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Abstract

Several recent papers introduced techniques to adjust
the attributes of human faces generated by unconditional
GANS s such as StyleGAN. Despite efforts to disentangle the
attributes, a request to change one attribute often triggers
unwanted changes to other attributes as well. More impor-
tantly, in some cases, a human observer would not recog-
nize the edited face to belong to the same person. We pro-
pose an approach where a neural network takes as input the
latent encoding of a face and the desired attribute changes
and outputs the latent space encoding of the edited image.
The network is trained offline using unsupervised data, with
training labels generated by an off-the-shelf attribute clas-
sifier. The desired attribute changes and conservation laws,
such as identity maintenance, are encoded in the training
loss. The number of attributes the mapper can simultane-
ously modify is only limited by the attributes available to the
classifier — we trained a network that handles 35 attributes,
more than any previous approach. As no optimization is
performed at deployment time, the computation time is neg-
ligible, allowing real-time attribute editing. Qualitative and
quantitative comparisons with the current state-of-the-art
show our method is better at conserving the identity of the
face and restricting changes to the requested attributes.

1. Introduction

Attribute-based editing of human face images is an ac-
tive research field with many immediate practical applica-
tions. Starting from an image of a person, the objective is
to generate a new picture where one or more specific at-
tributes such as age or facial expression are changed. To
provide the user with the greatest amount of creative con-
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trol, this change needs to be implemented in such a way as
to keep all the other attributes as close as possible to their
original values. It is not desirable, for instance, for the pro-
cedure to add eyeglasses to the face when making it older:
the presence of the glasses should be an independently con-
trollable attribute. Furthermore, in many applications, it is
a prerequisite that the person in the modified image remains
recognizably the same person as in the original one, even if
many attributes had changed.

Until recently, such functionality was achieved by creat-
ing 3D models of faces, and implementing the changes by
either modifying the 3D model or by replacing the textures.
However, progress towards achieving photorealistic images
using these techniques had been slow.

Recent progress in generative adversarial networks
(GANs) offers a different approach for the generation of
face images. Inspired by the style transfer literature, ar-
chitectures such as StyleGAN [12] and StyleGAN-v2 [13]
generate face images by successively applying different
“styles” at the various layers of the network. Although
the images show a non-existing person, randomly sampled
from the latent space of possible faces, the images are pho-
torealistic to the degree that most observers mistake them
for photographs. More recently, GAN inversion techniques
made possible to find a position corresponding to a real-
world photograph in the latent space, allow the creation of a
workflow that can change the attributes of arbitrary pictures.
Techniques that rely on autoencoders instead of GANs can
use the encoder component for the same purpose [19].

Once we have the latent space representation of a picture,
it is a reasonable assumption that variants of the picture with
one or more changed attributes will be encoded by nearby
latent space points. Several recent papers investigated the
possibility of finding directions in the latent space that cor-
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Figure 1: Examples of attribute edits with the proposed method. Notice that the background remains usually the same, and

the edits are restricted to specified attribute.

respond to specific attribute changes. For instance, we can
find the latent space direction corresponding to changing an
attribute by relying on samples with positive and negative
values for the attribute. Unfortunately, the attributes are en-
tangled and non-linear in the latent space. For instance, the
gradual aging of a person does not correspond to movement
in the latent space along a linear trajectory. The farther one
moves on the trajectory, the more likely that spurious at-
tribute changes appear in the generated images. To allevi-
ate this problem, more recent papers are finding non-linear
mappings [1]. A further technique that conserves the initial
attributes of the image is to apply the changed latent vector
only to some attribute dependent “style” layers of the gener-
ator - for instance to layer 6 and 7 of a StyleGAN for “age”
[1, 6].

In this paper, instead of finding directions or paths in
the latent space, we train a neural network to perform a
latent-to-latent transformation which finds the latent encod-
ing corresponding to the image with the changed attribute.
As the technique is one-shot, it does not rely on a linear or
non-linear trajectory of the gradual change of the attributes.
By training the network end-to-end over the full generation
pipeline, the system can adapt to the latent spaces of off-the-
shelf generator architectures. Conservation properties, such
as maintaining the identity of the person can be encoded
in the form of training losses. Once the latent-to-latent net-
work was trained, it can be reused for arbitrary images with-
out retraining. Applying the attributes is as simple as for-
ward propagating through the latent-to-latent network, and
rendering the resulting latent code through the generator.
The attribute change adds an insignificant overhead to the
image generation.

Training the latent-to-latent network does not require
manual image labeling — it can be performed using an ex-
ternal, pre-trained, off-the-shelf attribute recognizer. Thus

the number of attributes that our network can independently
control is only limited by the capabilities of the recog-
nizer(s) - if one has a recognizer for an attribute, we can
add it to arbitrary faces. In our experiments, we trained the
latent-to-latent network to allow the adjustment of 35 dif-
ferent facial attributes, more than any previous approach.

Another advantage of the end-to-end training is that it
allows us to choose the conservation properties of the gen-
eration process beyond the specified attribute change. For
instance we consider it important that we only change the
specified attributes and keep the other ones constant — for
instance, changing the age should not automatically also
change the hair color. Another conservation property that
is important in almost every conceivable application is that
the face with the changed attributes remains recognizably
the same as the one in the original image. In our architec-
ture this can be achieved by adding an identity loss by cal-
culating the Euclidean distance between FaceNet features
of both the original image and the generated images [22].
Other conservation properties that can be highly relevant in
certain applications include maintaining the openness of the
eyes, the lighting, the clothes, the background and so on.

Another observation is that our system does not neces-
sarily require the selective application of the changed la-
tent vector to only some of the style layers of the generator.
However, if desired, this technique can be added to the ap-
proach.

The main contributions of this paper can be summarized
as follows:

* We describe a novel technique for editing the attributes
of a face using a neural network that performs a trans-
formation in the latent space of a generator.

¢ We show that latent to latent network can be trained in
an end-to-end setting without requiring human label-
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ing using off-the-shelf attribute regressors. The train-
ing process allows the user to specify the desired con-
servation properties using custom losses.

* Compared to current state-of-the-art methods, we find
that our approach significantly reduces the cases when
editing an attribute also changes the value of a different
attribute which had not been requested to change, such
as a change in gender when adjusting age. Our ap-
proach also reduces the cases when an attribute change
leads to a loss of the personal identity of the face.

2. Related work

Editing the attributes of a human face is a longstand-
ing goal in computer graphics. In recent years deep gen-
erative models brought a new perspective to this approach.
While early GANSs created images that could be easily dis-
tinguished from photographs, recent GANs such as Pro-
gressiveGAN [11], StyleGAN [12] and StyleGAN2 [13]
create photorealistic images of faces or cars. Recently,
autoencoder-based techniques also achieved comparable re-
sults [19].

To edit the attributes of a face corresponding to the user’s
intent, we need to have a way to control the image genera-
tion. One possible approach is based on conditional GANS,
a technique first proposed by [17]. The idea is to condi-
tion image generation on a label or other information such
as images [9]. A related technique, CycleGAN [28] learns
to translate an image between two domains with different
attributes, such as winter and summer, without the need for
paired training data. The StarGAN approach [4] extends
this model to multiple domains.

Approaches that train a different GAN for each domain
would not scale to large number of attributes - the 35 at-
tributes we are editing would correspond to 23° domains
even in the simplest case of binary attributes. Another con-
sideration is that while training a high-resolution GAN de-
mands significant computational resources, once the train-
ing is done, generating images from a latent space input is
a fast and computationally inexpensive process. This ob-
servation led to a different approach for image manipula-
tion, based on manipulating the latent vectors. The roots
of this approach go back to models such as word2vec [16].
[20] showed that interpolating the latent vectors in genera-
tive models enables interesting edits.

To use latent space edits for face attribute editing, we
need to find transformations of latent vectors that corre-
spond to changes in specific attributes. [23] propose finding
directions in the latent space along which a specific attribute
increases or decreases. [25] propose a method for discov-
ering style channels and identifying the channels that con-
trol an attribute. StyleFlow [1] uses continuous normalizing
flows and a neural differential equations solver [3] to syn-

thesize images from a vector and set of target attributes. [6]
introduced GANSpace, an unsupervised method that uses
principal component analysis to find directions for edits.
After finding these directions, GANSpace requires the user
to observe the outputs and manually select meaningful di-
rections based on the target attribute. All the methods above
rely on an approach where only some of the style layers are
modified in generator. The choice of the layers to mod-
ify had been acquired through trial-and-error. For example,
to edit the yaw or pitch, it was found that the best results
are obtained when changing only the first 4 layers of Style-
GAN. Recently, [8] proposed an approach that uses atten-
tion to find the most relevant layers automatically. [5] pro-
posed instance-aware search that leverages attribute classi-
fiers and disentanglement transformation metric to achieve
disentangled edits.

[10] proposes a neural network that finds directions in
the latent space based on target parameters without condi-
tioning it on input latent vector. StyleRig [24] uses losses
defined between the generated image and original image
based on pose, illumination and expression. [18] propose
a method that combines attributes and face identity features
from two different images to generate a new image with
losses on identity and attributes.

The approaches based on latent space manipulation are
usually relying on a variation of a StyleGAN approach to
generate the images, which means that even the original
image is GAN-generated. However, many applications re-
quire the editing of a real-world image. For this we need to
first find a latent space vector that faithfully reconstructs the
real image, a step called GAN inversion, recently surveyed
by [26].

3. Latent-to-latent
3.1. Defining and measuring face attributes

Before we proceed to modify the attributes of a face,
let us discuss how we define and measure such attributes.
When asked to describe a face in an image I, humans will
use attributes such as gender, age, hair, presence of eye-
glasses or pose. We represent these human evaluations as
a collection of attributes associated with the image a =
{a1, -+ ,an} Via; € [0,1]. With their origins in human
language, it is not possible to make all attributes orthogo-
nal; for instance, “mustache” and “’beard” imply the “facial
hair” attribute. In many cases, however, the attributes are
independent, but statistically correlated in the human popu-
lation: for instance age is independent from hair color, even
if high age is often correlated with white hair.

We call an artribute regressor a function H(I) — a that
takes in an image and returns an estimate of the attribute
values. As we shall see below, having a pre-trained network
that can measure attributes is a key component in our ability
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to train a network that can adjust those attributes.

A convenient way to build an attribute regressor is to take
advantage of the rich set of features extracted by large im-
age recognizer networks. We used a randomly initialized
ResNet50 network and processed its feature output through
an additional convolution layer and two fully connected lay-
ers (see section 4.1 for more details). The final output is a
direct representation of the estimated attributes a. The num-
ber of attributes are only limited by the availability of the
labeled training data. In this paper we used a set of N = 35
different attributes.

The network was trained with supervised multi-class
training, with a training dataset of image and attribute vec-
tor pairs D = {(I;, a;)}. There are several ways in which
such a dataset can be created. One possibility is to start
from a dataset of faces and manually label them. Another
approach, which we took in this work is to gather the train-
ing data using existing tools such as the Microsoft Face
API [15].

3.2. Adjusting the attributes with a latent-to-latent
network

Let us consider an image [ with attribute vector a. Our
objective is to allow the user to specify a different attribute
vector a’ = a + Aa and generate a new image I’ with the
changed attributes. Decades of work in computer graphics
illustrated the difficulty of performing such a transformation
in the image domain.

Our approach is based on the idea that both I and I’ is
generated by a StyleGAN-type generator G from the cor-
responding latent vectors w and w’ from the latent space
Wp. If I originated from a real-world photo, we can
find w through a GAN inversion procedure. The attribute
edit will be performed by a latent-to-latent transforma-
tion using a network representing a parameterized function
f(w,Aa,0) — w’, such that H(G(w')) = a’, where 0 is
a trainable parameter.

We note that the latent-to-latent transformation f finds
the new latent point w’ for all the attribute changes speci-
fied in Aa in a single shot. In contrast to other approaches,
it does not perform the transformation gradually by deter-
mining and following directions in the latent space corre-
sponding to certain attributes, nor it relies on the addition of
changes along the different attributes. Finally, our approach
does not aim to modify the latent representation to make
it more amenable to attribute changes. Thus, our approach
sidesteps the challenges associated to the nonlinearities of
the latent space.

We implement the transformation f through a neural net-
work whose architecture reflects its objectives. The input
and the output are determined by the dimensionality of the
latent space, which in our case is the 18x512 model of Style-
GAN; in addition to this the input is concatenated with the

35-dimensional attribute change vector. With the dimen-
sions of the latent space representing “styles” as opposed to
spatial maps, the use of convolutional layers are not justi-
fied in the transformation network. Our transformation is
single shot, making recurrent architectures not applicable.
We thus use a fully connected, multilayer network, with the
free parameters being the size and number of layers and the
type of non-linearity used. As we aim to preserve all the
details in the input images while editing the attributes, we
chose to make the hidden layers the same size as the input
and output ones. For the number of layers, we performed
experiments with 1, 2, 3 and 4 layers; while adding layers
increases the expressiveness of the network, it also signifi-
cantly increases the need for training data and the compu-
tational cost of the training (see appendix 10 for ablation
studies on the network).

A special consideration involves the nonlinearity used in
the network as previous research demonstrated that sim-
ply following a linear direction for an attribute does not
yield good results. While ReLU is currently the default
non-linearily in neural networks, in our network the use of
ReLU would inevitably suppress some of the information
as it propagates through the network, leading us to a use of
a tanh nonlinearity.

3.3. Training the latent-to-latent network

In principle, the latent to latent transformation network f
could be trained using a straightforward supervised learning
technique using curated and labeled face images. However,
such a process is unrealistically expensive.

The training procedure we propose is based instead on
embedding the network in a framework where information
flows through a number of pre-trained components with
frozen weights in addition to the trainable f network (see
Figure 2). Applying different flows of information through
these components we can define a number of different loss
functions that contribute to the training of the latent-to-
latent network.

The input to this framework takes the form of triplets
(I,w,a) of an image, the corresponding latent encoding
and its initial attributes. We only need either an initial im-
age I or an initial latent encoding w to create this triplet. If
we start with w, the image I can be created using the gener-
ator G. If we start with I, the latent encoding can be created
through GAN inversion. In both cases, the attribute regres-
sor H can be used to find a. Thus, the training process is
based on an unsupervised input data.

The training is proceeding through randomly gener-
ated tasks for the latent-to-latent transformer, organized in
batches. To create a task, we sample a triplet from I/ and
randomly generate a target attribute vector a’ which only
changes a single attribute from the attribute vector. As we
discussed above, changing only a single attribute might cre-
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Figure 2: The embedding framework for the training of the latent-to-latent network f. Every network except f (presented in
blue) is fixed during the training. The training is based on different information flows leading to the calculation of the attribute
loss (gray), cycle loss (red), identity loss (green), neighborhood loss (purple) and facial identity loss (purple). The thicker
gray arrows show the flow of information during training time. All the other components are only used during training.

ate unfeasible attribute vectors, such as a bearded man with
no facial hair. Thus, we first correct the target attribute by
adding a correction term obtained from the mutual informa-
tion matrix (see appendix 7 for details), leading to a cor-
rected attribute vector al.. The input of the latent-to-latent
network will be thus Aa = a, — a. This input is forward
propagated through the full network along several paths,
each leading to a different loss as shown in Figure 2. These
losses are then back-propagated into updates for f.

Target attribute loss: expresses the primary goal of the
network. The attributes of the generated image should be as
close as possible to the corrected target attribute. We use the
mean square error between the output a and the corrected
target value a_, as the behavior of the mean square error to
penalize outlier values is actually helpful here.

La=lla—aglf’ (1

Note that this loss penalizes not only if the modified at-
tributes are not achieved, but also changes in attributes that
were not supposed to be changed.

Cycle loss: Logically, an attribute change for the same per-
son should be reversible: increasing the age with ten years
and then decreasing it should result in the same image. This
is not automatically enforced by the target attribute loss, as

in this process it is possible that other aspects of the picture
not covered by a named attribute would change. We imple-
ment this objective in a form of a cycle loss, implemented as
a distance between the original latent vector w and the la-
tent vector obtained by applying two attribute changes with
opposite signs. We will use the L1 distance for measuring
distances in the latent space:

Lo =|lw - f(f(w,Aa), -Aa)]] 2)

Identity loss: Another desirable property of the latent-to-
latent network is that when no attribute change is requested,
it will map the latent vector to itself. This is expressed by
the following loss:

Ly = |lw— f(w,0)] )

Neighborhood loss: A challenge with latent space trans-
formations is that due to the non-linearity and entangled
nature of the latent space, relatively small attribute trans-
formations might put the representation far from the initial
location. The fact that the attribute loss penalizes changes in
attributes that were not requested still leaves open the pos-
sibility of many changes in the image that are not covered
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by the attributes - such as background, clothing or illumi-
nation. The neighborhood loss penalizes outputs that de-
part significantly from the original latent vector, encourag-
ing the network to achieve the attribute transformation with
the minimum amount of the departure from the original la-
tent vector:

Ly =[lw - f(w,Aa)|]? )

When training an attribute transformer network, the user

might want to ensure some specific conservation properties
that are not covered by the “keep attributes unchanged un-
less explicit change is requested” rule enforced by the at-
tribute loss. For instance, the user might want to keep the
background the same, or keep the eyes of the person open
or closed, and so on. Our architecture allows the user to
add additional losses that express these custom conserva-
tion properties. In the following, we will discuss a par-
ticular example of such a custom loss, based on the iden-
tity of the person represented in image /. We will define
s(I,I') € [0,1] a function that estimates whether the per-
son would recognize the images I and I’ as belonging to the
same person. Due to evolutionary pressure for recognizing
members in their social groups, humans are very good at es-
timating this function, even if many attributes are different
between the images I and I’. On the other hand, you can
have two faces that have all the attributes matching, which
however clearly belong to two different people. Thus, this
conservation property cannot be expressed in terms of at-
tributes. We find, however, that networks trained for face
recognition, although they do not have the concept of at-
tributes, match closely the human perception of facial iden-
tity.
Face identity loss: To express this loss, we rely on
FaceNet [22], a network that had been trained explicitly for
facial recognition. If we denote with F(I) the features ex-
tracted by FaceNet from an image, we can express the face
identity loss as follows:

Lrra = [|F(G(w)) = F(G(f(w,Aa)[[*  (5)
4. Experimental validation

4.1. Training the attribute regression network

We trained the attribute regression network on three dif-
ferent datasets: CelebAMask-HQ [14], FFHQ [12] and a
locally generated dataset. The latter was generated by sam-
pling 400K vectors from the Z space of StyleGAN-v2 and
using these to find corresponding w vectors. We truncated
the vectors by a factor of 0.7 following the StyleGAN pro-
tocol in order to avoid the generation of out-of-distribution
low-quality images. We extracted attributes for the gener-
ated images using the Microsoft Face API [15]. We split
the data into a 90/10 split that corresponds to 721718 im-
ages for training and 72172 images for the test. For more

details, including the accuracy of regression network on the
test, please refer to appendix 7.

4.2. Qualitative evaluation

In the first series of experiments, we test whether our
approach fulfills our objectives for (a) being able to adjust
a large number of different attributes and (b) being able to
adjust a given attribute without modifying other attributes
(except in cases when this is inevitable, such as the pairs of
beard and facial hair). Figure 3 shows an example of six
different attributes being changed on six different faces. We
find that our approach is mostly successful on leaving un-
changed attributes other than the requested one. We also
find that other features of the images, not covered by the at-
tributes, such background, clothes and illumination as well
as the personal identity of the face what also been success-
fully retained in these images. In the case of other images,
such as certain examples in the next section, we see that
these conservation of attributes and features with our tech-
nique is not always fully successful.

A wider range of pictures and adjustments
can be seen in our anonymized demo video at
https://youtu.be/fptbQi_yIDg.

4.3. Qualitative comparisons with SOTA baselines

In this section, we qualitatively compare our approach
with three state-of-the-art methods for face editing: Inter-
FaceGAN [23], GANSpace [6], and StyleFlow [1]. Al-
though our method can edit 35 different attributes, for
the comparison, we choose eight attributes that are sup-
ported by all these methods: Age, Baldness, Beard, Ex-
pression, Gender, Glasses, Pitch, and Yaw. Whenever pos-
sible, we extended the publicly available codebases !. For
GANSpace, we used components provided by Hiarkonen [6]
that best match these attributes. For InterFaceGAN, we
trained two new, additional directions for Baldness and
Beard since these attributes were not in the repository. As
the starting images we used 50 images sampled from the
StyleFlow test set which were not used as training data by
any of the approaches.

One of the challenges in comparing these methods is that
the same request, such as adding 0.2 or subtracting 0.3 from
the age is interpreted differently by different methods. To
calibrate the ranges of valid values for each technique, we
found the smallest and largest attribute value for which the
MTCNN face detector still found a valid face in the gen-
erated image. Then, we divided this range into 40 inter-
vals and generated the 41 images at the interval boundaries.
Thus, we used 8 x 50 x 41 = 16400 generated images in
the qualitative comparisons.

I'StyleFlow:
GANSpace: https://github.com/harskish/ganspace
https://github.com/a312863063/generators-with-stylegan2

https://github.com/RameenAbdal/StyleFlow,
InterFaceGAN:
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Figure 4: Examples of cases where L2L conserves attributes while other SOTA approaches introduce unrequested attribute
changes. Top Left: Changing gender or hair color when changing age. Top Right: Eyebrows’ style is preserved the most
by our method due to face features loss. Bottom Left: Adding glasses or changing hair color when balding or adding hair.
Bottom Right: Changing gender when adding or removing facial hair.

Figure 4 (top left) compares the approaches in adjusting
the Age attribute. All approaches generated images that cor-
respond to persons of the specified ages. What differentiates
our approach, however, is that it largely succeeds in chang-
ing only the age attribute. For instance, both InterFaceGAN
and StyleFlow also turn the hair white when generating an
older person. In addition, InterfaceGAN and StyleFlow also
changed the gender when making the person older.

Another example of the editing the age attribute is shown
in Figure 4 (top right). In this case, the GANSpace and In-
terFaceGAN approaches changed the eyebrows, illumina-
tion as well as the background of the figure. These extrane-
ous changes are reduced with our approach. Nevertheless,

our approach also changed the expression of the mouth and,
to some degree, the background.

Another illustration of how a change in an attribute might
trigger inadvertent changes in other attributes is the change
of the Baldness attribute in Figure 4 (bottom left). In this
example, both StyleFlow and GANSpace added glasses to
the face when the baldness attribute was moved in the neg-
ative direction, while InterfaceGAN radically changed the
hair color. Our approach had shown a significantly smaller
degree of hair color change.

Another example that shows the impact of the neigh-
borhood and personal identity losses in the training of the
latent-to-latent network is the adjusting of the attribute
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Table 1: Quantitative results. IG, SF, GS, and L2L refer to InterFaceGAN, StyleFlow, GANSpace and our proposed method.

(a) Inference speed (seconds)

METHOD IG SF GS L2L
TIME 0.1080 0.6783 0.1095 0.1654

(c) Metrics for comparing the quality of edited faces. All metrics

are computed based on the Inception features.

METRIC 1G SF GS L2L

FID 43.16 41.64 45.44 39.83
KID 0.0118 0.0086 0.0122 0.0062
ISD 0.0025 0.0014 0.0044 0.0085

Beard in Figure 4 (bottom right). In the original image,
the person did not have a beard; all four approaches were
successful in adding a beard when moving towards the in-
creased attribute value. However, all three baseline ap-
proaches change the person to female when the attribute
change was in the negative direction. (Note that our sys-
tem has an explicit editable attribute for gender). In addi-
tion, GANSpace also significantly changed the background
of the edited image.

4.4. Quantitative comparisons

A possible way to quantitatively evaluate how well an
approach preserves facial identity is to measure whether the
images would be recognized by an external facial recogni-
tion system. We use the features extracted by MTCNN [27]
which are different from FaceNet features that we used for
training. In Table 1b we report the cosine distance be-
tween the feature vectors of the original vs. edited im-
ages averaged over all test subjects (we also report the Eu-
clidean distance in supplemental material). We find that our
method outperforms the other methods on 5 out of 8 target
attributes, and also scores very close to the winner on two
more attributes.

To evaluate the quality of the edited images, we com-
pared the set of images from Section 4.3 with a set
of 1000 images generated by FFHQ StyleGAN-v2 with
truncation=0.7. The results for the Frechet Inception Dis-
tance(FID) [7], Inception Score(IS) [21], and Kernel Incep-
tion Distance(KID) [2] are shown in Table 1c. We find
that our approach achieves a better result on the FID and
KID compared to the baselines. For the ISD metric, all ap-
proaches achieve a result smaller that 0.01, making them
effectively equally good on this metric.

In addition, we measure the time necessary to generate a
new image with the adjusted attribute. This metric is impor-
tant for interactive applications and when mass generation

(b) Retaining the facial identity: the average cosine distance be-
tween the MTCNN features of the original and edited images (the
lower the better)

ATTRIBUTE IG SF GS L2L

AGE 0.77 0.65 0.46 0.57
BALDNESS 0.53 0.64 0.46 0.21
BEARD 0.57 0.55 0.53 0.28
EXPRESSION 0.60 0.21 0.23 0.14
GENDER 0.54 0.52 0.58 0.28
GLASSES  0.59 0.46 0.24 0.25
PiTCH 0.54 0.51 0.51 0.51
Yaw 0.39 0.46 0.41 0.46

of images is necessary. The measured average generation
time is shown in Table 1a. We find that our generation time
is somewhat longer than the InterFaceGAN and GANSpace
approaches, but more than four times faster than StyleFlow.
In practice, we found that the approach is suitable for real-
time interactive editing, as illustrated in the linked video.

Finally, more qualitative and quantitative results and ab-
lation studies could be found in our supplementary material.
We also perform a user study, and the details are in supple-
mentary material submitted with the paper.

5. Conclusions

In this paper, we introduced a novel technique for edit-
ing face attributes in a StyleGAN-generated image. Our ap-
proach is based on a network that maps the latent vector of
an image to the latent vector of the desired target image.
The latent-to-latent mapper can be learned by embedding
it in a larger network and training it with a combination of
losses. Some of these losses enforce the new attribute val-
ues, while others guide the network to find solutions that
retain the personal identity of the person and other char-
acteristics of the original picture. Through qualitative and
quantitative experiments we found that, compared to com-
peting state-of-the-art approaches, our approach can handle
a larger number of attributes and it is better at maintaining
the personal identity of the face and restricting the changes
to the requested attributes.
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