This WACYV 2022 paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

TricubeNet: 2D Kernel-Based Object Representation for Weakly-Occluded
Oriented Object Detection

Beomyoung Kim!'  J anghyeon Lee?' Sihaeng Lee?' Doyeon Kim®  Junmo Kim3
NAVER CLOVA! LG AI Research? KAIST?

AbStraCt 5-offsets 8-offsets ours

We present a novel approach for oriented object detec- é‘
tion, named TricubeNet, which localizes oriented objects

using visual cues (i.e., heatmap) instead of oriented box off- g
o
sets regression. We represent each object as a 2D Tricube g

kernel and extract bounding boxes using simple image-
processing algorithms. Our approach is able to (1) obtain
well-arranged boxes from visual cues, (2) solve the angle
discontinuity problem, and (3) can save computational com-
plexity due to our anchor-free modeling. To further boost
the performance, we propose some effective techniques for
size-invariant loss, reducing false detections, extracting
rotation-invariant features, and heatmap refinement. To
demonstrate the effectiveness of our TricubeNet, we exper-
iment on various tasks for weakly-occluded oriented object
detection: detection in an aerial image, densely packed
object image, and text image. The extensive experimen-
tal results show that our TricubeNet is quite effective for
oriented object detection. Code is available at https :
//github.com/qgjadudl994/TricubeNet.

1. Introduction

Object detection is one of the fundamental computer vi-
sion tasks, and deep learning-based methods [32, 4, 36]
have shown remarkable performance. However, existing
detectors often focus on detecting a horizontal bounding
box that is not sufficient in some cases. First, for densely
arranged oriented objects, an intersection-over-union (IOU)
between adjacent horizontal bounding boxes tends to be
large, and some of these boxes will be filtered out by non-
maximum suppression (NMS). Second, since the horizontal
bounding box can contain many redundant areas, it is not
suitable for real-world applications that require tighter and
more accurate boxes, such as aerial images and scene text
images. To detect the object in a more accurate form, ori-
ented object detection has attracted much attention recently.

T This work was done when the author worked at KAIST.
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Figure 1. Ex1stmg anchor-based methods that regress five or eight
offsets require a huge number of anchor boxes (about 4M) and
infer a bit scatty boxes. We represent each object as a 2D Tricube
kernel and extract bounding boxes using simple image-processing
algorithms. Our approach, named TricubeNet, does not require the
anchor boxes and can obtain well-arranged boxes.

Most oriented object detectors [26, 7, 40] adopt Faster
R-CNN [32] or RetinaNet [21] as their baseline model and
additionally infer an angle of the object. They adopt an-
chor augmentation strategy and regress oriented box offsets
in form of 5-offsets (z, y, w, h, ) or 8-offsets (z1, y1, 2,
y2, 3, y3, x4, y4). They have reigned on the throne with
state-of-the-art performance, however, some limitations re-
main. (1) Regressing the box offsets might have trouble
in obtaining well-arranged boxes of densely arranged ori-
ented objects as in Figure 1; (2) Regressing the angle offset
causes angle discontinuity problem; the angle discontinuity
on the boundary leads to the loss fluctuation during training;
(3) They require huge computational complexity due to the
anchor augmentation and a heavy IoU calculation for the
oriented box. For example, when they define anchor boxes
with three scales, five aspect ratios, and six angles and adopt
FPN [20] architecture with 800 x 800 input resolution, they
require about 4M total anchor boxes (3 x 5 x 6 = 90 anchor
boxes per a pixel location). Some might argue that anchor-
free approaches such as [48, 28] can reduce the computa-
tional complexity, however, they also suffer from the angle
discontinuity problem due to their angle regression.

In this paper, we introduce a novel approach for the ori-
ented object detection, named TricubeNet. We localize
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oriented objects using visual cues (i.e., heatmap) instead
of the box offset regression. As shown in Figure 1, we
represent each object as a 2D Tricube kernel whose shape
visually describes the width, height, and angle of the ob-
ject, and then extract bounding boxes using simple image-
processing algorithms. Our approach is able to (1) obtain
well-arranged oriented boxes from visual cues of arranged
objects as shown in Figure 1, (2) solve the angle disconti-
nuity problem by taking away the angle regression, (3) save
computational complexity due to our anchor-free modeling,
and (4) is a simple one-stage anchor-free detector.

Furthermore, for the competitive result, we should han-
dle some challenging factors of the oriented object detec-
tion: various shapes and sizes of objects, densely arranged
objects, a huge number of objects, false detections, and
complexity of the background. To deal with these challeng-
ing factors, we propose some techniques. The first is a Size-
Weight Mask (SWM). The pixel-wise mean squared error
(MSE) loss causes a size-imbalance problem, that is, a small
object tends to be given small loss, weakening the detection
of small objects. To make a size-invariant loss function, we
propose the SWM. Second, to give a balanced loss between
foreground and background pixels and reduce false-positive
detections at once, we introduce a False-Positive Example
Mining (FPEM) technique. Third, we propose a Multi-
Angle Convolution (MAC) module to extract a rotation-
invariant feature for the oriented object. Last, we design
a repetitive refinement stage to refine the output heatmap
and call this technique heatmap cascade refinement.

We verify the effectiveness of the TricubeNet in var-
ious tasks: oriented object detection in the aerial image
(DOTA [39]), the densely packed object image (SKU110K-
R [10, 28]), and the scene text image (MSRA-TD500 [45],
ICDAR 2015 [16]). We target detection of weakly-occluded
oriented objects and choose the above highly practical tasks
in real-world applications. The experimental results show
that TricubeNet is quite effective to detect the oriented ob-
ject with a simple anchor-free one-stage process.

In summary, our contributions are as follows:

e We propose a novel oriented object detector,
TricubeNet, which localizes oriented objects us-
ing visual cues (i.e., heatmap) instead of the box
offset regression.

* Our approach can obtain well-arranged oriented boxes,
solve the angle discontinuity problem, and save com-
putational complexity by eliminating anchor boxes.

* We propose some techniques (i.e., SWM, FPEM,
MAC, and heatmap cascade refinement) to properly
detect the oriented object and boost the performance.

* We verify the effectiveness of our TricubeNet from ex-
tensive experimental results on various tasks.

2. Related Work

Two-stage object detectors consist of two processes:
extract object region candidates and crop the region of in-
terest (ROI) of each object and predict the class and bound-
ing box offsets of the object. R-CNN [9] uses a selective
search [37] method to generate the bounding box candi-
dates and feeds them to the classifier. SPP [12] and Fast
R-CNN [8] crop the ROIs from feature maps and feed them
to the classifier. Faster R-CNN [32] generates bounding box
candidates from a region proposal network (RPN), which
allows training in an end-to-end manner. Recently, Cascade
R-CNN [4] designs iterative refinement steps for the high-
quality bounding box prediction. Although the two-stage
object detectors achieve state-of-the-art performance, they
require a high computational complexity.

One-stage object detectors classify and regress the bound-
ing boxes at once using anchor boxes. SSD [23] densely
produces the bounding boxes from multi-level feature maps
using various sizes of anchor boxes and removes overlap-
ping bounding boxes using NMS post-processing. Reti-
naNet [21] uses a focal loss to alleviate the class-imbalance
problem between positive and negative anchor boxes.
Anchor-free object detectors have recently been proposed
and eliminate the anchor box in the network design. Cor-
nerNet [18] is a keypoint-based anchor-free approach that
represents objects as pairs of corner keypoints and groups
them. CenterNet [48] represents objects as center points
with width and height regression. The anchor-free detec-
tors are simple and efficient but report a lower performance
than the two-stage detectors.

Oriented object detectors often adopt the object detec-
tors and additionally regress the angle for oriented ob-
jects. Adopting the Faster-RCNN [32] as a baseline detec-
tor, RRPN [26] exploits rotated anchor boxes and changes
the IoU calculation for rotated boxes, Rol Transformer [7]
extracts geometry-robust pooled features, and Gliding ver-
tex [40] employs a simple object representation method
which glides the vertex of the horizontal bounding box on
each corresponding side. Adopting the RetinaNet [21] as a
baseline detector, RSDet [29] proposes an eight-parameter
regression model using a rotation sensitivity error (RSE) for
handling the angle discontinuity problem and R3Det [41] is
a fast one-stage detector with a feature refinement module
to handle the feature misalignment problem. SCRDet [44]
proposes an IoU loss to alleviate the angle discontinuity
problem. These approaches adopt an anchor augmentation
strategy with a huge amount of box candidates to obtain ori-
ented boxes. To reduce computational complexity by elimi-
nating anchor box, DRN [28] adopts CenterNet [48] as their
baseline detector taking anchor-free modeling and addition-
ally regresses the angle offset with a proposed feature selec-
tion module and dynamic refinement head to dynamically
refine the network. Note that DRN represents objects as
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Figure 2. Overview of TricubeNet. It produces one channel heatmap per category where each oriented object is represented as a 2D Tricube
kernel. The backbone network consists of a fully convolutional encoder—decoder architecture. H and W are the height and width of the
image, respectively; C is the number of categories; R is the downsampling rate. From the heatmap cascade refinement, we progressively
refine the output heatmap (H) and extract bounding boxes from the lastly refined heatmap (H3) using simple image-processing algorithms.
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Figure 3. (a): 2D Tricube kernel, (b): 2D Gaussian kernel, (c):
object as 2D Tricube kernel, and (d): object as 2D Gaussian kernel.

center points and obtains other box offsets using regression,
suffering from the angle discontinuity problem. Meanwhile,
we represent the whole object region as a 2D Tricube ker-
nel and obtain a bounding box using image-processing al-
gorithms, detouring the angle discontinuity problem.

The text detectors widely have adopted a segmentation-
based anchor-free approach by utilizing the fact that there
is no occlusion in the text. PixelLink [6] performs the in-
stance segmentation using a pixel-wise eight-neighbors link
prediction. CRAFT [2] is a character-level detection ap-
proach instead of word-level detection by representing each
character as a 2D Gaussian kernel.

3. Method
3.1. 2D Tricube kernel

Recent key-point detection approaches [18, 48, 27] rep-
resent each key-point as a 2D Gaussian kernel and show
remarkable performances. Motivated by these approaches,
we assume that a 2D kernel function is a good candidate for
representing the key features and is an easy-to-learn form
for deep neural networks. For the oriented object detection,
however, the 2D Gaussian kernel is not a suitable choice
because its circular form often fails to represent the angle
of an object. For example, in Figure 3(d), the 2D Gaussian
kernel for the rotated square-form object cannot represent
the angle of the object. For suitable modeling for the ori-
ented object detection, we choose a 2D Tricube kernel as
our object representation method. Unlike the 2D Gaussian
kernel that has a circular-form distribution, the 2D Tricube
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Figure 4. Illustration of multi-angle convolution (MAC) module
which extracts rotation-invariant features.

kernel has a rectangular-form distribution as in Figure 3(a)
and is defined as (1 — |z|3)7 - (1 — |y|®)” where 7 is set to
7 in all experiments. The 2D Tricube kernel can properly
represent the angle of the object as shown in Figure 3(c).

3.2. Architecture

As illustrated in Figure 2, TricubeNet consists of a
fully convolutional encoder—decoder architecture. Let I €
R#XWx3 be an input image, where H is height and W
is width. The network predicts the output heatmap H €
R% %% %€ where R is the downsampling rate and C is the
number of categories. We adopt Hourglass-104 [27] net-
work as our backbone network. We apply a bilinear upsam-
pling layer on the output heatmap for higher pixel precision;
the downsampling rate R is set to 2 in all experiments.
Multi-Angle Convolution (MAC) Module. In our
heatmap-based detection framework, extracting rotation-
invariant features is important to detect orient objects. How-
ever, a convolutional neural network (CNN) has a limitation
in extracting a rotation-invariant feature. To this end, we de-
sign a multi-angle convolution (MAC) module that is light
and effective to extract the rotation-invariant features. The
MAC module is illustrated in Figure 4.

First, we define n kinds of angles, 6;, i € (1,...,n),
where the range is [0, Z). Next, when the input feature map
X consists of K channels, we divide the channel of the X
by n by applying a convolutional layer with a kernel size of
1 and channel of % We denote the divided feature map as
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Algorithm 1: Rotation Convolution

Input: Feature maps X € RIXWxK
rotation angle 6

QOutput: Rotation-invariant feature maps :
X e REXWxK

X « Rescale(X, 1/(sin 6 + cos )

X « Rotate(X ,0)

X + Conv3x3(X)

X + Rotate(X, 27 — 0)

X « Rescale(X , sin @ + cos )

return X

Fi. Then, we apply a rotation convolutional layer with an
angle of #; and kernel size 3 on ;. Last, we concatenate the
outputs of the rotation convolution with n different angles
applied. Formally, the output of the MAC module X, which
is the rotation invariant feature map, is defined as:

X = concat([RConv(F;,0;), ..., RConv(F,,0,)]),
ey
where concat is the concatenate operation and RC'onv is
the rotation convolutional layer with an angle of 6. In all ex-
periments, we set n = 4 and (01, 02, 0s,04) = (0, 5, 5, §).
A recent study, DRN [28], proposed a rotation convolu-
tional layer, which rotates the kernel of CNN to extract the
rotation-invariant feature. However, rotating the kernel of
CNN requires heavy computations and additional parame-
ters. For the efficient implementation of the rotation convo-
lutional layer, we approximate the rotating of the kernel by
rotating feature maps and then applying a normal CNN.

The detailed process of our rotation convolutional layer
is described in Algorithm 1. First, we re-scale the feature
map with a scale factor of 1/(sin 6+ cos 8) to keep the orig-
inal shape after rotating and then rotate the feature map by
0. Then, we apply a normal convolutional layer with ker-
nel size 3 on the rotated feature map and return the output
feature map back to the original angle and scale.

Heatmap Cascade Refinement. The two-stage detectors,
such as Cascade R-CNN [4], take advantage of a progres-
sive cascade refinement of the predicted bounding box; it re-
peatably crops the region of the predicted bounding box and
predicts refined bounding box. In contrast, the cascade re-
finement step is less studied on the heatmap-based anchor-
free approaches. Here, in our study, we propose a heatmap
cascade refinement, which progressively refines the output
heatmap in a pixel-wise manner, as illustrated in Figure 2.
Specifically, when the last feature map our backbone net-
work is denoted as X, the r-th refined feature map Y, and
r-th refined heatmap H, are defined as:

GT Bounding Boxes

Reshaped Kernel

GT Heatmap Size Weight Mask

2D Tricube Kernel

Figure 5. Illustration of the ground truth (GT) heatmap and size-
weight mask generation procedure.

Yy = MAC(X), Hy = fe(Y1),
Yo = MAC(X + Y1), Hy = fe(Ya),
(2)

Y, = MAC(X + Y,_y), H, = fe(Y,),

where M AC is the multi-angle convolution module and fc
is a convolutional layer with a kernel size of 1 and a chan-
nel of C'. Through the heatmap cascade refinement, we pro-
gressively refine the output heatmap by taking the rotation-
invariant feature map of the previous refinement step.

3.3. From bounding boxes to heatmap

Here, we describe how to generate a ground truth
heatmap. The whole generation process is illustrated in
Figure 5. First, we create a square 2D Tricube kernel and
normalize it to a value between zero to one. Then, we re-
shape the kernel to the same size as the ground truth ori-
ented bounding box. Last, we insert this reshaped kernel
into the heatmap. If two Tricube kernels overlap, we take an
element-wise maximum operation. The generated ground
truth heatmap is denoted as H € R7X7*C,

3.4. Objective

We optimize the TricubeNet using pixel-wise mean-
squared error (MSE) objective function between H and H
However, giving the pixel-wise MSE loss function has two
problems. First is a size-imbalance problem. Since we as-
sign the 2D Tricube kernel according to the size of each
object, large objects tend to have large losses and small ob-
jects tend to have little losses; this weakens the detection of
small objects. Second is a class-imbalance problem. Most
of the pixels in the heatmap are background pixels, there-
fore, it interferes with focusing on the foreground pixels.
To alleviate the above problems, we propose a size-weight
mask (SWM) and false-positive example mining (FPEM).
Size-Weight Mask (SWM). For the size-invariant loss
function, we weight the MSE loss according to the size
of the object using the size-weight mask (SWM); a large
object is given a low weight and a small object is given a
high weight. The SWM is denoted as M € R# X% *xC.
For each object, foreground pixels in the SWM contain a
weight that is inversely proportional to the size of the ob-
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ject. Also, background pixels contain a weight of 1. This
mask is generated in the same manner as the ground truth
heatmap (Section 3.3) and illustrated in Figure 5. When we
denote the size of the i-th object as S;, the set of pixels of
i-th object as P; %7 and the number of objects in an image
as N, the SWM for ¢-th object, M;, is defined as:

N S obj
_N"S. My dExw PEP;

5= ; Si Milp) = {1 otherwise. ®)
False-Positive Example Mining (FPEM). To alleviate the
class-imbalance problem, we adopt Online Hard Example
Mining (OHEM) [34] that is an effective sampling method
to make more focus on the foreground objects. However,
focusing too much on the foreground objects yields a lot of
false-positive detections. For balanced sampling while re-
ducing false-positives, we propose false-positive exampling
mining (FPEM). Specifically, we extract the positive and
false-positive pixels during training in an online manner:

PPt = {p | H(p) > 0},

; : )
PP ={p| H(p) = 0and H(p) > 0},

where PP°° and P/? is the set of positive and false-positive
pixels, respectively. Then we sample the ratio of |PP°°| and
|P7P| to be 1:3. Here, the order of P/? is sorted according
to the distance between H and H and then sampled in the
top-k manner.

The final objective function L is defined as,

LZ%ZM(;O) x (H(p) — H(p))?, (5)
peP

where P is the set of sampled pixels from FPEM.
3.5. From heatmap to oriented bounding boxes

We apply simple post-processing algorithms to extract
the oriented bounding boxes from the heatmap, as illus-
trated in Figurgv 6. First, we obtain a binary heatmap
S € [0,1]7®* "> from the output heatmap H with a
threshold 7. By increasing the 7, we can separate the
weakly-occluded objects. Second, through the connected
component labeling (CCL) [13] algorithm, we allocate an
ID of each Tricube kernel. Third, we obtain the rotated rect-
angular box with a minimum area containing each Tricube
kernel using OpenCV [3] functions. Last, since we drop
some part of the Tricube kernel through the threshold 7, we
scale up the kernel back to its original size by multiplying
a scale factor s. For the choice of 7 and s, we adaptively
set the s according to the 7 utilizing the distribution of the
Tricube kernel, i.e., y = (1 — |x|3)7. Note that the distri-
bution of the Tricube kernel is maintained even if the input
resolution or the object size is changed, therefore, we can
adaptively set s = W, where 7 is set to 7 as de-
scribed in 3.1.

() (b)

Figure 6. From heatmap to oriented bounding boxes. First, (a)
from the heatmap, (b) we obtain binary heatmap using threshold 7.
(c) We label each kernel using the connected component labeling
(CCL) algorithm and (d) extract the contour points and find the
minimum-area rectangle for each kernel.

4. Experiments
4.1. Dataset

To demonstrate our effectiveness, we experiment on var-

ious practical datasets of weakly-occluded objects: aerial
image, densely packed object image, and scene text image.
DOTA [39] is the largest dataset for oriented object de-
tection in aerial images; it consists of 2806 images with
sizes ranging from 800x 800 to 4000x4000. The number
of training, validation, and testing images are 1411, 458,
and 937, respectively. It contains 15 categories of objects
and 188,282 instances with a wide variety of scales, ori-
entations, and shapes. Following other conventions [7, 28],
we resize the image and crop a series of 1024 x 1024 patches
from the original images with a stride of 824. For training,
we resize the images at three scales (0.75, 1.0, and 1.5).
For single-scale testing and multi-scale testing, we resize
the images at one scale (1.0) and three scales (0.75, 1.0, and
1.5), respectively. The performance on the test set is mea-
sured on the official DOTA evaluation server'.
SKU110K-R [28] is an extended dataset of SKU110K [10]
for the densely packed oriented object detection. It contains
thousands of supermarket store images with various scales
from 1840x 1840 to 4320x4320, viewing angles, lighting
conditions, and noise levels. Each image contains an aver-
age of 154 tightly packed objects, up to 718 objects. The ro-
tation data augmentation with six angles (-45°, -30°, -15°,
15°, 30°, and 45°) is performed to original images. After
the augmentation, the number of training, validation, and
testing images are 57,533, 4,116, and 20,587, respectively.
MSRA-TD500 [45] is a dataset for multi-lingual, long, and
oriented text detection in both indoors and outdoors natural
images. The images contain English and Chinese scripts
and each text is labeled by a rotated rectangle. It consists of
300 training images and 200 testing images.
ICDAR2015 [16] is proposed in Robust Reading Compe-
tition for incidental scene text detection. There are 1000
training images and 500 testing images. Each text is anno-
tated as word level with a quadrangle of four vertexes.

lhttps://captainfwhu.qithub.io/DOTA
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Table 1.

Experiment results on DOTA dataset. MS and Flip denote the multi-scale and flip test time augmentation, respectively. PL-

Plane, BD-Baseball Diamond, BR-Bridge, GTF-Ground Field Track, SV-Small Vehicle, LV-Large Vehicle, SH-Ship, TC-Tennis Court,
BC-Basketball Court, ST-Storage Tank, SBF-Soccer Ball Field, RA-Roundabout, HA-Harbor, SP-Swimming Pool, and HC-Helicopter.

Method Backbone [MS Flip[ PL BD BR GIF SV LV SH TC BC ST SBF RA HA SP  HC [ mAP
two-stage
R-DFPN [12] ResNet-101 80.92 6582 3377 5894 5577 5094 5478 9033 6634 68.66 4873 5176 5510 5132 35.88 [ 57.94
RRPN [26] ResNet-101 80.94 6575 3534 6744 5992 5091 5581 90.67 66.92 7239 5506 5223 5514 53.35 4822|6101
R2CNN [15] ResNet-101 88.52 7120 31.66 59.30 51.85 56.19 5725 90.81 7284 6738 56.69 52.84 53.08 51.94 53.58 | 60.67
ICN [1] ResNet-101 8136 7430 47.70 7032 6489 67.82 69.98 90.76 79.06 7820 53.64 6290 67.02 64.17 50.23 | 68.16
Rol Trans [7] ResNet-101 | v/ 88.64 78.52 4344 7592 6881 73.68 8359 90.74 77.27 81.46 5839 53.54 62.83 5893 47.67 | 69.56
SCRDet [44] ResNet-101 89.41 78.83 50.02 6559 69.96 57.63 7226 90.73 8141 8439 5276 63.62 6201 67.62 61.16 | 69.83
SCRDet [44] ResNet-101 | v/ 89.98 80.65 52.09 6836 6836 6032 7241 90.85 87.94 86.86 65.02 66.68 6625 6824 6521 | 7261
Gliding vertex [40] | ResNet-101 | v/ 89.64 8500 5226 77.3¢ 7301 73.14 8682 90.74 79.02 86.81 5955 7091 7294 70.86 57.32 | 75.02
one-stage
FR-O [39] ResNet-101 7942 7713 1770 6405 5330 38.02 37.16 8941 69.64 5928 5030 5291 47.89 4740 4630 [ 54.13
RetinaNet [21] ResNet-50 | v/ 88.87 74.46 40.11 5803 63.10 50.61 63.63 90.89 77.91 7638 4826 5585 50.67 60.23 34.23 | 62.22
R®Det [41] ResNet-101 | v/ 89.54 81.99 4846 6252 7048 7429 77.54 90.80 81.39 8354 6197 59.82 6544 6746 60.05 | 71.69
R®Det [41] ResNet-152 | v 8949 81.17 50.53 66.10 7092 78.66 7821 90.81 8526 8423 6181 6377 68.16 69.83 67.17 | 73.74
RSDet [29] ResNet-101 | v/ 89.80 8290 48.60 6520 69.50 70.10 7020 90.50 85.60 83.40 6250 63.90 6560 67.20 68.00 | 72.20
RSDet [29] ResNet-152 | v 90.10 82.00 53.80 6850 7020 78.70 73.60 9120 87.10 8470 64.30 68.20 66.10 69.30 63.70 | 74.10
anchor-free
CenterNet [48] | Hourglass-104 89.02 69.71 37.62 6342 6523 6374 7728 90.51 79.24 7793 4483 5464 5593 6111 4571 [ 65.04
CenterNet [48] | Hourglass-104 | v/ 89.56 79.83 43.80 66.54 6558 66.09 83.11 9072 83.72 8430 5562 5871 6248 68.33 50.77 | 69.95
DRN [28] Hourglass-104 88.91 8022 43.52 6335 7348 70.69 8494 90.14 8385 8411 50.12 5841 67.62 68.60 5250 | 70.70
DRN [28] Hourglass-104 | v/ 89.45 83.16 4898 6224 70.63 7425 8399 90.73 84.60 8535 5576 60.79 71.56 68.82 63.92 | 72.95
DRN [28] Hourglass-104 | v v | 89.71 8234 4722 64.10 7622 7443 8584 90.57 86.18 84.89 57.65 6193 69.30 69.63 5848 | 7323
TricubeNet (ours) | Hourglass-104 8751 73.62 4321 6367 7697 7297 8436 89.21 8359 84.60 4729 61.77 7336 68.74 69.40 | 72.17
TricubeNet (ours) | Hourglass-104 | v/ 88.28 8046 4732 70.09 7697 7297 8452 90.73 83.87 84.60 5692 6291 7336 6874 71.63 | 74.22
TricubeNet (ours) | Hourglass-104 | v/ v | 8875 82.12 49.24 72.98 77.64 7453 84.65 9081 86.02 8538 5869 6359 73.82 69.67 71.08 | 75.26

4.2. Training details

For SKU110K-R, MSRA-TD500, and ICDAR2015
datasets, we set the input resolution to 800x800 and ap-
ply random cropping, random rotating, color jittering for
data augmentation. For DOTA dataset, we set the input
resolution to 1024x 1024 and apply random rotating and
color jittering data augmentation. Adam [17] is used as
the optimizer and the learning rate is set to 2.5e-4 for all
datasets. For DOTA dataset, we train the model with 140
epochs and drop the learning rate by a factor 10 at 90 and
120 epochs. For SKU110K-R dataset, we train the model
with 20 epochs without the learning rate decay. Follow-
ing existing text detection approaches [0, 5], we pre-train
the TricubeNet on SynthText [11] dataset with 3 epochs
and finetuned on MSRA-TD500 and ICDAR2015 datasets.
For MSRA-TD500 and ICDAR?2015 datasets, we train the
model with 180 epochs and drop the learning rate by a fac-
tor 10 at 120 and 160 epochs.

4.3. Testing details

We extract oriented bounding boxes using the post-
processing algorithm described in Section 3.5. For DOTA
dataset, we apply two kinds of test time augmentation:
multi-scale testing and flip augmentation. For multi-scale
testing, three scales (0.75, 1.0, and 1.5) and Soft-NMS for
oriented bounding boxes are used. For the flip augmenta-
tion, we average output heatmaps. For the evaluation met-
ric of DOTA, MSRA-TD500, and ICDAR2015, we adopt
the mean average precision (mAP) of the 0.5 polygon IoU
threshold. For the SKU110K-R dataset, we adopt COCO-
style [22] evaluation method for oriented boxes: mAP at

Table 2. Evaluation results on SKU110K-R using the COCO-style
metric.

Method mAP AP50 AP75 AR300
YOLOv3-Rotate [31] | 49.1 - 51.1 58.2
CenterNet-4point [48] | 34.3 - 19.6 42.2

CenterNet [48] 54.7 - 61.1 62.2
DRN [28] 559 - 63.1 63.3
TricubeNet (ours) 577 | 947 652 62.5

IoU=0.5:0.05:0.95, average precision AP75 at IoU of 0.75,
and average recall ARsg at IToU=0.5:0.05:0.95.

4.4. State-of-the-art comparisons

We compare the performance of TricubeNet with the
state-of-the-art methods on the test set of each dataset: Ta-
ble 1 for DOTA, Table 2 for SKU110K-R, Table 3 for
MSRA-TD500 and ICDAR2015. For the comparison, we
apply two-steps heatmap cascade refinement. The anchor-
based two-stage and one-stage detectors require a huge
number of anchor boxes and multiple loss functions for
the box offsets regression; it demands huge computational
complexity and careful hyperparameter tuning. Meanwhile,
anchor-free detectors can alleviate the above problems con-
cerned with the anchor box by eliminating the anchor box
in the network design, but their performance is slightly
inferior to that of anchor-based detectors. However, our
TricubeNet achieves highly competitive performance in all
datasets despite its anchor-free setting. Especially, our out-
standing performance in small vehicles (SV) shows that
TricubeNet can accurately detect small objects without an-
chor box tuning, and we can obtain well-arranged oriented
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Table 3. Evaluation on MSRA-TD500 and ICDAR2015 testset. *
denotes for multi-scale test. R, P, and H denote recall, precision,
and H-mean respectively.

MSRA-TD500 ICDAR 2015
Method R P H R P H
two-stage
Wang et al. [38] 82.1 852 83.6
Gliding vertex [40] | 84.3 88.8 86.5

86.0 89.2 87.6

one-stage
SegLink [33] 70.0 860 77.0 | 768 73.1 75.0
RRD* [19] 73.0 87.0 79.0 | 80.0 88.0 83.8

Lyu et al.* [25] 76.2 87.6 815|797 89.5 843
Direct* [14] 81.0 91.0 86.0 | 80.0 85.0 82.0
anchor-free

Zhang et al. [46] | 67.0 83.0 74.0 | 43.0 71.0 54.0
EAST* [49] 674 873 76.1 | 783 833 80.7

TextSnake [24] 739 832 783|804 849 826

PixelLink* [0] 732 83.0 77.8 | 820 855 837
CRAFT [2] 78.2 832 829|843 89.8 86.9

TricubeNet (ours) | 80.8 90.4 853 | 752 90.1 82.0

Table 4. The effect of each kernel representing an object.

kerenl | Tricube Gaussian Effective Rect Binary Rect
mAP | 75.26 72.12 69.31 58.52

boxes as shown in Figure 7(a). In addition, the sufficiently
high performance of 94.7% APsy; on SKU110K-R shows
that TricubeNet is effective in detecting densely packed ob-
jects. When applying the same test augmentation, Gliding
vertex [40], one of the two-stage detectors, shows the state-
of-the-art performance (75.0% v.s. 74.2%) as in Table 1,
we argue that our efficiency is higher than them because we
exploit the advantages of the one-stage anchor-free setting
and simply solve the loss discontinuity problem.

4.5. Ablation study

To analyze the effectiveness of each component of
TricubeNet, we conduct an ablation study. For the evalu-
ation, we experiment on DOTA validation set following all
parameter settings as given in Section 4.2.

First, we investigate which 2D kernel is more effective in
representing the object. For the comparison, we choose one
of four different types of 2D kernels: 2D Tricube kernel,
2D Gaussian kernel, binary rectangle, effective rectangle.
The effective rectangle is a shrunk binary rectangle, which
is employed in FSAF [50], and we use a binary rectangle
shrunk by 40% as the effective rectangle. Table 4 shows the
DOTA validation score of each kernel. The effective rect-
angle achieves higher performance than the binary rectangle
because the binary rectangle often fails to separate weakly-
occluded objects. Although the Gaussian kernel has a lim-
itation in representing the angle of the object as discussed
in Section 3.1, the Gaussian kernel shows a 2.81% higher
performance than the effective rectangle; this result demon-

Table 5. Ablation study for the proposed techniques: size-weight
mask (SWM), false-positive example mining (FPEM), multi-angle
convolution (MAC) module, one-step heatmap refinement (Cas-
cade 1), and two-step heatmap refinement (Cascade 2).

AP APsy AP;; | APs APy APy | Params GFlops
Baseline 304 616 252 | 163 324 37.6 | 188M 1015G
+SWM 31,1 640 256 | 192 330 360 | +OM +0G
+ FPEM 323 668 252 | 205 354 376 | +OM +0G
+MAC 336 67.7 287 | 202 359 398 | +04M  +28G

+Cascade 1 | 353 69.6 303 | 241 372 40.1 | +1.2M  +85G

+ Cascade 2 | 35.6  70.1 309 | 246 385 403 | +2.1IM  +143G

Table 6. The analysis of each method for extracting rotation-
invariant features.

AP AP50 AP75
CNN 323 668 252
DCN[51] | 329 67.0 28.1
RCL [28] 334 676 285
MAC (ours) | 33.6 67.7 28.7

Params  GFlops
+0.00M  +00G
+0.55M  +40G
+0.49M 434G
+0.43M  +28G

strates the advantage of the kernel-based object representa-
tion. Since the Tricube kernel can solve the limitation of the
Gaussian kernel while taking advantage of the kernel-based
object representation, the Tricube kernel is the most suit-
able choice for the oriented object and achieves the highest
performance among the four types of kernels.

Second, we evaluate the effect of proposed techniques,
i.e., size-weight mask (SWM), false-positive example min-
ing (FPEM), multi-angle convolution (MAC) module, and
heatmap cascade refinement. For a more precise analy-
sis, we measure the performance using COCO-style eval-
uation metric as in Table 5. APg, APy, and AP, denote
the AP when the object size is smaller than 32 x 32, be-
tween 32 x 32 and 96 x 96, and larger than 96 x 96, re-
spectively. In addition, we report the number of parameters
and GFlops. We set the baseline model as the hourglass-
104 network trained using MSE loss without any proposed
techniques and evaluate the effect of each technique. When
applying both SWM and FPEM, AP and APg are consid-
erably improved by 1.9% and 4.2%, respectively; it clearly
shows that SWM and FPEM help in solving size-imbalance
and class-imbalance problems. The MAC module, which is
designed for extracting the rotation-invariant feature, yields
1.3% performance improvement. One-step heatmap refine-
ment further improves the performance by 2.3%. How-
ever, two-step heatmap refinement only yields 0.3% im-
provement; we conclude that two-step heatmap refinement
is enough to produce a high-quality heatmap.

Last, in Table 6, we evaluate our MAC module by com-
paring with a conventional convolution (CNN), deformable
convolution [51] (DCN), and rotation convolution layer [28]
(RCL). Compared to CNN and DCN, our MAC module
can properly extract rotation-invariant features, so the per-
formance is improved by 1.3% and 0.7%, respectively.
Since both MAC and RCL are designed to extract rotation-
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invariant features, our MAC module shows a similar per-
formance improvement to the RCL. However, the RCL
requires heavier computations and about 60% more GPU
memory usage than our MAC during the training. From the
above result, we prove that the proposed MAC module is
more effective and efficient in our TricubeNet, which is a
fully-heatmap-based approach.

4.6. Qualitative Results

We collect some qualitative results on each dataset: Fig-
ure 7(a) for DOTA, Figure 7(b) for MSRA-TD500, Figure
7(c) for ICDAR 2015, and Figure 7(d) for SKU110K-R.
From the results, we can notice that our TricubeNet handles
the challenging factors of oriented object detection. Specif-
ically, as in Figure 7(a), TricubeNet can properly detect ob-
jects of various sizes within the multi-category classifica-
tion problem; as in Figure 7(c), TricubeNet can accurately
detect the rotated text despite the complex background; as
in Figure 7(d), TricubeNet is outstanding in the detection of
a huge number of densely arranged oriented objects. Fur-
thermore, we can identify that the consistency of the rotated
bounding boxes detecting the arranged objects is very high.

5. Conclusion and Future Work

We present a novel approach for oriented object de-
tection, named TricubeNet. Our main concept is that we
localize objects using visual cues (¢.e., heatmap) instead
of box offsets regression. We represent each object as a
2D Tricube kernel and extract bounding boxes using sim-
ple image-processing algorithms. Unlike anchor-based ap-
proaches, TricubeNet is able to obtain well-arranged ori-
ented boxes from visual cues, solve the angle discontinuity
problem by taking away the angle regression, and save the
computational complexity due to our anchor-free modeling.
Additionally, for the better fit in oriented object detection,
we propose some effective techniques: SWM for the size-
invariant loss function; FPEM for balancing between fore-
ground and background pixels and reducing false-positive
detections; MAC module to extract the rotation-invariant
features; heatmap cascade refinement for progressively re-
fine the output heatmap. The extensive experimental results
on various datasets show that our TricubeNet is consider-
ably effective and efficient for oriented object detection.

For future work, our failure cases are should be ad-
dressed. TricubeNet is quite effective to detect weakly-
occluded oriented objects, however, it has trouble detecting
heavily occluded objects. Also, the extracted box offsets
from our post-processing algorithm are integer type, which
weakens the precise detection of tiny objects. Addressing
these limitations would give a great improvement.

(a) DOTA

(d) SKU110K-R
Figure 7. Qualitative results of TricubeNet.
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