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Abstract

Despite the success of neural architectures for Visual
Question Answering (VQA), several recent studies have
shown that VQA models are mostly driven by superficial
correlations that are learned by exploiting undesired pri-
ors within training datasets. They often lack sufficient im-
age grounding or tend to overly-rely on textual informa-
tion, failing to capture knowledge from the images. This
affects their generalization to test sets with slight changes
in the distribution of facts. To address such an issue,
some bias mitigation methods have relied on new train-
ing procedures that are capable of synthesizing counter-
factual samples by masking critical objects within the im-
ages, and words within the questions, while also chang-
ing the corresponding ground truth. We propose a novel
model-agnostic counterfactual training procedure, namely
Efficient Counterfactual Debiasing (ECD), in which we in-
troduce a new negative answer-assignment mechanism that
exploits the probability distribution of the answers based
on their frequencies, as well as an improved counterfac-
tual sample synthesizer. Our experiments demonstrate that
ECD is a simple, computationally-efficient counterfactual
sample-synthesizer training procedure that establishes itself
as the new state of the art for unbiased VQA.

1. Introduction
Over the past few years, the task of Visual Question An-

swering (VQA) [5] — answering a natural language ques-
tion regarding the visual content of a given image — has
attracted increasing attention of the scientific community.
VQA provides interaction between image and text, being
suitable for several real-world applications, such as chatbots
for assisting visually-impaired people [12]. In those appli-
cations, we expect a model to answer truthfully based on
the visual evidence contained in the image and the correct
intention of the question. Unfortunately, this is not always
the case even for state-of-the-art methods [2]. Instead of
exploiting the image to find the correct answer, most mod-
els frequently rely on spurious correlations and follow the
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Figure 1: Example of our counterfactual sample synthe-
sizer, which masks image regions and words according to
their relevance to answer the question. (q, v) represents the
original data, while (q, v−) and (q−, v) denote counterfac-
tuals with masked image and question, respectively.

bias that naturally exists within the training data. Exploiting
these “shortcuts” severely limits the generalization of VQA
models in real-world scenarios, where the test distribution
of facts (e.g., colors, counts, objects, etc.) is often different
from the training distribution [33].

The language bias in VQA can be interpreted in two dif-
ferent ways [20]: (a) as the so-called language prior [3],
where a strong correlation between questions and answers
exists; and (b) the visual priming bias [15], in which the
model assumes that the questioner is going to ask questions
regarding objects present in the image. In both cases, VQA
models may merely focus on the question rather than rely-
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ing on the available visual content, as it should.
Recently, in order to evaluate the progress of VQA re-

search towards mitigating biases, Agarwal et al. [2] pro-
posed the VQA-CP (VQA under Changing Priors) bench-
mark. This benchmark has different question-answer dis-
tributions in the training and test splits, allowing to prop-
erly identify language biases that the models may have
learned. The performance of many state-of-the-art VQA
models [32, 13] drops significantly on VQA-CP compared
to other datasets, confirming the existing biases.

The first prevailing solutions for avoiding biases in VQA
were ensemble-based methods, i.e., the introduction of
an auxiliary question-only model to regularize the train-
ing of the targeted VQA model. However, as noted by
Chen et al. [10], those approaches fail to embody two im-
portant characteristics: (a) visual explainability, i.e., using
the correct visual regions when making their decision; and
(b) question sensitiveness, i.e., perceiving linguistic varia-
tions within the questions. Thus, Chen et al. [10] proposed
a different training procedure that synthesizes counterfac-
tual image and question samples by masking critical infor-
mation in the original data. Here “critical” means the most
important cues to answer a specific question.

Despite significantly reducing biases, their counterfac-
tual bias mitigation approach significantly increases the
computational cost during training, demanding multiple
forward and backward passes through the network to com-
pute elements required for optimization. Those extra
passes translate to an increased number of operations, mem-
ory consumption, and total training time. Motivated by
these limitations, though aware of the benefits of design-
ing a counterfactual synthesizing approach, we propose
a novel model-agnostic counterfactual training procedure,
namely Efficient Counterfactual Debiasing (ECD). Specifi-
cally, our contributions are as follows:

• We propose a new counterfactual sample synthesizer,
which masks the most relevant image region/question
words (see Fig. 1). It forces the model to use the most
informative data to properly answer the questions.

• We introduce a novel negative answer-assignment
mechanism for providing the answers to the counter-
factual samples synthesized by our method. It exploits
the probability distribution of the answers based on
their frequency in the original training set.

• During training, our approach significantly reduces the
computational cost, memory consumption, and opti-
mization time when compared to the state-of-the-art
counterfactual debiasing procedure [10].

• We outperform all state-of-the-art methods in the
main benchmark for evaluating unbiased VQA mod-
els, namely VQA-CP v2 [2].

2. Related Work
Due to the specificities of the collection process, real-

world datasets usually contain some form of bias [29, 9].
As a result, machine learning models tend to reflect those
biases as they are correlation machines capable of exploit-
ing superficial correlations between the input data and the
ground-truth annotation [1]. Some methods were devel-
oped to identify and mitigate specific types of biases; for in-
stance, there are methods focused on visual recognition bi-
ases [30], while others focus on gender biases [7]. In multi-
modal tasks, i.e., tasks that combine language and visual in-
formation, several studies evaluate unimodal baselines [27]
or rely on external knowledge to address biases [23]. De-
spite being a multimodal task, several studies have shown
the existence of a predominant language bias in VQA mod-
els [33, 22, 15, 3]. Three main solutions are currently used
to reduce language biases in VQA:
1. Balancing Datasets: the straightforward solution,
though a bit cumbersome and time-consuming, is to balance
datasets [33]. A well-known approach was introduced by
Goyal et al. [15], which collected real images and different
types of questions to create the VQA 2.0 dataset. Although
this strategy has reduced some forms of biases, models can
still exploit language priors in the form of question-answer
distributions. As shown in the VQA-CP benchmark [3],
the performance of several models significantly drops when
tested on these datasets with balanced distributions.
2. Building Models: another common solution is to design
specific models for mitigating biases. So far, most “debias-
ing” models for VQA are ensemble-based methods [22, 9],
which introduce an auxiliary question-only model to regu-
larize the training of the VQA model. This approach usually
requires training multiple sub-models separately.
3. Changing Training Procedure: one can also mitigate
language priors in VQA by changing the training scheme.
Gat et al. [14] proposed a novel regularization term. How-
ever, the most effective method so far in this category is
CSS-VQA (Counterfactual Samples Synthesizing) [10]. It
is a training procedure that masks critical objects in the orig-
inal image or words in the question, forcing the model to fo-
cus on important objects and words for answering the ques-
tion, since they are penalized for “guessing” (answering us-
ing other factors, such as question-answer distributions or
irrelevant correlated features). The VQA model is trained
with these counterfactual samples, as well as the original
data, and does not require additional data annotation.

Our novel approach is part of the changing training pro-
cedure strategy, relying on counterfactuals synthesizing for
addressing language biases. However, our method effi-
ciently synthesizes counterfactuals, substantially reducing
computational cost, memory consumption, and total train-
ing time while outperforming the state-of-the-art methods
for unbiased VQA in terms of accuracy.

3002



A:	yellow

VQA
ModelQ:	What	color	is

the	banana?

Q:	What	color	is
the	banana?

Q:	What	color	is
the	[MASK]?

Original	Data
Counterfactual	Data
True	Branch
False	Branch

Figure 2: Architecture of ECD. Its core components are the counterfactual synthesizer, controlled by hyperparameter α, and
the Negative Answer Assignment (NAA) module. ECD is agnostic to the VQA model architecture and loss function(s).

3. Efficient Counterfactual Debiasing

The VQA task can be formulated as a multi-class clas-
sification problem with softscores as targets. Given a
dataset D consisting of N triplets (ij , qj , aj)j∈[1,N ] with
ij ∈ I an image, qj ∈ Q a question in natural language, and
aj ∈ A an answer, one must optimize parameters θ of func-
tion fθ : I × Q → R|A| to produce accurate predictions.
The typical learning strategy of VQA consists of minimiz-
ing the standard binary cross-entropy loss L over dataset D
to provide the correct final answer to the question.

This section introduces our novel debiasing method for
VQA, namely Efficient Counterfactual Debiasing (ECD).
We first present the visual features used in our experiments
in Sec. 3.1. Note, however, that our method is model agnos-
tic, so one could use any other set of features (e.g., [18, 25]).
Then, we introduce the training procedure for debiasing the
models in Sec. 3.2, detailing the counterfactual sample gen-
eration as well as the creation of the labels for the counter-
factuals via a Negative Answer Assignment (NAA) module.

3.1. Visual Features

Several previous VQA studies [13, 22] make use of a
trainable top-down attention mechanism over convolutional
features to recognize relevant image regions. Anderson et
al. [4] introduced complementary bottom-up attention that
first detects common objects and attributes so that the top-
down attention can directly model the contribution of those
higher-level concepts. This so-called UpDn approach is of-
ten used in recent work [6, 18, 8, 9, 10] and significantly
improves the performance of VQA models.

Specifically, for a single given image ij with nv detected
objects, there is an image encoder ev : I → V ∈ Rnv×dv

to output a set of object features V = {v1, ..., vnv}, where
vj is a feature vector of dimension dv for the jth detected
object. For each question qj with nt words, UpDn uses a
question encoder et : Q → T ∈ Rnt×dt to output a set
of word features T = {w1, ..., wnt}, where wj is a feature
vector of dimension dt for the jth word. Finally, UpDn has
a multimodal fusion mechanism m : V × T → Rdm , and
a classifier c : Rdm → R|A|. These functions are usually
combined as f(ij , qj) = c(m(ev(ij), et(qj))). For the sake
of clarity, we omit subscript j in the following sections.

3.2. Training Procedure

The overall structure of ECD is illustrated in Fig. 2.
Our method consists of three main steps: (a) select-
ing relevant image regions or question words using ei-
ther ECD-V (Sec. 3.2.1) or ECD-Q (Sec. 3.2.2); (b) synthe-
sizing counterfactual samples via the Negative Answer As-
signment procedure (Sec. 3.2.3); and (c) training the VQA
model with both original and counterfactual samples.

Algorithm 1 describes the counterfactual synthesizing
procedure in detail. ECD receives as input a set of visual
features V , questions Q and its corresponding answers A,
trade-off weight α, and top-N answers β. Hyperparameter
α controls whether we synthesize counterfactual samples
masking visual or textual information. Hyperparameter β
defines the top-N most frequent answers that are removed
from the ground truth and will not be assigned to the coun-
terfactual samples. We sample ξ from a uniform distribu-
tion and test whether ξ > α; if so, we execute module
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Algorithm 1: Efficient Counterfactual Debiasing
1: Function ECD(V,Q,A, α, β):
2: ξ ∼ U [0, 1]
3: if ξ > α then . ECD-V
4: V− ← OBJ SEL(V)
5: V ← {V ∪ V−}
6: else . ECD-Q
7: Q− ← WORD SEL(Q)
8: Q ← {Q ∪Q−}
9: end
10: A− ← NAA(Q, β)
11: A ← {A ∪A−}
12: return V,Q,A
13: end

ECD-V, which applies a visual mask to the critical visual
features v− of each instance; otherwise, we execute module
ECD-Q, which applies a textual mask to the critical words
in the question q−. Then, we concatenate the counterfac-
tual instance with its original version, and we do this for the
entire batch of instances. Since we lack ground-truth anno-
tations of answers a− for these counterfactual samples, we
generate them using NAA. The original and counterfactual
samples are returned by ECD and forwarded to training the
VQA model at hand. We compute the loss function and up-
date the model’s parameters, (with any desired optimizer)
and ECD is called once again for the next data batch.

3.2.1 ECD-V

The ECD-V module synthesizes a counterfactual image by
masking critical objects in the original image. For such, we
first need to select critical objects present in the visual cue
to answer the question. The extraction of objects highly re-
lated with a question and answer (QA) pair is performed
as follows. First, we assign the part-of-speech tags to each
word in the QA using the spaCy part-of-speech tagger [17]
and extract the nouns of the QA. Then, we measure the co-
sine similarity between the GloVe embeddings [21] of the
object categories (extracted from the detected objects) and
the extracted nouns. We select the h objects with the high-
est similarity scores as V+, following the work of Wu et
al. [31], which made use of the critical regions in their
loss function to prevent the network from focusing on them
when the model prediction is wrong. Here, however, we
use V+ as a means of building the counterfactual visual in-
put V− as the complement of set V+ [10]. We show an
example of elements in V and V− in Fig. 1.

3.2.2 ECD-Q

The ECD-Q module synthesizes a counterfactual question
by masking critical words present in the original question.

It employs a word selection function, which first extracts
question-type words (e.g., “What color” in Fig. 1) for each
question q and assign them as non-critical. Then, it selects
all the remaining words that are not classified as stop words
(e.g., “is”, “the”) as critical. The counterfactual question q−

is built by replacing all the critical words in q with a special
token [MASK]. We assign this final masked question to the
question encoder et in order to extract t−. We show an
example of q− and q in Fig. 1, in which q is “What color is
the banana?” and q− is “What color is the [MASK]?”.

3.2.3 Negative Answer Assignment

To assign ground-truth answers for counterfactual pairs, we
design the NAAmechanism (Fig. 3). We extract the negative
answers by exploring softscores [10, 28, 26], which repre-
sent the reliability of ground-truth answers. An answer is
considered reliable when at least 3 out of 10 human respon-
dents have provided the given answer [5]. Specifically, we
extract softscores by analyzing the number of occurrences
of each answer in the 10 ground-truth answers annotated
per question type. We normalize the number of occurrences
of an answer for a specific question by the total number of
occurrences of that question type in the training set. We
use this per-question-type probability distribution as the in-
trinsic bias from the original source to improve fairness and
model generalization, i.e., the most biased answers are the
ones that occur more frequently. This process is simple and
can be performed once with negligible computational cost
before the training procedure begins. We select the top-
N answers (hyperparameter β) with the highest predicted
probabilities as A+. We then define the ground-truth an-
swers as GT and the negative answersA− as all answers of
GT but those in A+, i.e., A− := {a|a ∈ GT ∧ a /∈ A+}.

The model does not have enough information to predict
the correct answer for the counterfactual sample since the
most relevant image regions or question words are masked.
For instance, if the image contains object and the ques-
tion is “What color is the object”, the model could asso-

q:	What	color	is	the	surfboard?

v	- vv
				:	NOT	white,	NOT	blue,

NOT	brown,	...
				:	NOT	white,	NOT	blue,

NOT	brown,	...
		:	white

q:	What	color	is	the	[MASK]?q:	What	color	is	the	surfboard?

Figure 3: Example of the Negative Answer Assignment pro-
cedure in action, which generates the correct labels for the
counterfactual samples by removing from the GT the top-
N answers with the highest frequencies in the dataset, i.e.,
the most biased answers for that particular question type.
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Model Venue VQA-CP v2 test (%) VQA 2.0 val (%)

Overall Yes/No Number Other Overall Yes/No Number Other

HAN [19] ECCV 18’ 28.65 52.25 13.79 20.33 - - - -
GVQA [3] CVPR 18’ 31.30 57.99 13.68 22.14 48.24 72.03 31.17 34.65
UpDn [4] CVPR 18’ 39.74 42.27 11.93 46.05 63.48 81.18 42.14 55.66

+ AReg [22] NeurIPS 18’ 41.17 65.49 15.48 35.48 62.75 79.84 42.35 55.16
+ MuRel [8] CVPR 19’ 39.54 42.85 13.17 45.04 - - - -
+ GLR [16] ACL 19’ 42.33 59.74 14.78 40.76 51.92 - - -
+ RUBi [9] NeurIPS 19’ 47.11 68.65 20.28 43.18 63.10 - - -
+ SCR [31] NeurIPS 19’ 48.47 70.41 10.42 47.29 62.30 77.40 40.90 56.50
+ LMH [11] EMNLP 19’ 52.45 69.81 44.46 45.54 61.64 77.85 40.03 55.04
+ LMH + CE [14] NeurIPS 20’ 54.55 74.03 49.16 45.82 - - - -
+ LMH + CSS [10] CVPR 20’ 58.95 84.37 49.42 48.21 59.91 73.25 39.77 55.11

+ LMH + ECD (ours) Under Review 59.92 83.23 52.59 49.71 57.38 69.06 35.74 54.25

Table 1: Accuracies on VQA-CP v2 test set and VQA 2.0 validation set, when trained on their respective training sets. We
report the results for several state-of-the-art VQA models and debiasing approaches. Best results are shown in bold.

ciate irrelevant parts of the visual/textual information with
a specific answer based on spurious dataset correlations.
Hence, we are penalizing the model if its prediction is one
of the top-N most biased answers for that particular ques-
tion type. Additionally, this mechanism penalizes the model
when it outputs an answer with high confidence and the
necessary information is not present, acting as a regular-
izer. NAA generates probability distributions over possible
answers that are more stable when the model does not know
what to answer or lacks critical information to answer the
question. By analyzing Fig. 1, when the VQA model has all
the necessary information, it correctly predicts “black” with
a confidence of 77%. Conversely, when it lacks enough vi-
sual or textual information, it predicts “red” and “brown”
with a confidence of 0.14% and 24.07%, respectively.

4. Experimental Analysis
We evaluate ECD for debiasing VQA models mainly

on the VQA-CP v2 test set [3], but we also present ex-
perimental results on the VQA 2.0 validation set [15] and
VQA-CP v1 test set for completeness. We follow the stan-
dard VQA evaluation procedure [5], reporting model accu-
racy in four categories: yes/no, number, other, and over-
all questions. For a fair comparison, we perform the
same data preprocessing steps presented in UpDn [4], us-
ing the available implementation1. For the experiments
in which we measure computational efficiency, we use an
NVIDIA Tesla M40 GPU and the PyTorch profiler.

We incorporate the loss function of LMH [11], shown
as LMH + ECD, and compare it with previous ap-
proaches on VQA-CP v2 and VQA 2.0. Tab. 1 displays
the results, grouped according to the VQA model that is
used. ECD achieves state-of-the-art performance in the
VQA-CP v2 dataset, reaching 59.92% in overall accuracy,

1Code available at https://github.com/hengyuan-hu/
bottom-up-attention-vqa.

Model Overall Yes/No Number Other

UpDn [4] 39.74 42.27 11.93 46.05
+ RUBi [9] 44.81 69.65 14.91 31.13
+ LMH [11] 55.27 76.47 26.66 45.68
+ LMH + CSS [10] 60.95 85.60 40.57 44.62

+ LMH + ECD (ours) 61.78 84.40 45.16 47.15

Table 2: Results for the VQA-CP v1 test set.

≈ 1% better in absolute terms than the previous state-of-
the-art, CSS [10]. The largest gains in ECD are regarding the
question type number (3.17% in absolute terms), followed
by the category other (1.5%). ECD only underperforms in
the yes/no question type, which is the type of question with
the fewer number of possible answers. With only two pos-
sible answers, there is a larger chance of statistical fluctu-
ations due to random guessing. For questions with more
complex answers such as number (counts) [31] and other,
ECD easily outperforms the previous state of the art, which
is reflected in the overall accuracy.

The data distributions for VQA 2.0 splits are sim-
ilar and hence bias-prone, while the distributions for
VQA-CP v2 are purposefully not [3]. Thus, when ana-
lyzing the difference between results for VQA-CP v2 and
VQA 2.0 for all methods in Tab. 1, we can see that all VQA
approaches that do not prioritize debiasing display large
positive margins in terms of overall accuracy, clearly in-
dicating that they are exploiting the biases in the data dis-
tributions. For that reason, several studies [9, 10] argue that
the discrepancy between overall results should be small,
which is the case of ECD whose margin in absolute values is
2.54%, confirming that our debiasing strategy does not sig-
nificantly harm performance in balanced data distributions.

We also compare our approach with previous methods
on VQA-CP v1 (Tab. 2). LMH + ECD achieves state-
of-the-art performance, reaching 61.78% in overall accu-
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q:	What	color	is	the	banana?
MF:	yellow	(60.60%)

q:	What	sport	are	they	playing?
MF:	baseball	(36.03%)

q:	What	color	is	the	hydrant?
MF:	yellow	(26.29%)

q:	What	room	of	the	house	is	this?
MF:	living	room	(51.66%)

q:	What	sport	are	they	playing?
pred:	soccer

q:	What	sport	are	they	playing?
pred:	skateboarding

q:	What	room	of	the	house	is	this?
pred:	bathroom

q:	What	room	of	the	house	is	this?
pred:	kitchen

q:	What	color	is	the	banana?
pred:	white

q:	What	color	is	the	hydrant?
pred:	blue

q:	What	color	is	the	banana?
pred:	green

q:	What	color	is	the	hydrant?
pred:	red

Figure 4: Examples of qualitative results using ECD. “MF” indicates the most frequent answer in training for the question
being asked. We show the results for two images using the same question. The original image is followed by the model’s
visual/textual attention and its prediction.

racy, an improvement of 0.85% in absolute terms over
LMH + CSS [10]. Once again ECD shows a large improve-
ment for number (counts) and other questions. Therefore,
in both datasets that were built to assess the level of bias in
VQA models (VQA-CP v1 and VQA-CP v2), ECD presents
state-of-the-art performance by significantly outperforming
all main methods in the literature. We later show that
ECD is substantially more computationally efficient in terms
of memory consumption, number of operations, and total
training time when compared to CSS [10] in Sec. 5.3.

4.1. Qualitative Results

By inspecting Fig. 1, we can further understand how
training a VQA model using ECD affects both its atten-
tion and outputs. When a model has access to both vi-

sual and textual information (v, q), its confidence is con-
siderably high and the attention maps indicate that relevant
textual and visual information were considered. However,
when we mask the visual features from the detected objects
(v−, q) — the hydrant in Fig. 1 — we expect an unbiased
model not to be very confident in its predictions, since it
would be making essentially an educated guess. This is pre-
cisely what occurs in practice, and we show in Fig. 1 that
the model’s attention disperses and its confidence substan-
tially decreases. Similarly, when we mask words within the
question (v, q−), the VQA model also displays a disperse
attention map and its confidence is once again low, due to
the lack of critical information for answering the question.

Fig. 4 presents some qualitative results for ECD. Even
though the most frequent answer in the training distribution
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			:	How	many	audience	members
are	wearing	white?

gt:	Many	(1)	/	hundreds	(1)
	40	(1)	/	50	(1)	/	55	(1)

			:	Have	you	ever	played
baseball?

gt:		Yes	(5)	/	No	(5)

pred:	Yes	(12.71%)

								:	Are	people	going	to	eat	the
food	in	the	skillet?

gt:	Yes	(8)	/	No	(1)

				:	Is	Bruce	Dickinson,	the	lead
singer	of	heavy	metal	band	Iron
Maiden,	capable	of	piloting	this?

gt:	No	(8)	/	Not	sure	(2)
pred:	Unknown	(4.35%)pred:	Many	(20.73%) pred:	No	(8.52%)

(a) (b) (c) (d)

Figure 5: Examples of failure cases of ECD for number and yes/no questions in the VQA-CP v2 dataset. GT is the ground
truth answers, followed by their frequencies. The ECD’s prediction pred is followed by the model’s confidence.

6 9 12 15 18 21 24

(a) Top Hints (h)

55.0

57.5

60.0
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(b) Top-N Answers (β)

0.0 0.2 0.4 0.6 0.8 1.0

(c) Alpha (α)

Figure 6: The influence of the three hyperparameters in ECD on the overall score in VQA-CP v2 validation set: (a) the number
of top hints h (masked image regions); (b) β, the number of removed top-N most frequent answers for the counterfactuals,
and (c) α, which is the visual/textual mask selection probability.

for a specific question is different from the ground-truth an-
swer in the test set, ECD is capable of mitigating the lan-
guage prior bias and correctly answering the question. Such
a behavior indicates that VQA models trained with ECD use
both question and image cues to answer questions. Addi-
tionally, the attention maps show that the model uses crit-
ical visual and textual information to answer the question.
In Fig. 5, we show some typical failure cases of our ap-
proach. In all cases, the confidence of the model is relatively
low. Note that these questions: (a) contain disagreements
between human annotators; (b) they are not directly related
to the image; and (c) they are subjective or would require
additional external information for answering them.

5. Ablation Studies
We perform several ablation studies in order to analyze

the influence of different components and hyperparameters
within ECD. We build ECD on top of the ensemble-based
method LMH [11] as its backbone VQA model.

5.1. Hyperparameters

In this section, we analyze the influence of the three
hyperparameters within ECD: h, which is the number of
masked regions; α, which provides the trade-off between

masking the images and the questions; and β, which is the
top-N most frequent answers that ECD removes from the
GT of the counterfactuals. In each experiment, we freeze
the other hyperparameters in h = 9, α = 0.5, and β = 5.

The influence of masking the different number of crit-
ical objects (h) is shown in Fig. 6a. The method seems
to be robust across different values of h, since by vary-
ing h ECD generates quite similar results (≈ 58%). When
h = 9, ECD achieves the best results. Regarding β, we can
see in Fig. 6b that the best achieved result is when β = 5,
though once again the method seems to be somewhat robust
across different values of the β most frequent answers.

The influence of different values of α is shown in Fig. 6c.
When α = 0, we only mask the visual features (ECD-V). In
contrast, when α = 1, we only mask the textual features
(ECD-Q). The method seems to yield best performance
when α = 0.7, i.e., when we mask the questions ≈ 70%
of the time (and the images ≈ 30%). We notice that the
overall accuracy gradually increases as α increases. This
indicates that ECD-Q has a greater impact than ECD-V in
ECD. Since our goal is to mitigate language-priors, we pe-
nalize the model when it predicts an answer without consid-
ering the visual cue, i.e., when it explores spurious correla-
tions between question types and answers. When we mask
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Model Method Overall Yes/No Number Other

UpDn [4]

Original 39.74 42.27 11.93 46.05
Original* 39.59 42.36 12.47 45.58

+ ECD-Q 40.69 41.71 13.41 47.63
+ ECD-V 40.53 45.35 12.68 45.65
+ ECD 41.78 42.74 14.89 48.66

RUBi [9]†

Original 44.23 – – –
Original* 45.13 45.79 19.36 51.86

+ ECD-Q 46.47 47.02 21.17 53.11
+ ECD-V 45.81 46.41 20.28 52.50
+ ECD 46.69 47.24 21.46 53.32

LMH [11]†

Original 52.05 – – –
Original* 53.69 75.41 36.06 47.15

+ ECD-Q 58.29 82.27 50.64 47.82
+ ECD-V 56.11 77.71 46.99 47.29
+ ECD 59.92 83.23 52.59 49.71

Table 3: Accuracies on VQA-CP v2 test set for several
VQA architectures. ECD denotes the model with both
ECD-V and ECD-Q. Original* represents the results based
on our execution of the original implementations; † repre-
sents the ensemble-based methods with UpDn architecture.

the visual object, we are only forcing the model to look at
the critical regions to answer the question, whereas when
we mask the textual information, we are forcing the model
to actually use the visual cue to answer the question while
penalizing the model when it predicts “biased” answers.

5.2. Architecture Agnosticism

Given that ECD is model-agnostic, it can be effortlessly
incorporated into different VQA models without chang-
ing the underlying architecture. In Tab. 3, we experimen-
tally demonstrate the generality and effectiveness of our
learning scheme by showing the results of incoporating
our approach into three different architectures, including
Updn [4], RUBi [9] and LMH [11].

Note that applying our method on these architectures
leads to important gains over the baselines trained with their
original learning strategy. We report a gain of 6.23% in
LMH. Furthermore, we can see that when we apply our
full method (with both ECD-V and ECD-Q), models often
achieve the best performance.

5.3. Computational Efficiency

In order to understand how ECD performs when com-
pared to more costly methods such as CSS [10], we mea-
sured the training time using the hardware mentioned in
Sec. 4. CSS [10] was so far the state-of-the-art method
for counterfactual synthesizing. It performs several forward
and backward passes and rely on Grad-CAM [24] analysis
to build the counterfactual samples and ground-truth labels.
In contrast, we do not rely on any gradient-based methods
to generate counterfactual samples.

We compute the number of multiply-accumulate opera-

tions (MAC) and memory usage of both CSS and ECD dur-
ing training. To measure only the memory usage of the
forward and backward passes without taking into account
model and data sizes, we use the PyTorch profiler to list all
operations performed when forwarding a single sample.

We remove all operations that are not model-specific,
such as sending data to the GPU or any other framework-
specific command. In terms of memory usage, we observe a
reduction of ≈ 50% from CSS (≈ 5Gb) to ECD (≈ 2.5Gb),
as displayed in Tab. 4. This reduction is due to the amount
of forward and backward passes necessary for training CSS
(3 forward and 2 backward passes), while our approach
needs a single forward and backward pass. Furthermore,
ECD is more efficient in terms of MAC: while CSS requires
0.42 GMAC, ECD uses only 0.14 GMAC, reducing≈ 67%.

We train each method for 30 epochs using the same
batch size and hardware, and we observe that ECD is
≈ 41% faster than CSS. Finally, it is important to point
out that ECD achieves state-of-the-art results despite being
a much more computationally-efficient approach to synthe-
size counterfactuals towards unbiased VQA.

Computational Efficiency CSS ECD Reduction

Number of Operations (GMAC) 0.42 0.14 66.67%
Memory Consumption (GB) 5.02 2.52 49.80%
Total Training Time (h) 7.04 4.14 41.19%

Table 4: Contrasting ECD and CSS regarding computational
efficiency. Training time is accumulated over iterations.

6. Conclusions
In this paper we have introduced ECD, a novel model-

agnostic counterfactual sample synthesizing procedure for
unbiased VQA. ECD design is simple, efficient, and yet ef-
fective. It synthesizes counterfactual training samples by
masking critical objects from the images or words from
the questions. We have designed a new Negative An-
swer Assignment mechanism to generate ground-truth la-
bels for these counterfactual samples, acting both as a reg-
ularizer and a penalty factor to guide the model towards
unbiased predictions. We have shown the effectiveness of
ECD through an extensive experimental analysis, and we
have executed several ablation studies to show the influ-
ence of each component and hyperparameter choice. We
have demonstrated that ECD substantially outperforms the
previous state-of-the-art methods on VQA-CP v2, a dataset
specifically designed to account for language biases.

As future work, we intend to extend ECD to other mul-
timodal tasks that suffer from language biases (e.g., image
captioning and retrieval). Additionally, we want to investi-
gate whether changing the visual encoder of the framework
significantly affects in model debiasing.
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