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Abstract

Color conveys important information about the visible
world. However, under low-light conditions, both pixel
intensity, as well as true color distribution, can be sig-
nificantly shifted. Moreover, most of such distortions are
non-recoverable due to inverse problems. In the present
study, we utilized recent advancements in learning-based
methods for low-light image enhancement. However, while
most “deep learning” methods aim to restore high-level
and object-oriented visual information, we hypothesized
that learning-based methods can also be used for restor-
ing color-based information. To address this question, we
propose a novel color representation learning method for
low-light image enhancement. More specifically, we used
a channel-aware residual network and a differentiable in-
tensity histogram to capture color features. Experimental
results using synthetic and natural datasets suggest that the
proposed learning scheme achieves state-of-the-art perfor-
mance. We conclude from our study that inter-channel de-
pendency and color distribution matching are crucial fac-
tors for learning color representations under low-light con-
ditions.

1. Introdcution

At night or in the shade, we often obtain dark results due
to some physical constraints such as slow shutter speed, low
aperture brightness, and image sensor sensitivity. When we
need these low-light images for a security system or various
computer vision systems, we have to repair the dark pic-
tures while maintaining the original content. However, the
restoration is a highly ill-posed problem and requires a de-
tailed understanding of underlying image statistics. Many
researchers attempt to recover adequate brightness by ma-
nipulating the image statistics. The Histogram Equalization
(HE) methods [37, 11, 18] increase the contrast by expand-
ing the dynamic range for better visibility. Retinex-based
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approaches [17, 7, 25] decompose the dark image into re-
flectance and illumination channels and recover each chan-
nel.

Recent learning-based methods attain promising results
on high-level visual recognition, verifying the capability
of learning visual representations. Along with the recent
development of deep learning, many studies suggest deep
models for low-light image enhancement [36, 30, 13, 15,
16, 29]. While the low-light degradation causes disruptive
changes in pixel intensity and color distribution of the cap-
tured photos, most deep learning methods focus on visual
features except color representations to densely predict the
most probable pixel values. There remains a question for
learning-based approaches: Whether the high-order color
representations are learnable under low-light conditions?

To address this question, we propose a new color rep-
resentation learning method for low-light image enhance-
ment, coined Channel-aware Color histogram Matching
method for low-light image enhancement (CCM). We aim
to capture the inter-channel dependencies and informative
channels for learning color representations for the dark-
ness restoration. To this end, we present the layer nor-
malization integrated channel-attention block (γ-Channel-
attention Residual Block). The γCRB consists of convo-
lutional layers, layer normalization layers, activation func-
tions, and following channel attention block. We use the
re-scaling factor of the layer normalization, γ, as a scaling
factor for the global average pooled vectors of the channel
attention block.

To consider the massive changes in color distribution, we
propose a new color distribution loss by utilizing a differ-
entiable color histogram. We apply the Gaussian filters to
segregate the high and low-frequency parts of the estimated
and ground-truth images, minimizing the interference of
edge and color representations. For recovering the origi-
nal color distribution, we utilize the Kernel Density Estima-
tion to approximate the differentiable color histogram and
measure the absolute distance between the estimated color
histograms of low-frequency segments. To restore the edge
details, we measure the Structural Similarity [28] between
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(a) Input (b) CLAHE (c) KinD (d) DRBN (e) CCM (f) Ground-truth

Figure 1. A visual illustration of previous approaches and our method for the low-light enhancement on real-world dataset [29]. The upper
row shows the RGB images, and the lower row demonstrates the corresponding (discrete) color histograms. The prediction result of our
method successfully recovers the original color histogram while other methods generate incomplete restoration results.

the high-frequency areas.
Experimental results validate that our method effec-

tively learns color representations under low-light condi-
tions. Subsequently, our model consistently outperforms
the comparison methods on benchmark datasets regardless
of synthetic domain or real-world domain. The signifi-
cant performance improvements verify that channel level
dependency and constraint on color histogram, previously
ignored, are pivotal factors for low-light image enhance-
ment.

The contributions of the proposed CCM are as follows:

• We observe that CCM learns high-order color repre-
sentations, and those are crucial factors for low-light
image enhancement.

• We figure out that the inter-channel dependency is de-
cisive information for color representation learning un-
der low-light conditions of substantial changes in color
distributions.

• We propose a new color distribution loss for color rep-
resentation learning and suggest a specialized kernel
function for improved differential histogram estima-
tion.

2. Related Work
Low-light image enhancement The classical methods
perform low-light enhancement via Histogram Equaliza-
tion (HE) or Retinex-based approaches. HE methods
[37, 11, 18] increase the contrast of images by extending
the dynamic range at both global and local levels. The
limitation of HE-based methods is evident in that they ig-
nore the information about the image structure. Retinex-
based approaches [17, 7, 25] decompose the images into re-
flectance and illumination maps and adjust the illumination
maps. Our method segregates high and low-frequency parts
of RGB images and utilizes each component to restore all
the visual features and color distributions.

Recent deep learning-based methods show promising re-
sults, yet they disregard color distributions of the images
and dependency between channels of the feature maps.
KinD [36] and Retinex-Net [29] estimate reflectance and
illumination maps using convolution layers for low-light
enhancement. To overcome the cost of requiring a large
amount of paired data, EnlightenGAN [13] proposes GAN-
based architecture to utilize unpaired datasets. DRBN [30]
suggests a two-staged learning method to enhance percep-
tual quality by utilizing additional unpaired high-quality
data.

We propose a new color representation learning method
under low-light conditions, suggesting a channel attention
block combined with normalization and color distribution
loss.

Channel dependency and sparsity The normalization
methods of deep neural networks assist better convergence
by mitigating the internal covariate shift and acting as a reg-
ularizer. The main differences among the proposed normal-
ization methods are the dimension of the normalization. For
example, Batch Normalization [12] normalizes each chan-
nel of a mini-batch, Layer Normalization [3] applies to ev-
ery channel of an instance, and Instance Normalization [26]
normalizes each channel of one instance.

Attention mechanism helps the network preserve infor-
mative features and obtain more precise results. Recently,
many deep models apply attention mechanisms to various
tasks, including image generation [33], image classifica-
tion [9], and image restoration [34]. SENet [9] and ECA-
Net [27] propose a method for modeling the relationship
between channels in image classification. In the image
restoration task, RCAN [34], HAN [23], and RESCAN
[20] improve the performance by focusing on more relevant
channels of feature maps.

Our method exploits layer normalization and a channel
attention mechanism together for learning color representa-
tions.
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Figure 2. An overview of the proposed CCM. Our method utilizes the inter-channel dependency through the LN integrated channel attention
structure. We estimate the differentiable color histogram of the low-frequency component and use the histogram distance from the smoothed
ground-truth image as a color histogram loss. The edge recovering loss and the color distribution loss also assist in learning color and other
visual representations together.

3. Method
In this section, we describe our methodology for color

representation learning. Figure 2 represents the overall con-
struction of the proposed method. We use a deep residual
network as a base structure, well known that learns visual
features for image restoration. We integrate the a layer nor-
malization technique and a channel attention block to ma-
nipulate the channel dependency, a viable factor for color
representation. Also, we employ low-pass filters and differ-
entiable histogram estimation for learning color and other
visual attributes at once.

3.1. Network architecture

Residual network as a base network Deep residual net-
works yield promising image restoration results by learning
visual representations [21, 35, 24]. We also use a residual
block with a skip connection as our basic unit. The Figure 3
represents our specialized residual block, γ Channel Resid-
ual Block (γCRB). We build our residual group with the
γCRB, convolution layers, and a prolonged skip connec-
tion. The first layer of our residual group converts the input
three-channel RGB low-light image into a 48-channel fea-
ture map using a convolutional layer. After that, the feature
map goes through five consecutive residual blocks (all the
feature map dimensions kept consistent as 48×100×100).
The last layer of the residual group generates an RGB-
channel image. We stack three residual groups to construct
our network.

Channel dependency for color representation The nor-
malization methods of deep neural networks assist better
convergence by mitigating the internal covariate shift and

acting as a regularizer [12, 3]. Table 2 shows the compar-
ison results of various normalization methods. Batch Nor-
malization (BN) shows robust performance in high-level vi-
sion tasks such as classification, but we figure out that BN is
fruitless in low-light enhancement tasks. The probable rea-
son is that BN performs normalization independent of each
channel, and we assume that channel dependency is a piv-
otal factor in learning the color representations. The Layer
Normalization (LN), on the other hand, computes over all
channels within an instance (eq. 1). Thus the channel de-
pendency can propagate through deeper layers.

hl = γ(
al − µl

σl
) + β (1)

where µl = 1
H

∑H
t=1 a

l
t and σl =

√
1
H

∑H
t=1(alt − µl)2. H

is the number of hidden unit in the layer, γ and β denote the
scale and shift parameter. LN learns the γ and β which are
the same dimension as the channel.

Using LN prevents covariate shift while maintaining
channel dependency, viable in the reverse mapping of low
to normal color distribution. We attach the LN to every con-
volutional layer in the RB to manipulate the channel depen-
dency for learning color representations. We integrate the
LN and the Channel Attention Block [35] to consider chan-
nel dependency and boost channel sparsity for enhanced
color representations. Figure 3 depicts our γCRB. We mul-
tiply the re-scaling factor γ obtained from the LN layer to
the average activation vector computed by the global aver-
age pooling. With this step, our residual block can consider
both dependency and saliency of all channels. We empiri-
cally decide to use the γ of the second layer among the two
LNs of the RB.
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Figure 3. An illustration of the proposed γCRB. We figure out that channel dependency is a pivotal factor in low-light image enhancement.
To consider the channel dependency, we use the residual block augmented with LN and channel attention. The re-scaling factor γ from the
second LN multiplies to the globally averaged activation vector.

3.2. Learning color and other visual representations

In Figure 1, the color histograms of the restored results
demonstrate that the previous deep learning methods disre-
gard color representations. We assume this color histogram
carries crucial underlying image statistics and is profitable
for learning color representations. To use the histogram for
parameter optimization, we approximate the differentiable
histogram through the Kernel Density Estimation (KDE).

Differentiable histogram estimation Differentiable es-
timation is required to use the color histogram for model
parameter training, and we utilize KDE for the estimation.
According to Avi-Ahron et al. [2], KDE produces adequate
differentiable histograms for model optimization.

Considering RGB image space consists of continuous in-
tensity values in [0,1], we define the pixel intensity of an
image pixel x ∈ P as I(x) ∈ [0, 1]. We use the KDE for es-
timating the density fI for each RGB channel I as follows:

f̂I(i) =
1

nh

∑
x∈Π

κ

(
I(x)− i

h

)
(2)

where i ∈ [0, 1], κ(·) is the kernel, h is the bandwidth and
n = |Π| is the number of pixels. Since the RGB color his-
tograms are discrete and spiky, we assume that using the
derivative of a function close to the unit step function as
a kernel will be more suitable for estimating the color his-
tograms.

κ(z) =
d

dz
s(z), (3)

where s(z) = 1
1+exp(−α·z) . As the estimation error con-

verges when α exceeds 1000, we set it as 1000. We split
the interval [0, 1] into K sub-intervals hk. The length of
each interval L is 1

K and µk is −1 + L(k + 1
2 ), and hk is

L1 Error = 0.0075
WD = 4.11 × e−3

L1 Error = 0.0058
WD = 6.32 × e−6

Figure 4. Comparison of differentiable color histogram estimation.
The upper graph shows the estimated histogram by DeepHist [2]
and the second graph is the approximation of our method. The last
graph is the target (discrete) color histogram. Using the derivative
of the step-shaped function as the kernel, we achieve more precise
estimations, still differentiable.

[µk − L
2 , µk + L

2 ]. We define the probability PI(K) that a
pixel in the image belongs to a particular bin.

PI(k) = Pr(i ∈ hk) =

∫
hk

f̂I(i)di (4)

Since the kernel function is the derivative of s(z), eq. 4
can be easily integrated. Finally we calculate the function
PI(k) which is the value of the kth bin. We define the dif-
ferentiable histogram h as follows:

h = {µk, PI(k)}K−1
k=0 (5)

Figure 4 illustrates the estimated histograms and the actual
histogram. Our estimation has significantly lowered estima-
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tion errors, verifying our assumption on the kernel function.
We propose a method for learning the color representation
by combining this estimated histogram vector to the loss
function.

Low-pass filtering and histogram matching First, we
separate the low-frequency and high-frequency regions
through a Gaussian filter to segregate the color and shape
representation. We empirically decided the Gaussian ker-
nel size as three. After estimating the differentiable color
histogram of the low-frequency regions, we measure the L1
distance between the differentiable histogram vectors of the
restored results and ground-truth images.

YL = GaussianBlur(Y )

YH = Y − YL
(6)

We also focus on other vital visual representations of shape.
We calculate the Structural Similarity [28] between the im-
ages in the high-frequency region and use it as a loss func-
tion. As with the previous approaches, we use the L1 dis-
tance in the RGB pixel space as a loss function to learn over-
all spatial representations for the restoration task. The loss
functions for training the proposed model are as follows:

L = Lrestore + λ1 · Lhist + λ2 · Ledge
= ‖Y − Ŷ ‖1 + λ1 · ‖hist(YL)− hist(ŶL)‖1
− λ2 · SSIM(YH , ŶH)

(7)

where Y is ground-truth, Ŷ is the restored result, λ1 and
λ2 are the loss weights and both are empirically set as 1.
hist(·) is the estimated color histogram matrix of [3×256].

4. Experiments
To empirically validate that the proposed method can

learn color representations while restoration, we compare
CCM with previous approaches for low-light image en-
hancement, including CLAHE [37], BPDHE [11], Dong
[5], SRIE [7], DHECE [22], MF [6], EFF [31], CRM [32],
LIME [8], JED [25], RRM [19], Retinex-Net [29], KinD
[36], EnlightenGAN (EG) [13], and DRBN [30]. We re-
produce all the other methods with their original codes and
settings to compare. We report the best performance for the
comparison table.

Our method consistently outperforms all the other ap-
proaches on various datasets (Table 1) in terms of PSNR,
SSIM of the images, and Wasserstein Distance (WD) [1] of
color histograms. The considerable margin between CCM
and comparison methods suggests that color representation
could be a credible factor in improving the overall perfor-
mance of deep learning methods for image restoration.

4.1. Comparison results

Datasets We compare our model with other state-of-the-
art methods on synthetic and real-world paired datasets
[29]. Wei et al. [29] collect 1000 raw images from RAISE
[4] and generate the synthetic dataset by adjusting the his-
togram of the Y channel. We split the 1000 image pairs
of the synthetic dataset into 900 training and 100 testing
pairs. The original real-world dataset [29] consists of 485
image pairs for training and 15 images for testing. Since the
test dataset contains only a few image pairs, we randomly
choose 85 more image pairs from the training dataset and
enlarge the test dataset to become 100 pairs. Comparison
results for the original train/test split(485/15) are given in
Appendix C.

Metrics We evaluate PSNR [10] and SSIM [28] on the Y
channel of transformed YCbCr space for quantitative eval-
uation. In addition, Wasserstein Distance (WD) [1] is used
to measure the quantitative value of the color histogram be-
tween the output image and the ground truth.

Other details For detailed experimental settings, please
refer to Appendix A.

Main results In Table 1, we provide the quantitative eval-
uation results of our model and other comparison methods.
CCM achieves the best performance; in both synthetic and
real-world domains, CCM consistently outperforms other
comparison methods with considerable margins in terms of
PSNR, SSIM, and WD. In particular, CCM gains at least
+3.15dB and +1.12dB of PSNR margins on the synthetic
and real-world domains, respectively. Furthermore, CCM
effectively recovers the structural complexity and achieves
at least +2.3% and +4.0% improvements in terms of SSIM
on the synthetic and real-world datasets, respectively. The
closest WD confirms that CCM learns color representations
and effectively recovers the original color distribution.

Figure 5 and 6 show the qualitative comparison results
on synthetic datasets and real datasets. Previous methods
tend to underexpose the images and fail to capture the color
distribution of the input images. In Figure 5, other ap-
proaches have apparent differences between restoration out-
puts and ground-truth, especially in the petals, ground, and
statue, while CCM restores the closest color distribution,
shape, texture to the original without artifacts. In Figure 6,
similar to Figure 5, our method generates the most natural
restoration results. For more qualitative results, please refer
to Appendix D.

4.2. Ablation study

We evaluate our base network and each component of
CCM (Table 2 and Figure 7). When we use LN with base
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Sy
nt

he
tic

CLAHE BPDHE Dong SRIE DHECE MF EFF CRM
PSNR 12.58 12.50 17.02 14.54 18.14 17.75 17.9 19.83
SSIM 0.5604 0.5771 0.7539 0.6107 0.8157 0.7916 0.8096 0.8733
WD 971.0 1073.0 585.6 760.6 931.9 560.6 691.4 1126.7

LIME JED RRM Retinex-Net KinD EG DRBN CCM
PSNR 17.67 17.05 17.31 18.50 22.34 17.84 23.52 26.67
SSIM 0.7935 0.7507 0.7471 0.8274 0.9203 0.8192 0.946 0.9673
WD 693.0 655.0 639.0 541.4 413.9 479.9 328.2 291.5

R
ea

l-
w

or
ld

CLAHE BPDHE Dong SRIE DHECE MF EFF CRM
PSNR 8.56 11.60 15.91 11.28 17.11 16.79 13.63 16.94
SSIM 0.3244 0.3601 0.5503 0.5299 0.4902 0.5876 0.6450 0.6968
WD 2287.1 1692.0 935.1 1204.0 1386.6 957.9 1470.7 3053.2

LIME JED RRM Retinex-Net KinD EG DRBN CCM
PSNR 16.89 13.12 13.15 17.28 23.00 17.11 21.27 24.12
SSIM 0.5620 0.6778 0.6791 0.5109 0.8993 0.7164 0.8983 0.9351
WD 1173.0 1304.8 1295.1 961.2 880.5 974.1 779.8 760.7

Table 1. The quantitative comparison results with other state-of-the-art methods on the synthetic and real-world datasets [29]. The proposed
method achieves the new state-of-the-art performance on both synthetic and natural datasets. Bold and underline indicate the best and the
second best score, respectively.

(a) Input (b) Retinex-Net (c) KinD (d) DRBN (e) CCM (f) Ground-truth

Figure 5. Qualitative evaluation results on the synthetic dataset [29].
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(a) Input (b) CLAHE (c) Dong (d) EFF (e) LIME (f) RRM

(g) Retinex-Net (h) KinD (i) EG (j) DRBN (k) CCM (l) Ground-truth

(m) Input (n) CLAHE (o) Dong (p) EFF (q) LIME (r) RRM

(s) Retinex-Net (t) KinD (u) EG (v) DRBN (w) CCM (x) Ground-truth

Figure 6. Qualitative evaluation results on the real-world dataset [29].

Norm. γCAB Ledge&Lhist PSNR SSIM WD
Base RN - - - 19.21 0.8582 903.55

RN + BN [12] BN - - 19.28 0.8803 851.76
RN + IN [26] IN - - 18.69 0.7672 1290.83
RN + LN [3] LN - - 22.94 0.9171 769.79

RN + Ledge+Lhist - - + 19.75 0.9017 878.99
RN + γCRB LN + - 23.31 0.9212 753.60

CCM LN + + 24.12 0.9351 745.68

Table 2. Ablation study on real-world domain dataset [29].

RN, we achieve considerable performance gain. As we de-
scribed in Section 3, LN supports learning color represen-
tations through channel-dependent normalization. On the
other hand, using BN is fruitless, and Instance Normaliza-
tion harms the performance. These results necessitate chan-
nel dependency for color representation learning and low-
light image enhancement.

When we use LN and γCAB together, the model gains
further performance gain because it manipulates the channel
dependency of the intermediate feature maps and helps to
improve the channel sparsity.

Ledge and Lhist enhance the performance of our base
RN. In particular, the model attains remarkable improve-
ments in SSIM, and the color histogram of the estimated
image gets way closer to the ground-truth image. This result
validates the suitability of the training scheme for learning
color and shape representations together.

Our final model achieves the best performance of low-
light image enhancement, and all the components contribute
in a complementary way to assist in learning color represen-
tation and other visual representations together.

5. Conclusion
In this study, we verified that high-order color represen-

tation under low-light conditions is learnable through deep
parametrization. Experimental results validated that learn-
ing color representation is a linchpin of the low-light im-
age enhancement. We also figured out the importance of
channel dependency throughout the normalization of fea-
ture maps and proposed to use LN with channel attention
weights. We suggested constructing a histogram match-
ing loss by leveraging differential histogram estimation and
low-pass filters. Our CCM acquired the new state-of-the-
art performance while effectively learning color representa-
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(a) Input (b) RN (c) RN+BN (d) RN+LN

(e) RN+Ledge+Lhist (f) RN+γCRB (g) CCM (h) Ground-truth

Figure 7. Sample results of the ablation study on the real-world dataset [29]. Each component of our method assists in learning color
representations under low-light conditions.

tions by utilizing the proposed channel-aware structure and
color distribution loss.

Future work Our approach aims to learn color represen-
tations in a supervised manner, yet the supervised learn-
ing methods have the inherent problem of requiring paired
datasets of high annotation costs. The subsequent issue
is that insufficient data highly likely generate the bias of
the training. Thus we plan to extend our work on semi-
supervised and unsupervised learning schemes with the out-
of-distribution problems.
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