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Abstract

Knowledge distillation (KD) transfers knowledge of a
teacher model to improve performance of a student model
which is usually equipped with lower capacity. In the KD
framework, however, it is unclear what kind of knowledge
is effective and how it is transferred. This paper analyzes
a KD process to explore the key factors. In a KD formu-
lation, softmax temperature entangles three main compo-
nents of student and teacher probabilities and a weight for
KD, making it hard to analyze contributions of those fac-
tors separately. We disentangle those components so as to
further analyze especially the temperature and improve the
components respectively. Based on the analysis about tem-
perature and uniformity of the teacher probability, we pro-
pose a method, called extractive distillation, for extracting
effective knowledge from the teacher model. The extractive
KD touches only teacher knowledge, thus being applicable
to various KD methods. In the experiments on image clas-
sification tasks using Cifar-100 and TinyImageNet datasets,
we demonstrate that the proposed method outperforms the
other KD methods and analyze feature representation to
show its effectiveness in the framework of transfer learning.

1. Introduction
Neural networks are widely applied to various fields of

pattern classification [9, 26]. The state-of-the-art networks
are equipped with huge amount of parameters to produce
remarkable performance, even surpassing human. It, how-
ever, is hard to deploy the high-capacity networks to such
as edge devices of limited computing resources.

Knowledge distillation (KD) [2, 12] is a distinctive ap-
proach to enhance the performance of low-capacity net-
works with a help of pre-trained high-capacity models. KD
transfers knowledge from a cumbersome model (teacher)
to a single small model (student) [12]; in other words,
the high-capacity network teaches the low-capacity network
how to optimize parameters like a teacher-student model.

KD provides a general framework such that we can train a
low-capacity network from scratch while improving perfor-
mance. It also complements the other approaches [19].

A vanilla KD [12] is simply formulated through match-
ing two (softened) softmax probabilities of the student and
teacher neural networks, surprisingly working well in com-
parison even to its sophisticated variants [29]. Despite its
simplicity, it has not been completely analyzed/understood
what kind of information is distilled from a teacher model
and how it is propagated toward a student to improve per-
formance. There are some works to analyze the KD pro-
cess [6, 28, 34, 3, 14] for revealing the intrinsic character-
istics of KD based on the vanilla KD formulation [12]. As
shown in Fig. 1, however, the simple formulation is com-
posed of KD components entangled via a softmax tempera-
ture, making it hard to analyze those components separately.
In this work, we disentangle those KD factors by consider-
ing a general formulation of KD to proceed further analysis
while giving a light on a new perspective of the KD pro-
cess. Based on the analysis, we propose a novel method,
called extractive knowledge distillation, to extract further
effective teacher knowledge for improving performance in
a simple framework. It is thus applicable to various KD
methods that are based on matching softmax probabilities.

Our contributions are summarized as follows.
• We introduce a general formulation for KD to dis-

entangle three KD components which are connected
via temperature in a vanilla KD formulation [12].
Those disentangled three components are separately
analyzed, especially in terms of temperature.

• The teacher probability is viewed from a novel per-
spective regarding temperature and uniformity to pro-
pose an extractive distillation process for further ex-
tracting effective knowledge, while other methods di-
rectly employ raw teacher probabilities as knowledge.

• The proposed extractive KD is empirically evaluated
by using CNNs on image classification tasks of Cifar-
100 and TinyImageNet through comparison to the
other methods. The method is also analyzed from a
feature representation viewpoint in transfer learning.
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2. Related Works
Since knowledge distillation (KD) was proposed in the

seminal works [2, 12], it attracts keen attention in various
fields related to machine learning. While a vanilla KD [12]
is formulated to match logits of student and teacher mod-
els, there are variants to extend KD such as by match-
ing intermediate layer representations [24, 10, 11], feature
map attention [37], ensemble models [17] and relationships
among samples [21]. The other techniques, e.g., sophisti-
cated self-training [32] and data augmentation [35], are also
incorporated into the KD framework to further boost per-
formance [29, 33, 31]. KD is applied to compare not only
teacher-student models of different capacities but also same
capacity models in a self-distillation framework [38, 6].
Comprehensive survey for KD variants can be found in [8].

While the KD has been extended in various ways with
promising performance, it is still unclear what kind of
knowledge is essentially transferred from a teacher to a stu-
dent. KD is theoretically analyzed regarding such as trans-
fer risk bound through linearization [23] or by means of
neural tangent kernel [13]. Recently, there are some works
to analyze the KD process in detail and explore its key fac-
tors [6, 28, 34, 3, 14] through empirical studies as follow.

In the KD framework, teacher networks are analyzed in
terms of capacity and (training) optimality in [34] show-
ing that lower-capacity and poorly-trained teacher networks
even contribute to performance improvement. Discrepancy
between teacher and student capacities is also analyzed
in [3], exploring what kind of teacher model is beneficial
for KD such as through early stopping. In [6], softmax
probabilities of a teacher model are regarded as weighting
training samples in a similar way to the importance weight-
ing scheme. From the weighting viewpoint, the teacher
probabilities are further analyzed in [28] to clarify gradient
weighing in back-propagation. The softmax probabilities of
a teacher and a student model are softened by a temperature
τ mainly for effective matching [12]. From the viewpoint
of logit matching, [14] analyzes how the temperature works
on training a student model. In this work, we also focus on
the temperature τ to clarify effective knowledge from the
teacher logits towards performance improvement in a dif-
ferent approach from [14].

KD is also discussed through a connection to label
smoothing regularization (LSR) [27, 20] since the KD loss
is formulated in a similar form to LSR; KD is referred to as
adaptive LSR in [28] or learned LSR in [34]. In contrast to
those works, through disentangling KD factors, we find out
the effect of label smoothing within the teacher probabilities
and leverage it to improve the teacher knowledge. The re-
fined teacher knowledge is effectively transferred to training
a student model with performance improvement. Thus, our
method contrasts with the other KDs which directly employ
softened teacher probabilities to be transferred.

Temperature

Teacher prob.

Student prob.Weight
2

Figure 1. Entanglement via temperature τ .

3. Method
3.1. Disentangled KD formulation

Suppose we have a student model (neural network) ϕs

and a teacher model ϕt pre-trained on a target dataset.
Knowledge distillation (KD) is applied to train the student
model through transferring knowledge of the teacher. For
that purpose, a vanilla KD is formulated by matching the
outputs of those two models in the following loss [12];

L = (1− α)H(y, ps) + ατ2H
(
ptτ , p

s
τ

)
, (1)

∂L
∂zs

= (1− α)(ps − y) + ατ(psτ − ptτ ), (2)

where H(q, p) = −
∑C

c=1q[c] log p[c] measures cross-
entropy between two probability distributions and psτ =
σ(zs/τ) and ptτ = σ(zt/τ) are softened softmax proba-
bilities with a temperature τ based on the logits zs and zt

produced by the student ϕs and teacher ϕt, respectively;

pτ [c] = σ(z/τ)[c] =
exp(zc/τ)∑C
i=1 exp(zi/τ)

. (3)

In (1), a classification loss (the first term) is simply mea-
sured by the cross entropy between ps= psτ=1=σ(zs) and
the ground-truth (one-hot) label y. KD is essentially embed-
ded in the second regularization term, being isolated from
the classification term; those are mixed via a parameter α.

In the KD term, the temperature τ is involved in three
components of the student softmax probability psτ , the
teacher probability ptτ and the weight of the KD term ατ2,
as shown in Fig. 1. The entanglement makes it difficult to
analyze those factors individually and in particular to ex-
plore a key role of the temperature in KD. Therefore, we
disentangle the three components by reformulating a vanilla
KD (1) into the following general one;

Lg = γH(y, ps) + βτsH
(
qtτ , p

s
τs

)
, (4)

∂Lg

∂zs
= γ(ps − y) + β(psτs − qtτ ), (5)

where we define a student probability psτs = σ(zs/τs)
with a student temperature τs separately from a teacher an-
notation qtτ which is defined by an arbitrary probabilistic
form based on the teacher logit zt with a teacher temper-
ature τ . (4) is reduced to (1) by τs = τ , γ = 1 − α,
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(a) Standard weight (β = 0.9τs) (b) Disentangled weight (β = 3.6)
Figure 2. Classification accuracies (%) on Cifar-100 [16] by vari-
ous student temperature τs and teacher temperature τ t under the
two weighting scenarios of standard (1) and disentangled (4) ones.

β = ατ and qtτ = σ(zt/τ); note that the standard setting
of {α = 0.9, τ = 4} in (1) produces {γ = 0.1, β = 3.6}
in (4). Based on the general formulation, we analyze a KD
process from the following three aspects in Sec. 3.2∼3.4.

3.2. Student probability

We here set the teacher annotation as qtτ = σ(zt/τ)
which is further analyzed in the next section. The disen-
tanglement in (4) allows us to respectively apply two types
of temperatures τs and τ to the student psτs = σ(zs/τs) and
the teacher qtτ = σ(zt/τ), while an identical temperature τ
is shared in a vanilla KD formulation (1).

We conduct preliminary experiments to evaluate the
disentanglement regarding the student and the teacher
probabilities in terms of temperatures. KD is applied
to image classification on Cifar-100 dataset [16] using
ResNet32x4 [9] (teacher) and ResNet8x4 (student); the de-
tailed experimental setting is shown in Sec. 4. Classifica-
tion accuracies are measured over various temperatures un-
der two weighting scenarios of β = 0.9τs and β = 3.6; the
former one is the ordinary setting in (1) with α = 0.9 while
the latter excludes the temperature from the weight in (4)
assuming a standard setting of τs = 4.

As shown in Fig. 2a, the classification performance is af-
fected by both the student and teacher temperatures in the
ordinary weighting. On the other hand, the disentangled
weighting (β = 0.9) in Fig. 2b clarifies respective contribu-
tions of those two temperatures. We find that performance
is dominated by the teacher temperature τ while the student
one τs is less influential in the performance. This can also
be viewed in the following theoretical way.

The tempered softmax loss (4) is rewritten to

Lg = γH(y, σ(τsz̃s)) + βτsH
(
qtτ , σ(z̃

s)
)
, (6)

where z̃s = zs/τs. Under the fixed teacher annotation qtτ ,
the student temperature τs operates on the classifier loss, af-
fecting training dynamics as analyzed in the tempered soft-
max loss [1] rather than significant performance improve-
ment. Thus, the student temperature τs is less contribu-
tive to the performance in comparison to the teacher one τ
which directly controls the teacher annotation (Sec. 3.3).

Based on the analysis, without loss of performance, we
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Figure 3. Characteristics of teacher probability ptτ = σ(zt/τ) on
various temperature τ . Our annotation (9) in (c,d) is implemented
by τ = 4, ϵ = 0.2.

employ τs=1 to simplify the KD formulation (4) into

Lg = γH(y, ps) + βH
(
qtτ , p

s
)
, (7)

where a temperature τ appears only on the teacher qtτ .

3.3. Teacher annotation

As shown above, the central role of KD is to extract
knowledge from the teacher logit zt through a temperature
τ and to transfer it in the form of qtτ in (7). To that end, one
usually resorts to a higher temperature τ > 1 for distilling
such knowledge by means of the softened softmax probabil-
ities σ(zt/τ). We analyze effect of the teacher temperature
τ for constructing an effective teacher annotation qtτ .

3.3.1 Effect of higher temperature

Fig. 3a shows distribution of entropy computed on a teacher
probability ptτ = σ(zt/τ) by H(u, ptτ ) where u = {u[c] =
1
C , ∀c}. The lower temperature, e.g., τ = 1, produces too
sparse signals while the higher one, e.g., τ = 8, smooths out
the probability toward uniform. A softened softmax prob-
ability blurs knowledge (Fig. 3cd) derived from a teacher
logit zt which distinctively activates the ground-truth class
(Fig. 3b). The blurring favorably reveals the following two
characteristics which are effective to train a student model.
Relationship among class categories. While the ground-
truth class usually receives a prominent probability at any
temperatures, as shown in Fig. 3c, the moderately high tem-
perature activates the probabilities of the non ground-truth
classes which are suppressed in the low-tempered softmax
probability. Those activations accompanying the ground-
truth class reflect the similarities among the class cate-
gories [28], i.e, class relationships, which can be regarded
as the core information of dark knowledge [12]. The class
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Initial teacher prob. Final teacher anno.

Class relationships (dark knowledge)

Uniformity (label smoothing)

Figure 4. Extractive distillation of teacher knowledge. It first de-
compose the teacher probability σ(zt/τ) into two parts of class
relationships and uniformity. Then, the decomposed factors are
favorably combined with a parameter ϵ.

relationships encoded by the teacher probabilities encour-
age the student model to capture the intrinsic characteristics
of recognition targets to improve feature representation.

Uniformity. On the other hand, the higher temperature ac-
tivates probabilities of all the classes including not only the
related classes but also the other irrelevant ones (Fig. 3cd)
since the teacher probability approaches to uniform ptτ =
σ(zt/τ) → u as τ → ∞ (Fig. 3a). The uniformity across
classes is heuristically employed as the label smoothing reg-
ularization (LSR) [27, 20]. From this viewpoint, the higher
temperature enhances the regularization effect of KD. The
LSR is effectively applied to such as classification tasks [27]
by regularizing feature representation via large-margin ef-
fects [20, 15]. In the KD literature, the connection to label
smoothing has been discussed from the viewpoint of formu-
lation [28, 34], and the LSR effect embedded in the teacher
probability ptτ has not been clearly discussed.

3.3.2 Extractive distillation of teacher knowledge

The success of KD would be built on the above-mentioned
two characteristics to enhance feature representation as well
as to regularize the training toward high generalization per-
formance. They, however, are again entangled via the
teacher temperature τ . Namely, the single parameter τ si-
multaneously controls both effects of class relationships and
uniformity, thereby being unable to properly balance them;
for example, it is difficult to extract broader class similari-
ties while suppressing uniformity (low label smoothing reg-
ularization) since the higher temperature increases both the
range of class relationships and the uniformity as shown
in Fig. 3c. Thus, for improving the teacher annotation be-
yond a simple softened probability σ(zt/τ), we disentangle
those two characteristics in the teacher probability as fol-
lows (Fig. 4); we call this process extractive distillation1.

First, for extracting class relationships, the teacher prob-
ability ptτ = σ(zt/τ) is decomposed on the basis of the

1We introduce u to disentangle the two properties and then distill effec-
tive knowledge as in the chemical process of extractive distillation [7].

uniform probability u = {u[c] = 1
C }Cc=1 by

ptτ = max(ptτ−u, 0)+min(ptτ , u) = p̂tτ+min(ptτ , u), (8)

where the max and min operators are applied in an element-
wise manner. In the decomposition (8), the distinctive prob-
abilities p̂tτ = max(ptτ − u, 0) are discriminated from the
other subtle ones through thresholding by u. p̂tτ is defined
as the deviation from the uniform distribution u and thereby
sparsely encodes class relationships even by higher τ . On
the other hand, the other remaining probabilities min(ptτ , u)
are regarded as rather noisy ones. Those noises contribute to
label smoothing regularization as described above and can
be approximated by the uniform probability u. Thereby, the
class relationships and uniformity are separated as shown in
Fig. 4. The decomposed two factors are finally merged into
the teacher annotation qtτ,ϵ by

qtτ,ϵ = (1− ϵ)
p̂tτ

∥p̂tτ∥1
+ ϵ u, (9)

where ϵ is a parameter as in the label smoothing [27].
In this extractive distillation process (Fig. 4), we sepa-

rate the effects of class relationships and uniformity (label
smoothing), both of which contribute to performance im-
provement, yet being heavily entangled via the temperature
τ in the teacher probabilities used in ordinary KD. Then,
those are favorably mixed up in the form (9) to introduce the
LSR effect in a controllable way by means of the parameter
ϵ ∈ [0, 1]. We can intuitively construct the teacher annota-
tion qtτ,ϵ based on the two parameters τ and ϵ; it is possible
to encode broad class relationships by higher τ while intro-
ducing a bit LSR effect via small ϵ, as shown in Fig. 3cd.

3.3.3 Discussion

We can reconstruct the teacher probability ptτ (8) by

ptτ ≈ p̂tτ + (1− ∥p̂tτ∥1)u, (10)

where we equally distribute the (rest) probability mass,
1 − ∥p̂tτ∥1, to all the classes. The approximated form
(10) is involved in our framework (9) by adaptively set-
ting ϵ = 1 − ∥p̂tτ∥1 across samples while we consider
the constant ϵ in (9). From this viewpoint, KD methods
which directly employ raw teacher probability ptτ inject la-
bel smoothing effect variably across samples according to
the classification confidence ∥p̂tτ∥1 of the teacher model.

In KD-topk [28], the class relationships are extracted by
top-k probabilities in a similar manner to (8) and the rest
probability mass is shared across the other classes as in (10);

qtτ,k = p̂tτ,k + (1− ∥p̂tτ,k∥1)ǔk, (11)

p̂tτ,k[c] =

{
ptτ [c] c ∈ K
0 c /∈ K , ǔk[c] =

{
0 c ∈ K
1

C−k c /∈ K , (12)
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where K indicates an index set of top-k probabilities, |K| =
k. Our approach (9) is clearly different from the KD-topk
(11) in the following two points: (1) we identify the class
relationships (p̂tτ ) based on the deviation from uniformity u

and (2) modify the uniformity, i.e., LSR effect, via a fixed
parameter ϵ. These two points are detailed below.

(1) The top-k components are firmly picked up no matter
how the logits zt are distributed; it might miss distinctive
activations by smaller k. Thus, the parameter k should be
carefully tuned on tasks and datasets [28]. In contrast, our
approach (8) adaptively picks up the distinctive components
based on the logit distribution on the basis of uniformity;

ptτ [c] >
1

C
⇔ zt[c]

τ
> log

[∑C
i=1 exp

(zt[i]
τ

)]
− log(C),

where the log-sum-exp term reflects the statistical property
of the logits zt/τ , being related to the class relationships.

(2) The LSR effect is constantly introduced by a small
constant fraction ϵ in (9). On the other hand, the adaptive ϵ
in (11) dependent on the probability mass ∥p̂tτ,k∥1 directly
reflects the uncertainty of the teacher decision which is de-
rived from the teacher model itself rather apart from the
natural characteristics (intrinsic relationships) of the class
categories. Thus, we remove the interference by the teacher
model uncertainty and leverage constant uniformity to en-
hance generalization performance as in LSR [27, 20].

3.4. Weighting

Through the disentanglement (4), the weight β of the KD
term can be flexibly set while a vanilla KD usually relates
it to the temperature τ . Looking at the experimental results
in Fig. 2b, the weight would also affect performance; the
performance at τs = 1 is improved by β = 3.6 (Fig. 2b)
compared to β = 0.9× 1 = 0.9 (Fig. 2a), and at τs = 8 the
performance of β = 0.9 × 8 = 7.2 (Fig. 2a) outperforms
that of β = 3.6 (Fig. 2b).

To explore effective weighting, we focus on the back-
propagation process. The gradients derived from the clas-
sification loss and the KD term are given by, respectively,

∂Lcls

∂zs
=

∂H(y, ps)

∂zs
=ps−y,

∂Lkd

∂zs
=

∂H
(
qtτ,ϵ, p

s
)

∂zs
=ps−qtτ,ϵ,

(13)

the magnitudes (norms) of which are highly biased as
shown in Fig. 8a; ∥∂Lkd

∂zs ∥2 ≪ ∥∂Lcls

∂zs ∥2. Thus, the weight
β should be larger to compensate the bias so that the two
kinds of information are properly mixed. It can be deter-
mined through empirical evaluation (Fig. 8b).

In summary, we have disentangled three main KD fac-
tors of student and teacher probabilities and KD weight to
improve them respectively in Sec. 3.2∼3.4; the parameter
values are determined by ablation experiments in Sec. 4.1.
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Figure 5. Performance results on Cifar-100 by using (a) our super-
vision qtτ,ϵ (9) on various temperature τ and ϵ. (b) It is compared
to the top-k = 25 approach [28] which detects distinctive proba-
bilities by top-k instead of p̂tτ (8).

4. Experimental Results
The proposed extractive KD method is applied to im-

age classification tasks using CNNs. We follow the stan-
dard training protocol [29] of mini-batch 64, weight decay
0.0005 and SGD optimizer with momentum 0.9 and initial
learning rate 0.05 which is divided by 10 at 150, 180 and
210-th epochs over total 240 epochs. Our KD is imple-
mented in the general form (4) using τs = 1, γ = 0.1 while
the teacher annotation qtτ,ϵ (9) and the weight β are deter-
mined based on the ablation experiments in Sec. 4.1.

4.1. Ablation study

We first empirically analyze the teacher annotation qtτ,ϵ
(9) in an ablation manner on Cifar-100 dataset [16] with
β = 3.6. The Cifar-100 dataset provides a classification
task of 32×32 images sampled from 100 object classes with
50,000 training samples as well as 10,000 test samples.
Parameters τ and ϵ . Fist, we analyze the temperature τ
and the uniformity parameter ϵ in (9). Fig. 5a shows per-
formance results on τ ∈ {1, 2, 4, 8} and ϵ ∈ [0, 1] in com-
parison to the teacher probability qtτ = σ(zt/τ). On the
basis of ϵ = 0, it is possible to identify the effects of the
class relationships p̂tτ (8) and the uniformity u. The anno-
tation qtτ,ϵ with ϵ = 0 is solely composed of p̂tτ and the
performance at ϵ = 0 implies that the class relationship is
effectively extracted by τ = 4. On the other hand, the per-
formance of σ(zt/τ) is degraded by τ > 2 from the peak
at τ = 2. The discrepancy is due to the effect of uniformity
related to label smoothing regularization (LSR). As shown
in Fig. 3a, the uniformity of σ(zt/τ) is favorably small at
τ = 2 to enhance generalization performance but is too
large by τ > 2, imposing intense regularization on the stu-
dent model to deteriorate performance though dark knowl-
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Figure 8. Analyses of weight β. (a) Loss-gradient magnitudes of Lcls

and Lkd in (13) during 240 training epochs. (b) Classification accuracies
on Cifar-100 over various β with two kinds of teacher annotations.

edge is favorably extracted by τ = 4. Actually, by properly
controlling the uniformity of qtτ,ϵ such as by ϵ = 0.2, the
performance is significantly improved; 73.45% → 74.97%
at τ = 4. On the other hand, the larger ϵ also imposes too
much regularization on training, thereby degrading perfor-
mance. Thus, in the teacher annotation (9), dark knowl-
edge regarding class relationships are effectively extracted
via large temperature τ while injecting LSR effect by small
ϵ to boost performance. Based on the experimental results,
we apply {τ = 4, ϵ = 0.2} to construct qtτ,ϵ in (9).

Comparison. Next, our extractive distillation model is
compared to the competitive ones mentioned in Sec. 3.3.3.
The similar model is given in (10) which adaptively assigns
the rest probability mass 1 − ∥p̂tτ∥1 to ϵ at each sample for
reconstructing ptτ . The distribution of 1−∥p̂tτ∥1 across sam-
ples is shown in Fig. 7, indicating that τ = 1 provides no
LSR effect (ϵ ≈ 0) while τ = 8 endows significant effect
(ϵ ≈ 1); it is related to the uniformity shown in Fig. 3a.
As shown in Fig. 6 (3rd row), the stronger regularization
of the larger τ significantly deteriorates performance; it is
noteworthy that the class relationship can be encoded even
by the large τ = 8 since it produces favorable performance
by ϵ = 0.2 (1st row in Fig. 6). For further comparison,
we also apply the method that fixes ϵ as E[1 − ∥p̂tτ∥1],
the mean across training samples, whose actual values are
shown in parentheses in Fig. 7. The performance compari-
son in Fig. 6 between the adaptive and fixed ϵ clarifies that
the adaptive ϵ over samples is not contributive to perfor-
mance. As discussed in Sec. 3.3.3, 1−∥p̂tτ∥1 reflects merely
the prediction uncertainty derived from the teacher model
and is irrelevant to encoding the intrinsic class relationships.
The KD-topk methods [28] work similarly to the adaptive
model (10) since the top-k approach (11) also redistribute
the rest probability mass to classes in the same way as (10).
It is also possible to incorporate the top-k approach into
our framework (Fig. 4) with a parameter ϵ by replacing
p̂tτ = max(ptτ , u) with p̂tτ,k (12) to detect class relation-
ships. The performance results are shown in Fig. 5b, com-
pared to ours in Fig. 5a. Our method outperforms the top-k
approach even in the proposed framework (9), demonstrat-
ing that the thresholding (8) based on u is more effective
than the sorting based on top-k as discussed in Sec. 3.3.3.

Weighting. THen, we evaluate the weight β according to
the discussion in Sec. 3.4. Performance results across vari-
ous β are shown in Fig. 8b. The performance is further im-
proved by β = 7.2 in comparison to β = 3.6 which is based
on the standard weighting of β = ατ with α = 0.9 and τ =
4 in (1). We also evaluate the performance of a standard set-
ting which employs γ = 0.1, qtτ = σ(zt/τ t), τ t = τs = 4
in (4). Tuning β also improves performance of the standard
method in our general formulation, though it is still inferior
to our KD equipped with the improved teacher annotation.

We summarize our setting in the general KD form (4) by
τs=1, γ=0.1, β=7.2 with annotation qtτ=4,ϵ=0.2 (9) .

4.2. Performance comparison

The proposed method is compared with the other KD
methods which are formulated by reducing discrepancy be-
tween the student and teacher models. We follow the eval-
uation protocol provided in [29] by applying diverse CNN
models of various capacities [9, 36, 26, 25, 39, 18].

The performance results on Cifar-100 dataset are shown
in Table 1. The proposed method favorably improves the
performance of a vanilla KD [12] while outperforming the
other KD methods. It should be noted that our extrac-
tive KD modifies only the teacher annotation in (9) with-
out introducing additional matching measurement between
student and teacher models such as in intermediate lay-
ers [24, 37]. The proposed annotation (9) explicitly intro-
duces uniformity u as in the label smoothing regularization
(LSR), thus being comparable to the performance of the
LSR approach [27] which scratches the ground truth label
by a small fraction of ϵ ∈ {0.1, 0.2, 0.3}; the best perfor-
mance over the parameter set is reported in Table 1. Our
method is superior to the LSR, demonstrating that the uni-
formity u favorably works in the KD framework. While the
ordinary KD implicitly utilizes uniformity embedded in the
teacher probability ptτ as analyzed in Sec. 3.3, we explicitly
control it by a parameter ϵ to improve performance.

Then, our KD is compared with the sophisticated KD
methods [29, 33, 31] which incorporate the other tech-
nique such as self-training [32] and effective data augmen-
tation [35] into a KD framework. Our KD is competitive
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Table 1. Performance results. For comparison, we apply LSR [27] and CutMix [35] to train student models without a help of teacher ones.
Teacher WRN-40-2 WRN-40-2 ResNet56 ResNet110 ResNet32x4 VGG13 VGG13 ResNet50 ResNet50 ResNet32x4 WRN-40-2
Student WRN-16-2 WRN-40-1 ResNet20 ResNet20 ResNet8x4 VGG8 MobileV2 MobileV2 VGG8 ShuffleV2 ShuffleV1

Cifar-100 [16]
Teacher 75.61 75.61 72.34 74.31 79.42 74.64 74.64 79.34 79.34 79.42 75.61
Student 73.26 71.98 69.06 69.06 72.50 70.36 64.60 64.60 70.36 71.82 70.50

KD [12] 74.92 73.54 70.66 70.67 73.33 72.98 67.37 67.35 73.81 74.45 74.83
FitNet [24] 73.58 72.24 69.21 68.99 73.50 71.02 64.14 63.16 70.69 73.54 73.73

AT [37] 74.08 72.77 70.55 70.22 73.44 71.43 59.40 58.58 71.84 72.73 73.32
PKT [22] 74.54 73.45 70.34 70.25 73.64 72.88 67.13 66.52 73.01 74.69 73.89

Ours 75.36 74.26 71.17 71.29 75.55 73.89 69.41 69.39 73.93 76.17 75.30

CRD [29] 75.48 74.14 71.16 71.46 75.51 73.94 69.73 69.11 74.30 75.65 76.05
SSKD [33] 76.04 76.13 71.49 71.08 76.20 75.33 71.53 72.57 75.76 78.61 77.40

KD+CutMix [31] 75.34 74.60 70.77 71.82 74.91 74.16 68.79 69.77 74.85 76.61 77.63
Ours+CutMix 76.04 75.52 71.73 71.15 77.65 74.55 71.81 72.13 76.44 79.09 77.62

LSR [27] 73.92 71.61 69.47 69.47 72.19 70.78 65.81 65.81 70.78 73.61 72.40
CutMix [35] 75.35 74.79 70.43 70.43 73.08 72.48 67.48 67.48 72.48 75.83 74.94

TinyImageNet [4]
Teacher 61.87 61.87 58.29 59.85 64.50 62.52 62.52 69.39 69.39 64.50 61.87
Student 58.23 55.87 52.53 52.23 55.41 56.67 58.20 58.20 56.67 62.07 60.28

KD [12] 58.65 58.17 53.58 53.83 55.67 61.48 59.28 58.72 60.39 66.34 64.90
Ours 60.22 60.30 54.43 54.91 59.87 62.51 62.07 62.29 61.59 67.17 65.19

CRD [29] 60.79 59.31 55.34 55.17 59.28 62.92 62.38 61.56 62.03 67.33 65.44
SSKD [33] 59.73 59.18 53.50 54.12 57.73 62.95 62.39 62.79 63.18 67.27 64.39

KD+CutMix [31] 60.07 60.13 54.25 55.16 57.54 62.60 60.66 61.13 61.95 67.35 65.98
Ours+CutMix 61.11 61.00 54.67 55.37 61.31 64.29 63.55 64.72 65.20 68.41 66.05

LSR [27] 57.66 55.97 52.64 52.64 54.85 56.58 58.48 58.48 56.58 63.13 60.76
CutMix [35] 59.62 58.31 53.20 53.20 56.08 59.16 61.81 61.82 59.16 65.98 64.37

even with CRD [29] and it is straightforwardly extended in
the CutMix framework [31] to produce competitive perfor-
mance with those sophisticated methods. The combination
method of our extractive KD and CutMix augmentation is
also compared with the baseline method that trains a student
model via CutMix and it is shown that our KD favorably
works with the CutMix, which will be analyzed in Sec. 4.4.

In Table 1, the KD methods are also evaluated on Tiny-
ImageNet dataset [4] which provides 200-category image
classification task with 500 training image samples of 64×
64 pixels per category as a subset of ImageNet dataset. As
in Cifar-100, our method produces superior performance
over the other methods and the combination method with
CutMix favorably outperforms even the sophisticated KDs.

4.3. Feature transferability

The knowledge distillation is considered to enhance fea-
ture representation of the student model by reference to the
teacher model. To assess the feature representation, we
transfer pre-trained CNNs into the other task. In this exper-
iment, the CNNs pre-trained by KD are frozen to provide
features in a fixed way while only the (final) FC classifier
layer is trained so as to be tuned toward the other classi-
fication tasks. For fairly evaluating feature representation,
we apply normalized linear classification to produce logits
z = w⊤x

∥w∥∥x∥ by means of L2-normalization. In order to

assess the generality of feature representation, we consider
two types of transfer learning scenarios as follows.

One is to transfer CNNs pre-trained on Cifar-100 dataset
into TinyImageNet task which forms homogeneous transfer
as both two tasks belong to object classification. The other
is the transfer from TinyImageNet to TinyPlaces365 [40]
as heterogeneous transfer. Following Tiny-ImageNet, the
Tiny-Places365 dataset is constructed by sampling 500
training images of 64 × 64 pixels per category from the
Places365 dataset [40], rendering 365 scene-category clas-
sification in contrast to object classification in ImageNet.
We apply two student CNN models of ResNet8x4 [9] and
ShuffleNetV2 [18] both of which are pre-trained with the
teacher ResNet32x4 [9] in the KD framework; for the per-
formances on the primary tasks, refer to Table 1. The CNNs
trained on 32 × 32 Cifar-100 images naturally cope with
64 × 64 images of TinyImageNet due to the global aver-
age pooling embedded in the ResNet and ShuffleNet which
feeds a fixed-dimensional feature x to the last FC classifier.

The performance results are shown in Table 2. The pro-
posed method produces competitive performance even to
SSKD, and the combination with CutMix-training outper-
forms the others by a large margin. These experimental
results on transfer learning demonstrate that the proposed
method produces favorable feature representation. Though
our method (without CutMix) is slightly inferior to SSKD
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Table 2. Performance results on transfer learning.
Cifar100→TinyImageNet TinyImageNet→TinyPlaces365

Teacher ResNet32x4 ResNet32x4
Student ResNet8x4 ShuffleV2 ResNet8x4 ShuffleV2

Teacher 26.36 21.52
Student 30.76 30.73 25.06 22.03

KD 31.14 29.10 25.18 24.35
Ours 36.27 36.67 27.48 27.47

CRD 35.39 35.27 27.47 26.54
SSKD 36.63 36.56 26.59 27.33

KD+CutMix 33.43 31.09 25.99 25.76
Ours+CutMix 37.61 39.70 28.33 29.76

LSR 30.73 26.37 25.11 19.88
CutMix 29.73 27.95 25.04 22.40

in the primary task (Table 1), it works with slight superior-
ity over SSKD in the transfer tasks. It implies that our KD
effectively contributes to feature representation learning.

4.4. Analysis of feature representation

We finally analyze the feature representation learned by
the proposed method. For that purpose, we measure the
principal distribution of the features by means of eigenval-
ues in the PCA;

∑
i(xi − µ)(xi − µ)⊤ξj = λjξj , j ∈

{1, · · · , d} for features x ∈ Rd, and the eigenvalue indi-
cates the feature variance along the corresponding principal
direction (eigen vector). Fig. 9a shows the PCA eigenval-
ues by using 256-dimensional features of ResNet8x4 (stu-
dent) trained with ResNet32x4 (teacher) on Cifar-100. The
feature distribution of a vanilla CNN is concentrated in
the 100-dimensional subspace since the eigenvalues λi of
i > 100 are quite smaller than those of i < 100. The 100-
category classification task of Cifar-100 would usually en-
force features to lie in the 100 dimensional subspace; ide-
ally speaking, 100−1 = 99 dimensional simplex space is
enough for discriminating 100 categories [5]. It, however,
leads to over-fitting toward the Cifar-100 training samples,
degrading generalization performance. The simple KD [12]
exhibits similar tendency to the vanilla CNN. On the other
hand, the proposed KD makes the features distribute rather
diversely across dimensions to extract various features to-
ward high generalization. The sophisticated KD methods
of CRD [29] and SSKD [33] which explicitly incorporate
self-training of feature representation learning also provide
such a diverse feature distribution across dimensions. By
CutMix training [35], the features are rather uniformly dis-
tributed within the 100-dimensional subspace due to mixing
constraint [30], though providing less effective features be-
yond 100-dimensions. Thus, the combination of our KD
and CutMix improves diversity across all the dimensions.

Fig. 9b shows the feature distribution on the transfer
learning scheme (Sec. 4.3); we compute on TinyImageNet
the eigenvalues of the ResNet8x4 features pre-trained on
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(b) TinyImageNet by ResNet8x4 pre-trained on Cifar100
Figure 9. Distribution of PCA eigenvalues (feature variances).

Cifar-100; the feature extractor is the same as in Fig. 9a.
The concentration on the 100-dimensional subspace is also
found in the vanilla and CutMix training, which implies
the bias toward the primary task of Cifar-100 and thereby
degrades performance on TinyImageNet of 200 category
classification. The proposed KD (+ CutMix) again ex-
hibits diverse feature distributions even on the TinyIma-
geNet dataset. Such a diverse feature representation favor-
ably contributes to performance improvement (Table 2).

The standard KD based on a raw teacher probability is
directly subject to the limitation of the teacher model which
is highly biased toward the target dataset, e.g., Cifar-100
in Fig. 9. On the other hand, in the proposed KD, the
teacher probability is transformed into the more effective
form (9) through the extractive distillation process (Fig. 4).
It encourages the student to extract diverse feature char-
acteristics beyond not only the teacher model but also the
ground truth label which only provides categorical infor-
mation without its attributes regarding class relationships.
The analysis of feature distribution in Fig. 9 clarifies that
our extractive KD effectively trains CNNs to extract diverse
features by suppressing bias toward the target dataset.

5. Conclusion
We have analyzed the process of knowledge distillation

from various perspectives. We disentangled main KD com-
ponents which mutually affect each other through a temper-
ature and analyzed them separately to particularly clarify
the effect of temperature. Through the analysis, an extrac-
tive distillation is proposed to further extract the effective
knowledge from the teacher logits which is fed into KD for-
mulation as a teacher annotation, The proposed KD method
employs so-refined teacher knowledge, in contrast to other
KDs which employ raw teacher probabilities. The experi-
mental results on image classification tasks demonstrate the
effectiveness of the proposed method in terms both of per-
formance and feature representation.
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