → Cityscape [4]) and λ = 1 for
all other adaptation tasks. We compare our method with
Source-Only baseline [3] (Faster R-CNN trained using only
source images) as well as the other state-of-the-art meth-
ods [3, 1, 2, 48, 59, 56, 13, 36, 58, 23, 46, 40, 55, 21]. We
use mean average precision (mAP) metrics for evaluation.

4.3. Comparisons with State-of-the-Art

Synthetic to Real Adaptation. Synthetic data is pro-
foundly available and can be processed to create large
datasets instead of creating real-time data. Results of adap-
tation from Sim10K [17] as source to Cityscapes [4] as tar-
get are shown in Table 3. Our method’s performance boosts
the AP by 19% over the Source-Only baseline. Moreover, it
outperforms all state-of-the-art methods with a significantly
higher margin and improvement in mAP of over 4.3%.

Weather Adaptation. We use Cityscapes [4] as source
and Foggy Cityscapes [33] as target for weather adaptation.
ILLUME boosts the performance of Faster R-CNN detector
with an improvement of 1.5% and 22% in mAPs as com-
pared to the state-of-the-art and source-only baseline, re-
spectively, as shown in Table 1. It also improves perfor-
mance over Oracle detector (Supervised). We note that for
most of the classes, our model outperforms oracle reason-
ably cause of our adaptive detection method compared to
the full supervision in foggy weather. Our results are high-
est for all the categories except for only two - person and
rider, for which DSA [46] have better accuracies. Yet, their
method restrains the learning of final task, requiring an ad-
ditional pre-training process to overcome the limitation.

Scene Adaptation. We choose Cityscapes [4] training
set as source and a subset of BDD100K as target to study the
effectiveness of ILLUME for scene adaptation. We choose
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Table 1: Weather Adaptation: Results on Foggy Cityscapes, using models trained on Cityscapes

Method person rider car truck bus train mcycle bicycle mAP
Faster R-CNN (Source) [3] 24.4 25.4 32.6 10.8 30.5 9.1 15.2 28.3 22.0

MTOR (ICCV’19) [1] 30.6 41.4 44.0 21.9 38.6 40.6 28.3 35.6 35.1
AFL (AAAI’21) [23] 34.1 44.4 51.9 30.4 41.8 25.7 30.3 37.2 37.0

DMLP (ECCV’20) [56] 32.0 42.1 43.9 31.3 44.1 43.4 37.4 36.6 38.8
ATFR (ECCV’20) [13] 34.6 43.3 50.0 23.7 47.0 38.7 33.4 38.8 38.7
PDA (ECCV’20) [36] 36.4 47.3 51.7 22.8 47.6 34.1 36.0 38.7 39.3
SDA (CVPR’19) [58] 33.5 38.0 48.5 26.5 39.0 23.3 28.0 33.6 33.8

ICR-CCR (CVPR’20) [48] 32.9 43.8 49.2 27.2 45.1 36.4 30.3 34.6 37.4
HTCN (CVPR’20) [2] 33.2 47.4 47.9 31.6 47.5 40.9 32.3 37.1 39.8

RPN-PR (CVPR’21) [55] 33.3 45.6 50.5 30.4 43.6 42.0 29.7 36.8 39.0
DSA (CVPR’21) [46] 42.9 51.2 53.6 33.6 49.2 18.9 36.2 41.8 40.9

MeGA-CDA (CVPR’21) [40] 37.7 49.0 52.4 25.4 49.2 46.9 34.5 39.0 41.8
CGD (AAAI’21) [21] 38.0 47.4 53.1 34.2 47.5 41.1 38.3 38.9 42.3

ILLUME (Ours) 35.8 45.1 54.3 34.5 49.7 50.3 38.7 42.0 43.8
Faster R-CNN (Oracle) 36.2 47.7 53.0 34.7 51.9 41.0 36.8 37.8 42.4

Table 2: Scene Adaptation: Results of 7 common categories of BDD100K, using models trained on Cityscapes.

Method person rider car truck bus train mcycle bicycle mAP
Faster R-CNN (Source) [3] 26.9 16.7 44.7 17.4 22.1 - 17.1 18.8 23.4

ICR-CCR [48] 31.4 18.9 46.3 19.5 31.3 - 17.3 23.8 26.9
AFL [23] 32.4 32.6 50.4 20.6 23.4 - 18.9 25.0 29.0

ILLUME (Ours) 33.2 20.5 47.8 20.8 33.8 - 24.4 26.7 29.6

Table 3: Synthetic to Real Domain Adaptation: Results
on Sim10K to Cityscapes (%).

Methods AP on Car
Faster R-CNN (Source) [3] 34.6

ATFR [13] 42.8
HTCN [2] 42.5
AFL [23] 43.1
DSA [46] 44.5

MeGA-CDA [40] 44.8
RPN-PR [55] 45.7

iFAN [59] 47.1
CGD [21] 48.8

ILLUME (Ours) 53.1

only daytime annotated subset of BDD100K as target since
there exists only daytime data in the Cityscapes [4]. We
report the detection results on seven common categories for
both datasets. As shown in Table 2, we achieve improved
performance by 0.6% and 6% in mAPs as compared to the
current state-of-the-art (AFL) and source-only baseline.

Dissimilar Domain Adaptation. We utilize Pascal
VOC [7] as source and Clipart1K [15] as target for dissim-
ilar domain adaptation from real to artistic images. Our
method’s performance boosts the AP by 14% over the
Source-Only baseline as shown in Table 4. Moreover, it out-
performs most of the state-of-the-art methods with compa-
rable performance to AFTR [13]. We perform equally better

for all categories. We do not have a degrading performance
on any, as can be seen for the dog, cat, or sheep categories
using AFTR or sheep and dog categories using MEAA, that
have very low mAPs overall. Notably our framework com-
prises an independent multi-stage SAFM, while ATFR uses
an additional ancillary net for source risk bounding.

4.4. Visualisation and Analysis
Ablation Study. We conduct ablation in the absence of

SAFM at multiple stages of the network, as shown in Ta-
ble 5. We can see a high-performance drop-in mAP by
4.8% without any SAFM (row 1) and a 2.7% drop with a
single first-layer SAFM module (row 2), compared to IL-
LUME. This drop denotes significance of multi-stage resid-
ual self-attentive alignment that substantially improves de-
tection performance. We choose a design to use 2-SAFM(s)
because with additional SAFM(s), we got slightly degraded
performance due to overfitting as shown in last row of ta-
ble. We consciously feed high-level features to SAFM to
enhance structural object-related regions.

Visualisations of the Transformed Features. As shown
in Fig. 3 (top), we visualize the transformed features that
are the output of the detection backbone, using ILLUME.
The enhanced features depict the efficiency of our method
to transform features such that only important instance fea-
tures would be considered by Faster R-CNN to learn domain
invariance essential for alignment. We show visualizations
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Table 4: Dissimilar Domain Adaptation: Results on the Clipart1K dataset, using models trained on the Pascal VOC
Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

Source only [3] 21.9 42.2 22.9 19.0 30.8 43.1 28.9 10.7 27.4 18.1 13.5 10.3 25.0 50.7 39.0 37.4 6.9 18.1 39.2 34.9 27.0
ICR-CCR [48] 28.7 55.3 31.8 26.0 40.1 63.6 36.6 9.4 38.7 49.3 17.6 14.1 33.3 74.3 61.3 46.3 22.3 24.3 49.1 44.3 38.3

HTCN [2] 33.6 58.9 34.0 23.4 45.6 57.0 39.8 12.0 39.7 51.3 21.1 20.1 39.1 72.8 63.0 43.1 19.3 30.1 50.2 51.8 40.3
ATFR [13] 41.9 67.0 27.4 36.4 41.0 48.5 42.0 13.1 39.2 75.1 33.4 7.9 41.2 56.2 61.4 50.6 42.0 25.0 53.1 39.1 42.1

ILLUME (Ours) 34.4 58.5 33.3 27.5 37.8 59.9 36.8 25.2 38.9 47.6 26.2 24.5 21.9 72.4 67.4 47.6 27.4 35.9 51.4 58.4 41.6

Figure 3: Top: Visualizations of the transformed features using our ILLUME method that enhance the importance instances.
It is worth noting that, the (top left) feature maps for source (Cityscapes) and target (Foggy Cityscapes) images are similar
irrespective of the difference in the domains due to foggy weather. The top right are the similar visualizations results for
dissimilar DA tasks (Pascal VOC to clipart). Middle: Visualisations of self-attentive feature maps enhancing instances like
car or bus in the image obtained using SAFM module. Bottom: Detection results on target images (Foggy Cityscapes),
comparing the state-of-the-art [21] (left) and our method (right).

Table 5: Ablation on Cityscapes to Foggy Cityscapes.
Method per rid car tru bus tra mcy bic mAP

Source-Only [3] 24.4 25.4 32.6 10.8 30.5 9.1 15.2 28.3 22.0
ILLUME w 0-SAFM 34.7 45.3 51.9 31.8 47.2 30.6 32.3 38.2 39.0
ILLUME w 1-SAFM 35.6 47.8 52.7 33.7 45.2 40.3 34.5 38.7 41.1

ILLUME (Ours) 35.8 45.1 54.3 34.5 49.7 50.3 38.7 42.0 43.8
ILLUME w 3-SAFM 35.0 44.8 54.1 33.8 47.9 48.4 38.2 41.6 43.0

Oracle 36.2 47.7 53.0 34.7 51.9 41.0 36.8 37.8 42.4

for two DA tasks. For the weather adaptation (left), it is
worth noting that the feature map for both source and tar-
get images highlighting the important instances is similar
irrespective of the domain gap due to foggy weather. This
proves the efficiency of our method. For dissimilar adapta-
tion (right), a similar visualization analysis can be seen.

Self-attentive Feature Maps and Detection Results.
We visualize self-attention feature maps, enhancing impor-
tant instances in the image for alignment (using SAFM).

We show improved detection results using ILLUME (right)
as compared to state-of-the-art [21] (left) on target images
(Foggy Cityscapes) for weather adaptation task in Fig. 3.

Feature Visualisation using t-sne. We visualize the im-
proved feature alignment for weather adaptation task using
t-sne as shown in Fig.4 (a). For this experiment, we ran-
domly sample 500 images from the source and target do-
main each. The image features are extracted by applying
global average pooling on the output of the detection back-
bone. We also show the instance-level visualizations for
train instance. For this, we randomly sample 100 ground
truth instances for each category, extracted by ROIAlign.
State-of-the-art method [21] misalign the features for source
- train with target - bus. Comparatively, with our approach
the target instance features for bus form a separate clus-
ter and source features for train (red) align perfectly with
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Figure 4: Visualization of features using t-sne [39]. (b) shows the adaptation results for Cityscape (source - red) to Foggy
Cityscape (target - blue). Our method match feature distributions strictly well. The bottom row shows the instance-level
feature visualizations using t-sne for train as the source with its aligned target instance. State-of-the-art method misalign the
train instance features with bus (cyan), compared to ours where instance features for source - train are correctly aligned with
target - train instead of bus that are clustered separately. The domain distance is reduced significantly using our approach.
We also show graphs for misalignment error reduction using our approach. T - train. O - other instances. B - bus.

the correct target - train (blue) instead of some other in-
stance like bus. Instance feature misalignment. We cal-
culate misalignment error for this experiment as shown in
figure (right). The combined error for train instance mis-
aligned with bus (T-B) and other instances (T-O) is reduced
by large margin of 26.4% as compared to state-of-the-art.
Domain distance. We also calculate quantitative metric
for domain distance, where both domains are represented
by object instances. We use the same number of instance
samples as the feature visualization experiment for all cat-
egories. Specifically, we adopt euclidean distance as the
metric for measuring domain distance. With this metric, do-
main distance computed are 8.1 and 6.3 using state-of-the-
art and our method respectively. The consistency between
domain distance, improvement in the accuracy of the in-
stances and better instance-level feature alignment verifies
the motivation for our work and effectiveness of ILLUME.

Application on UDA for classification. The effective-
ness of our method increases the scope of exploring self-
attentive feature alignment for other tasks in domain adap-
tation. We show the applicability of our method for other
tasks like classification and perform experiments on the
widely used Office-31 dataset [31]. It contains 4,110 images
of 31 categories in three domains: Amazon (A), Webcam
(W), DSLR (D). With incorporation of our multi-stage resid-
ual SAFM(s) and training with combined adversarial as well
as classification loss; we evaluated our method on six adap-
tation tasks as shown in Table 6. We achieve competitive
performance with an accuracy of 91%, without additional

domain augmentation like FixBi [26]. Notably, we com-
pare against approaches using attention [44, 34, 53] as well
as the works focusing on feature misalignment [47, 18] and
recent state-of-the-arts in classification task for UDA. We
briefly discuss these prior works in Section 2. This proves
the efficiency and applicability of ILLUME.

Table 6: Accuracy (%) on Office-31 for classification in DA

Method A-W D-W W-D A-D D-A W-A Avg
TADA (AAAI’19) [44] 94.3 98.7 99.8 91.6 72.9 73.0 88.4

EADA [34] 94.0 97.9 100.0 94.2 74.6 74.9 89.3
TAN [53] 95.4 98.7 100.0 93.3 73.7 75.1 89.3

CRA (AAAI’21) [57] 93.0 99.0 100.0 95.6 78.9 74.7 90.2
DWL (CVPR’21) [47] 89.2 99.2 100.0 91.2 73.1 69.8 87.1
CAN (CVPR’19) [18] 94.5 99.1 99.8 95.0 78.0 77.0 90.6
FixBi (CVPR’21) [26] 96.1 99.3 100.0 95.0 78.7 79.4 91.4

ILLUME (Ours) 96.2 99.4 99.9 96.8 76.4 77.7 91.0

5. Conclusion
We presented a novel ILLUME method for adaptive ob-

ject detection. Specifically, we explored self-attention
mechanism for enhancing prominent object-related regions
to improve feature alignment. Our method significantly re-
duces misalignment error and domain distance. ILLUME
outperforms the performance of existing adaptive Faster R-
CNN detectors and set new benchmarks.
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