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‘Beard’ on FFHQ. ‘Curly hair’ on MetFaces.

‘Cloud’ on LSUN Church. ‘Classic car’ on LSUN Car.

‘Cute cat’ on AFHQ Cat. ‘Wild Lion’ on AFHQ Wild.
Figure 1. Examples of text-driven manipulations using our method. For each example, the middle column shows the input
images, left and right columns show manipulated results toward negative and positive directions, respectively.

Abstract

Discovering meaningful directions in the latent space
of GANs to manipulate semantic attributes typically re-
quires large amounts of labeled data. Recent work aims
to overcome this limitation by leveraging the power
of Contrastive Language-Image Pre-training (CLIP), a
joint text-image model. While promising, these meth-
ods require several hours of preprocessing or training
to achieve the desired manipulations. In this paper, we
present StyleMC, a fast and efficient method for text-
driven image generation and manipulation. StyleMC

uses a CLIP-based loss and an identity loss to manip-
ulate images via a single text prompt without signif-
icantly affecting other attributes. Unlike prior work,
StyleMC requires only a few seconds of training per
text prompt to find stable global directions, does not
require prompt engineering and can be used with any
pre-trained StyleGAN2 model. We demonstrate the
effectiveness of our method and compare it to state-
of-the-art methods. Our code can be found at http:
// catlab-team. github. io/ stylemc .
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1. Introduction

Generative Adversarial Networks (GANs) [9] have
revolutionized generative modeling in computer vision
since their emergence. Due to their powerful image
synthesis capabilities, they are widely used for vari-
ous visual tasks including image generation [37], image
manipulation [31], super-resolution [27], and domain
translation [39].

Despite their success, how to control the results gen-
erated by GANs remains an active research question.
Previous work on controlled generation has shown that
it is possible to generate images that belong to certain
categories or have certain attributes by training condi-
tional models [18]. However, conditional GANs require
large amounts of labeled data for each target attribute.
InfoGAN [4] is an approach that aims to develop mod-
els that generate a disentangled latent space in which
each latent dimension controls a particular attribute.
However, these approaches provide only limited con-
trol, depending on the granularity of available super-
vised information.

Recent research addressing these problems and aim-
ing at controllable generation includes simple meth-
ods such as modifying the latent codes of images [23]
and more complex methods such as searching for di-
rections and interpolating latent vectors within pre-
trained GAN models such as StyleGAN [13]. Another
branch of work aims at finding disentangled directions
in the latent space of GANs in a more principled way.
Most of this work discovers domain-independent and
interpretable directions such as zoom-in, rotation, and
translation [21, 10, 30], while other frameworks pro-
pose to find a set of domain-specific directions such
as hair color or gender on face images [25] or cogni-
tive features [8]. The directions found are then used
to modify a generated image by controlling the latent
code by a certain amount to enhance or negate the tar-
get attribute in the generated image. Other work uses
style space of StyleGAN2 to discover disentangled at-
tributes and manipulate images for both coarse (e.g.,
gender, identity) and fine (e.g., hairstyle, eyes) visual
features [33]. Recent work has also shown that these
image manipulation methods can also be applied to
real images by finding a latent code that accurately re-
constructs the input image [24]. The latent code of the
inverted real image can then be fed as input to GAN to
perform processing operations directly on real images
[1].

Recent works such as StyleCLIP and Paint by Word
[2] uses CLIP [22] to manipulate real-world images via
user-specified text prompts. However, both methods
require hours of preprocessing or training to find sta-
ble directions. In this work, we propose a method to

find image-independent manipulation directions in the
latent space of pre-trained StyleGAN2 models using
user-specified text prompts. Our method takes advan-
tage of the joint representational power of CLIP and
the generative power of StyleGAN2 while benefiting
from the following key observations:

• We use style space of StyleGAN2 which is shown
to be its most disentangled latent space [33]. Us-
ing the style space, we find multiple style channels
to compute a global direction that can perform
complex manipulations.

• Unlike previous work, our method finds directions
using only layers up to 256×256 resolution within
StyleGAN2, providing a significant speedup. We
then use the found directions to apply manipula-
tions and generate images at high resolutions such
as 1024× 1024.

• Our method uses only 128 randomly generated im-
ages to find stable and global manipulation direc-
tions regardless of the given text prompt.

Unlike previous work, such as StyleCLIP, our ap-
proach requires only a few seconds of training to find
stable directions and does not require prompt engineer-
ing. In addition, our method is input agnostic, and can
be applied to inverted real images as well as randomly
generated images. We demonstrate the manipulation
capabilities and efficiency of our method on a variety of
datasets. Our results show that the discovered direc-
tions can successfully perform the desired processing
while operating significantly faster.

The rest of this paper is organized as follows. Sec-
tion 2 discusses related work on latent space manipu-
lation. Section 3 presents our framework and Section 4
discusses quantitative and qualitative results. Section
5 discusses the limitations and implications of our work
and Section 6 concludes the paper.

2. Related Work

2.1. Generative Adversarial Networks

Generative Adversarial Networks (GANs) are two-
part networks consisting of a generator and a discrimi-
nator [9] trained simultaneously in an adversarial man-
ner. StyleGAN [13] and StyleGAN2 are among the
popular GAN approaches that generate high-quality
images. They map the input latent code to an inter-
mediate latent space using a mapping network. Big-
GAN [3] is another large-scale model that uses skip-z
connections, as well as a class vector. In this work, we
work with pre-trained StyleGAN2 models.
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2.2. Latent Space Manipulation

Several methods have been proposed to exploit the
latent space of GANs for image manipulation, which
can be divided into two broad categories: supervised
and unsupervised methods. Supervised approaches
typically benefit from pre-trained attribute classifiers
that guide the optimization process to discover mean-
ingful directions in the latent space, or use labeled data
to train new classifiers that directly aim to learn direc-
tions of interest [8, 25]. Other work shows that it is
possible to find meaningful directions in latent space in
an unsupervised way [30, 11, 29]. GANSpace [10] pro-
poses to apply Principal Component Analysis (PCA)
[32] to randomly sampled latent vectors of the inter-
mediate layers of BigGAN and StyleGAN models. A
similar approach is used in SeFA [26], where they di-
rectly optimize the intermediate weight matrix of the
GAN model in closed form. LatentCLR [36] proposes
a contrastive learning approach to find unsupervised
directions that are transferable to different classes.

2.3. Text-Based Image Manipulation

Text-based image manipulation methods aim to gen-
erate images that contain visual attributes correspond-
ing to the given text input without changing irrelevant
attributes [7, 38, 19, 16, 17]. One of the recent works
that uses image-text matching methods is TediGAN
[34], which inverts real images using the inversion mod-
ule of StyleGAN and then learns the correspondences
between visual and linguistic attributes.

Other recent work uses image-text matching meth-
ods such as CLIP, to harness the power of joint image-
text representations. CLIP is a multimodal contrastive
learning framework with two encoder modules that aim
to map the image and text pairs to the same embed-
ding space. To achieve this, it maximizes the sim-
ilarity between the embeddings of the matched im-
age and text instances while minimizing that of the
unmatched instance, resulting in a powerful bidirec-
tional mapper. Recent works such as StyleCLIP and
Paint by Word use CLIP to provide feedback to the
generated images. StyleCLIP provides three different
methods, namely Latent Optimization, Latent Mapper
and Global Directions, which we refer to as StyleCLIP-
LO, StyleCLIP-LM and StyleCLIP-GD for the rest of
this paper. StyleCLIP-LO directly optimizes the latent
code given an image and a text prompt. StyleCLIP-
LM uses a latent residual mapper trained on a partic-
ular text prompt. StyleCLIP-GD maps a text prompt
in an input-independent global direction. Paint by
Word uses user-specified masks to perform manipu-
lations within a specified region. However, both ap-
proaches require hours of preprocessing and training

time. Our method aims to overcome this limitation
by proposing a more efficient way to find stable and
accurate directions to introduce or emphasize desired
attributes in images.

3. Methodology

3.1. Background on Style Space

The generation process of StyleGAN2 consists of
several latent spaces, namely Z, W, W+ and S. More
formally, let G denote a generator acting as a map-
ping function G : Z → X where X is the target im-
age domain. The latent code z ∈ Z is drawn from a
prior distribution p(z), typically chosen to be Gaussian.
The z vectors are transformed into an intermediate la-
tent space W using a mapper function consisting of 8
fully connected layers. The latent vectors w ∈ W are
then transformed into channel-wise style parameters,
forming the style space, denoted S, which is the latent
space that determines the style parameters of the im-
age. The W+ space is an extended version of W that
uses a different intermediate latent vector on each layer
of the synthesis network. It has been shown that the
W+ space better reflects the disentangled nature of the
latent space than the W space and is therefore more
commonly used for image inversion [28].

The synthesis network of the generator in Style-
GAN2 consists of several blocks, each block having
two convolutional layers for synthesizing feature maps.
Each main block has an additional 1× 1 convolutional
layer that maps the output feature tensor to RGB col-
ors, referred to as tRGB. The three different style code
vectors are denoted as si1, si2, and sitRGB , where i indi-
cates the block number. Given a block i, the style vec-
tors si1 and si2 of each block consist of style channels
that control disentangled visual attributes. The style
vectors of each layer are obtained from the intermediate
latent vectors w ∈ W of the same layer by three affine
transformations, wi1 → si1,wi2 → si2,wi2 → sitRGB .

In our work, we use the style space S to perform
manipulations, as it is shown to be the most disentan-
gled, complete and informative space [33] compared to
W and W+.

3.2. StyleMC: Style Space based Multi-Channel Di-
rections

Given a pre-trained StyleGAN2 generator G and a
style code s ∈ S, let G(s) represent the generated im-
age. Our method takes a text prompt t such as ’A
woman wearing makeup’ as input and finds a manip-
ulation direction ∆s such that G(s + ∆s) generates a
manipulated image in which the target attribute spec-
ified by t is present or enhanced, while other attributes
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Figure 2. The architecture of StyleMC (using the text
prompt ‘Mohawk’ as an example). The latent code s and
∆s + s are passed through the generator. The global ma-
nipulation direction ∆s corresponding to the text prompt
is optimized by minimizing CLIP loss and identity loss.

remain mostly unaffected. A diagram of our method is
shown in Figure 2.

We use a combination of a CLIP loss and an iden-
tity loss, taking advantage of the disentangled nature
of the style space S. More specifically, our method at-
tempts to find a global manipulation direction ∆s that
controls the target attribute t by iteratively training
over a batch of randomly generated images. The CLIP
-based loss term LCLIP minimizes the cosine distance
between CLIP embeddings of the generated image and
the text prompt t as follows:

  \begin {split} \mathcal {L}_{CLIP} = D_{CLIP}(G(s + \Delta s), t) \end {split}      (1)

where DCLIP is the cosine distance between CLIP
embeddings. We also use an identity loss that mini-
mizes the distance between the input images and the
generated images:

  \mathcal {L}_{ID} = 1- \left \langle R(G(s)), R(G(s + \Delta s)) \right \rangle      (2)

where R is an identity network, such as ArcFace
[6] in the case of face recognition, and ⟨·, ·⟩ computes
cosine similarity. Identity loss prevents changes to ir-
relevant attributes (see the ablation study in Section
4.3). The loss of our network is formulated as follows:

  \argmin _{\mathbf {\Delta \mathbf {s}} \in \mathcal {S}} \lambda _{C} \mathcal {L}_{CLIP} + \lambda _{ID} \mathcal {L}_{ID} \label {eq:final} 


   (3)

where λC and λID are the loss coefficients of LCLIP

and LID, respectively. We initialize ∆s as a vector
of zeros and minimize Eq.3 to find ∆s. We then ap-
ply the found direction ∆s to the generated images
using G(s + α∆s), where α is a parameter indicating
the strength. The directions can be applied either to
randomly generated images from StyleGAN2 or to real

images inverted by a StyleGAN2 encoder such as e4e
[28]. Note that we do not optimize the latent code as
in the StyleCLIP-LO method [20]. Instead, we find a
global direction for a given text prompt t that can be
applied to any image. Our method works significantly
faster than the other methods by taking advantage of
the following insights:

• Low-resolution layers. The training process of
the StyleGAN2 model starts by focusing on low-
resolution features and progressively focuses on
higher resolutions, shifting its attention to finer
details. As shown in [14], the low-resolution im-
ages are not significantly affected by the higher-
resolution layers. Inspired by this observation, we
only use layers up to 256× 256 to find a manipu-
lation direction within the S space. This strategy
eliminates the additional time required for com-
putation within the style blocks corresponding to
512× 512 and 1024× 1024 resolutions.

• Small batch of images. We compute our loss
function using only a small batch of randomly gen-
erated images to find the direction ∆s. Regardless
of the text prompt, we find that using a batch of
128 images is sufficient to find stable and general-
izable directions. The reason for this strategy is
that the manipulation effect caused by the style
channels remains consistent across all images [33].

• Operating on S. We operate directly on S-
space, which is shown to be more disentangled
than W and W+ spaces [33]. Our method is sig-
nificantly faster than other methods at finding the
desired direction ∆s due to the disentangled na-
ture of the S space. In addition, our framework
identifies and uses multiple style channels to com-
pute directions and hence, can perform more com-
plex edits. As shown in previous work [14, 33],
while single channel manipulations can achieve ed-
its such as changing the hair color or gender of
a face image, they fail at more complex manipu-
lations such as changing age, which typically re-
quires a combination of multiple channels, such
as wrinkle, grey hair and eyeglasses. Therefore,
our method incorporates multiple style channels
and captures complex manipulations such as age
or change of personal identity while finding the
desired direction.

Refer to the ablation study in Section 4.3 to see
how these insights affect manipulation and computa-
tion time.
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Original Beard Long hair Happy Curly hair Frowning Blonde hair Tanned Relieved Excited

Figure 3. A variety of manipulations on StyleGAN2 FFHQ model. Rows 1-4 shows inverted real images and Rows 5-8 shows
randomly generated images. The text prompt used for the manipulation is above each column.

4. Experiments

We evaluate the proposed method on StyleGAN2
on a variety of datasets, including FFHQ [13], LSUN
Car, Church, Horse [35], AFHQ Cat, Dog, Wild [5] and
MetFaces [12] datasets. We also compare our method
to the state-of-the-art text-based manipulation meth-
ods StyleCLIP and TediGAN, and the unsupervised
methods GANspace, SeFa, and LatentCLR. Next, we
discuss our experimental setup and then present results
for several StyleGAN2 models.

4.1. Experimental Setup

For manipulation experiments on real images, we
use the e4e method and map their latent codes from
the W+ space to the S space. The dimension of the
s vectors we use to generate images is 9088. Follow-
ing [33], we exclude stRGB layers since they cause en-

tangled manipulations and transform the entire image.
Additionally, we exclude style channel parameters of
the last 4 blocks when finding ∆s as they represent
very fine-grained features and are difficult to be used
for editing tasks. For all experiments, we set the coef-
ficient of the CLIP loss term to 1, while the coefficient
of the identity loss term takes values between 0.1 and
6. Since it is desirable to retain features other than
the target attribute, e.g., facial identity for FFHQ, the
identity loss is increased so that the found direction
is not affected by common model biases such as mak-
ing target face younger as applying makeup. However,
for manipulations that involve a complete change in
identity, such as Donald Trump, the identity loss co-
efficient should be set to a low value. In most of our
experiments, we used a coefficient value of 0.1, 0.5, or
2, depending on the complexity of the manipulation.
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(a) (b) (c)
Figure 4. (a) Edits on the LSUN Car and Horse. (b) Edits on the AFHQ Cat and Dog. (c) Edits on the MetFaces. The
input images are in the middle, and left and right show the manipulation in the positive and negative directions.

(a) (b)
Figure 5. (a) Comparison of single (top two rows) and multi-
channel methods (bottom two rows) using Blonde and Mo-
hawk prompts. (b) Manipulations with increasing batch
sizes 32, 128, and 1024 (top two rows) and increasing reso-
lution 128, 256, 1024 (bottom two rows) using Beard, Curly
Hair, Frown and Smile prompts.

We used a single Titan RTX GPU for our experiments.
For StyleCLIP, reported times are taken directly from
[20]. For TediGAN and StyleCLIP, we use the official
Pytorch implementations.1

4.2. Qualitative Results

Our method is capable of performing edits in a va-
riety of domains (see Figure 1). Moreover, Figure 3
shows that our method can perform complex edits on
the FFHQ dataset, ranging from stylistic edits such as
curly hair or beard to emotional edits such as relieved
or excited. As Figure 4 (a) shows, our method can suc-
cessfully perform a variety of simple and complicated
edits such as white horse and vintage car with models
trained on the LSUN Car and LSUN Horse datasets.
Furthermore, Figure 4 (b) shows that our method can
handle a variety of simple (e.g., fur color, eyes) and
complex (e.g., species, expression) manipulations with

1https://github.com/weihaox/TediGAN, https://github.

com/orpatashnik/StyleCLIP

models trained on the AFHQ Cat and AFHQ Dog
datasets. Finally, Figure 4 (c) shows manipulations
with a model trained on the MetFaces dataset.

4.3. Ablation Study

Our method benefits from several important
insights, such as using a small batch size and low-
resolution layers to find manipulation directions for
speedup. We also find multiple channels and use
identity loss for manipulation quality and effective-
ness. In this section, we perform ablation studies to
understand the contribution of each component.

Low-resolution layers Our method is able to
find directions at low-resolution layers to speedup the
process. To test the effectiveness of this approach,
we find directions at resolutions 128 × 128, 256 × 256
and 1024 × 1024 (see Figure 5 (b)). Our results
show that 128 × 128 does not encapsulate enough
signals to find suitable directions, while 256× 256 and
1024 × 1024 achieve comparable manipulations. In
terms of computation time, working with resolution
128× 128 requires 3s, while 256× 256 and 1024× 1024
require 5s and 18s, respectively. Therefore, we use
only the layers up to 256 × 256 resolution to find
the desired directions while achieving a significant
speedup, and then use the found directions to apply
manipulations at high resolutions such as 512× 512 or
1024× 1024.

Small batch size Our method uses only 128
images to find directions. To understand how the
results and computation time change with different
batch sizes, we apply our method to a batch of 32, 128,
and 1024 images (see Figure 5 (b)). Our experiment
shows that using a batch of 32 images leads to slightly
unnatural manipulations, while a batch of 128 images
can compete with the results obtained with 1024
images. In terms of computation time, determining
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Input TediGAN sCLIP-GD sCLIP-LM Ours Input TediGAN sCLIP-GD sCLIP-LM Ours Input TediGAN sCLIP-GD sCLIP-LM Ours

Trump Mohawk Makeup

Figure 6. Comparison of our method with TediGAN, StyleCLIP-GD and StyleCLIP-LM methods.

direction with 32 images requires 1.2s, while 128 and
1024 require 5s and 35s, respectively. Thus, using a
batch of 128 images leads to the desired manipulation
performance while providing significant speedup. We
also note that the directions are not sensitive to the
attributes of the images in the batch, and that using
the same set of images for any given text prompt
works in practice.

Single-channel vs. Multi-channel Next, we per-
form an ablation study by manipulating images using
a single channel. Similar to our multi-channel method,
we use a CLIP-based loss:

  \begin {split} \mathcal {L}_{S} = & 1- \left \langle CLIP (G(s + \Delta s)), CLIP (t_1)- CLIP (t_2) \right \rangle \end {split}      
(4)

where s corresponds to the latent code of the image
and t1 and t2 are the user-specified text inputs. Our
experiments show that single-channel yields less stable
directions for a single text prompt t. To mitigate this
effect, we use two text prompts t1 and t2, where t1
contains the target/positive attributes (e.g. ‘A man
with Mohawk hairstyle’ and t2 the neutral/negative
version of the target attribute (e.g. ‘A man with hair’ ).
We also exclude identity loss, since the single-channel
based changes are disentangled and affect only a single
attribute without changing the identity of the image.

Figure 5 (a) shows a comparison between single-
channel and multi-channel manipulations. We note
that the single-channel approach can successfully han-
dle simple manipulations such as blonde without affect-
ing other attributes, while it fails at more complex ma-
nipulations such as mohawk. This is because complex
style changes such as mohawk cannot be performed by
manipulating a single channel, and therefore result in
unrelated changes such as adding eyeglasses. On the
other hand, our multi-channel method can successfully
handle the complex mohawk manipulation and is able
to find a more prominent blonde style.

Method Pre- Training Inference Input Latent
proc Time Time Agnostic Space

StyleCLIP-LO - - 98s no W+
StyleCLIP-LM - 10-12h 75ms no W+
StyleCLIP-GD 4h - 72ms yes S

TediGAN - 12h+ 21s yes W+
Ours - 5s 65ms yes S

Table 1. Time comparison of our method with three Style-
CLIP methods and TediGAN.

4.4. Comparison with Text-Guided Methods

We compare our method to state-of-the-art
text-driven manipulation methods, StyleCLIP-LM,
StyleCLIP-GD and TediGAN for manipulating real
face images with text prompts. Similar to [20], we ex-
cluded StyleCLIP-LO as it suffers from self-reported
unstability issues. For comparison, we used the Style-
GAN2 model trained on FFHQ and used a set of com-
plex text prompts such as ‘Trump’, ‘Mohawk’ and
‘Makeup’ (see Figure 6). Most of these prompts re-
quire multiple attributes to be changed simultaneously,
such as hair color, eyes, mouth, facial expression, and
facial structure. For the ‘Donald Trump’ prompt,
StyleCLIP-GD leads to some visual style changes but
fails to capture the identity of Trump, while the Tedi-
GAN method leads to insignificant style changes. In
contrast, our method and the StyleCLIP-LM method
capture important features specific to the target iden-
tity, such as puffy face, blonde hair, pink skin, and
squinty eyes. For the ‘Mohawk’ prompt, StyleCLIP-
GD and TediGAN produce minimal changes, while our
method produces competitive results with StyleCLIP-
LM. For the ‘Makeup’ prompt, all methods achieve the
target manipulation to some degree.

We compare the computation time for finding the
manipulation directions and editing the images in Ta-
ble 1. Compared to the other methods, our method
does not require prompt engineering and takes signifi-
cantly less time to find and perform the manipulations.
More specifically, the StyleCLIP-LO method solves an
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Figure 7. Comparison with GANspace, SeFa and LatentCLR methods. The leftmost image represents the input image,
while images denoted with ↑ and ↓ represent edits in the positive or negative direction.

optimization problem in W+ space to optimize the la-
tent code directly, and requires several minutes of op-
timization to edit a single image. Although there is no
preprocessing or training time, it is input-dependent
and leads to unstable results. The StyleCLIP-LM
method operates inW+ space and trains a mapper net-
work for a given text prompt. However, this method is
also input dependent and requires 10-12 hours of train-
ing. StyleCLIP-GD finds an input-independent global
direction instantaneously for any text prompt, but only
after 4 hours of preprocessing. The disadvantage of
this technique is that it requires hours of computation
before any manipulation can be done, and it does not
work well for complex and specific attributes, as can be
seen in Figure 6. The TediGAN method, on the other
hand, requires 12+ hours of preprocessing as it encodes
both the image and the text into the latent space and
trains an image inversion and encoding module. Never-
theless, TediGAN yields unfavorable results compared
to our method and StyleCLIP methods. In contrast,
our method is independent of the input and requires 5
seconds2 of training to find stable and global manipu-
lation directions.

4.5. Comparison with Unsupervised Methods

Next, we compare how the directions found on
FFHQ differ across state-of-the-art unsupervised meth-
ods such as GANspace, SeFA and LatentCLR. Figure
7 shows the visual comparison between directions that
are commonly found by all methods, including Smile,
Lipstick and Young directions. As can be seen from the
visuals, all methods perform similarly and are able to
manipulate the images towards the desired attributes.

2The time is reported as an average of 100 trainings.

5. Limitations and Broader Impact

Our method is based on pre-trained StyleGAN2 and
CLIP models, so the manipulation capabilities strongly
depend on the datasets they were trained on. We note
that while the joint representation capabilities of CLIP
are powerful, they are still limited and may be biased
towards certain attributes. Our framework has similar
concerns as any other image synthesis tool that can be
used for malicious purposes, as discussed in [15].

6. Conclusion

We introduced a fast and efficient method for text-
guided image generation and manipulation. Unlike
previous work that requires hours of preprocessing or
training, our method requires only a few seconds per
text prompt to find a global manipulation direction
and generates results that are on par with state-of-
the-art models such as StyleCLIP in terms of quality.
In our experiments, we have shown that our method
can be used to apply a variety of manipulations
ranging from simple style changes such as hair color
to complex changes such as gender, personal identity,
species and provide control over the strength and
direction of the manipulations.
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