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Abstract

Image outpainting has recently received considerable
attention because it can be useful in tasks such as im-
age retargeting and panorama image generation. In gen-
eral, the problem of extending an image beyond its given
boundaries is still ill-posed. Conventional methods predom-
inantly attempt image outpainting by using complex net-
work structures. Some recent studies have tried to decrease
the problem complexity through the conversion techniques
from outpainting to inpainting. Although these methodolo-
gies work well in simple cases, their performance reduces
considerably for asymmetrical images. This paper proposes
a novel hint-based outpainting methodology that can adap-
tively select the most plausible patches as hints from a given
image to reduce the difficulty of outpainting. To estimate
high-quality hints, inspired by patch-based image inpaint-
ing methods, we utilize Vision Transformer that considers
self-attention for each patch. The estimated hints are at-
tached on both boundaries of the input image and the in-
side missing regions are predicted by using an inpainting
network. After finishing the prediction, the output image is
obtained by removing the hints. Experiments show that our
image-adaptive hint framework, when employed in repre-
sentative inpainting networks, can consistently improve its
performance compared to the other conversion techniques
from outpainting to inpainting on SUN and Beach bench-
mark datasets.

1. Introduction

Can you easily imagine what the outside of an image
looks like? For example, given an image of the sea, we can
imagine the areas surrounding the beach or the waves by
considering the connectivity and the content of the image.
In the image completion field, image outpainting involves
drawing the outer area of a given image. It can enable var-
ious content creation applications such as image editing,
panorama image generation, 3D game graphics, and virtual

*equal contribution

Figure 1. Methodology comparison for conversion techniques
from outpainting to inpainting. Input image is referred as an image
with missing regions in both left and right sides of ground-truth
image. Bidirectional Rearrangement (BR) [1] and Mirrored Rear-
rangement (MR) [2] predict missing regions by using left and right
swapped input image and mirror flipped input image, respectively.
The proposed method generates the image-adaptive hints based on
a Vision Transformer, and attaches the hints on both boundaries of
the input image to predict a high-quality image structurally.

reality. In addition, image outpainting is also used in im-
age retargeting [3, 4], which resizes the image to fit various
display aspect ratios.

Generally, image outpainting and image inpainting are
similar in that each generates unknown areas. However,
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since image inpainting can utilize the surrounding context
[5], it is considered to be much easier than the outpaint-
ing task. Recent studies have tried to solve the problem by
converting the outpainting problem into an image inpaint-
ing problem. In Fig. 1, Kim et al. [1] first rearranged the
input image bidirectionally and predicted the interior of an
image via inpainting network and then rearranged the re-
sult again. Akimoto et al. [2] mirrored the horizontal quarter
patches inside the input image and added them to both sides
of the image. After predicting missing regions by inpaint-
ing network, both redundant sides are eliminated, leaving
the output image. However, these methods have limitations
because they assume that both ends of the image should be
similar or symmetrically matched. For example, the struc-
ture of the beach was distorted through the Bidirectional
Rearrangement (BR) and Mirrored Rearrangement (MR)
methods (Fig. 1). Consequently, they have difficulties with
complex scenes.

This paper proposes a hint generation methodology that
can expand the image without making such assumptions.
The performance of outpainting can be substantially im-
proved if the patches within the image are selected ju-
diciously. Therefore, we adopt a Vision Transformer [6],
which has been a spotlight in recent vision studies. The
overall process of the proposed hint generation is simple
(Fig. 1; rightmost). An input image is divided into patches
and passed through the Vision Transformer to generate the
hint patches. Then, the hints are attached on both ends of the
input image, and the missing regions are predicted by an in-
painting network. Finally, the output image can be obtained
by removing the hints. Using the hints, we can predict high-
quality results with structural completeness and prevent re-
peated patterns of boundary region. Our contributions are
summarized as follows:

• We propose a novel hint-based framework converting
from outpainting to inpainting, thereby allowing to ap-
ply any type of inpainting models without changing
their architectures.

• The proposed hint generation module based on Vision
Transformer can produce high-quality hints far from
the inside image.

• Our framework consistently improves upon even re-
cent state-of-the-art image completion methods.

2. Related Work
2.1. Image Inpainting

Image inpainting is an image restoration task where the
goal is to fill in missing regions within the image while mak-
ing the entire image visually realistic.
Patch-Based Image Inpainting Method Classical patch-
based image inpainting methods [7, 8, 9] regard inpaint-
ing as a task of finding the patches for each masked region

with manually designed constraints. These methods are in-
herently limited by the ability of generating novel content.
They tend to fail to preserve a reasonable global structure
when the masked region is large.
Deep Image Inpainting Method Recently, deep learning-
based methods are being studied, which are divided into
two categories, single-stage approaches and two-stage ap-
proaches. Single-stage approaches [10, 11, 12] adopt an
encoder–decoder network with multiple losses to recover
the corrupted region directly. These networks are trained
to jointly capture the structure and texture information in
a single pass. The two-stage approaches reconstruct struc-
tural information in the first stage, prior to the second stage
for that synthesizes detailed textures [13, 14, 15, 16].

2.2. Image Outpainting

Image outpainting is more challenging than image in-
painting because it entails creating new contents rather than
filling in partial regions, requiring a more in-depth under-
standing of scenes.
Patch-Based Image Outpainting Method Classical image
outpainting methods are patch-based methods that expand
an image by completing the surrounding area of the target
image. These methods [17, 18, 19] search the database for
images with matching boundaries. As they use real image
patches, these methods seem to work well for images with
simple and repeating patterns. However, if the database im-
age does not contain a patch that matches the target image,
the result does not match the context of the target image.
Consequently, when generating a large image, the pixels are
merely repeated and the result is not optimal.
Learning-based Image Outpainting Method Sabini et al.
[20] first attempted to tackle the image outpainting problem
using a Generative Adversarial Network (GAN). Since then,
several methods [21, 22, 23] have attempted to enhance the
output image quality. These methods use a single image as
input and apply GAN models to fill in plausible extrapola-
tions. They typically use an encoder–decoder structure and
adversarial loss as a starting point. They are trained on di-
verse datasets.
Outpainting-to-Inpainting Conversion Previous methods
using deep learning attempted to solve image outpainting
problem as a conditional image-to-image translation, and
proposed a new complex network configuration [22, 24].
However, given the lack of information about the adjacent
pixels to reference when creating an image, the result is
blurry or inconsistent. Recently, some methods [1, 2] at-
tempted to solve the problem by converting the image out-
painting problem to an image inpainting problem. These
methods do not require a new network for image outpaint-
ing; they simply use the latest image inpainting models. As
in Fig. 1, Kim et al. [1] proposed a bidirectional border re-
gion rearrangement method to increase the adjacent infor-
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Figure 2. Feasibility test for hint. The missing regions are depicted in black. We compared a series of column patches from an input image
with the outermost column patch of the ground truth by using mean absolute error. We then chose the hints from the input image that are
most similar to the outermost column patch of the ground truth (red- and blue-dotted boxes). Upper examples show that appropriate hints
from an input image help to produce high-quality results in terms of structure and detail.

mation. This is easier to handle than outpainting because it
takes advantage of the similarity at both ends of the natural
image dataset. Akimoto et al. [2] proposed a method to in-
clude more references to adjacent information by mirroring
the input image next to the masked region. These attempts
are very interesting and involve simple tweaks to exiting
inpainting methods, but they have some limitations in that
they require datasets where both ends of the image have to
be similar or symmetric.

2.3. Vision Transformer

The breakthrough in transformer networks in natural
language processing has also attracted considerable inter-
est in the field of computer vision. Transformer models
have been successfully used for several tasks such as image
recognition [6, 25], object detection [26, 27], image super-
resolution [28], and image generation [29]. A key difference
from convolutional networks that inherently incorporate in-
ductive biases of locality is that a transformer makes no as-
sumptions about how the data is structured. This makes the
transformer universal and flexible. Generally, Vision Trans-
former architectures are based on a self-attention mecha-
nism that learns the relationships between patches of an im-
age. In this work, we utilize this patch-based self-attention
mechanism which is similar to patch-based image inpaint-
ing methods to predict hints of image completion task.

3. Proposed Method
In this section, we first describe the general problem set-

tings for image outpainting. Then, we empirically demon-
strate the advantage of hint-based image outpainting via a
feasibility test, and justify the need for a hint in the out-
painting task.

3.1. Image Outpainting Problem Set-up

The goal of image outpainting is to generate images out-
side the images when the given information is only the in-
side of the images. Generally, the outpainting task predicts
both sides of images as in Fig. 2. Although recent outpaint-
ing methods also consider single-side painting to general-
ize the image completion problem, we constrain our dis-
cussions to both sides painting. However, note that our pro-
posed hint-based methodology, which will be described in
Section 3.3, is model-agnostic and easily generalizable to
various settings with small changes.

3.2. Exploiting Hint for Outpainting Problem

We demonstrate the effectiveness of inside information
of an input image via feasibility test. We used the Beach
dataset [20] consisting of 9, 465 images for training and
1, 050 images for testing with a pixel resolution of 256 ×
256. The hints, similar to outside patches of ground truth,
were chosen from the input image by using Mean Abso-
lute Error (MAE), and these were attached to both sides of
an input image as “Hint” in Fig. 2. We set the hint size as
256× 16 in this feasibility test.

In the top left example of Fig. 2, hints without a tree
were selected, so the tree was not repeated in Recurrent
Feature Reasoning Network (RFR-Net) (w/ Hint) compared
to RFR-Net (w/o Hint). In the top right example, RFR-Net
(w/ Hint) was able to obtain a clearer result than RFR-Net
(w/o Hint) because the detailed information regarding the
wave was provided by the hint. By incorporating a hint-
based technique, our method could enhance the original im-
age completion network without any architectural change.
By simply adding two small patches at both ends, our RFR-
Net (w/ Hint) could achieve large performance gain (FID:
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Figure 3. Overall framework of the proposed hint-based conversion method from outpainting to inpainting. Left: An input image is
divided by patches and passed through Vision Transformer to generate the hint patches. Then, hints are attached on both ends of the input
image, and the missing regions are predicted by an inpainting network. The output image can be obtained by removing the hints. Right:
To handle 2D images of token embeddings, the patches are reshaped into a sequence of flattened 2D patches. Furthermore, learnable token
embeddings are utilized to estimate the hint patches. Standard learnable 1D position embeddings are added to the patch embeddings to
retain positional information. After all tokens pass through the transformer encoder, learnable token embeddings are re-projected to 2D
patches and reshaped to create hints for both sides of an input image.

6.6 ↓). However, as the ground truth cannot be used in
the inference stage, we need to estimate the hint using the
deep neural network. The next section will describe overall
framework of the proposed hint-based outpainting method.

3.3. Hint-based Conversion Framework from Out-
painting to Inpainting

As shown in Fig. 3, we propose a hint-based conver-
sion framework from outpainting to inpainting that consists
of two neural network modules: 1) hint generation module
and 2) inpainting module. The first module follows a Vi-
sion Transformer (ViT) model [6], i.e., this module splits
an image into patches and provides the sequence of linear
embeddings of these patches as an input to the transformer.
By comparing the representation of patches through self-
attention, we can estimate the most plausible patches (hints)
for the exterior of the image. After attaching the estimated
hints to both ends of the input image, this image passes
through the second module of our framework, i.e., the in-
painting network. For inpainting, we used the representative
inpainting networks named EdgeConnect [15] and RFR-Net
[12] in this study, but any other inpainting network can be
used as well. Then, the final output image can be obtained
by removing the hint from the result of the inpainting net-
work.
Hint Generation Module As we saw in the feasibility test
(Fig. 2, the performance of outpainting can be substantially
improved if the patches within the image are well selected.
Therefore, the goal of the hint generation module is to ef-
fectively select the patches of the input image to create the
hint. In previous inpainting researches, patch-based meth-

Figure 4. Detailed structure of transformer encoder. The layers of
Multiheaded Self-Attention (MSA) and Multi-Layer Perceptron
(MLP) blocks are alternated L times.

ods [30, 31, 32] fill in missing regions by copying informa-
tion from similar regions of the same image. These methods
can easily select appropriate patches compared to other in-
painting methods, but the quality is not good because the
deep neural network is not used for representation learn-
ing. To exploit the patch-based methodology using the deep
learning approach, we adopt a Vision Transformer [6]. This
method compares the relationship between patches through
self-attention and chooses the best patch through a learnable
token.

The Vision Transformer model is depicted in the right-
hand side of Fig. 3. In this model design, we follow the
original transformer as closely as possible. To handle 2D
images, we reshape the image Iinput ∈ RH×W/2×C into a
sequence of flattened 2D patches xp ∈ RN×(P 2·C), where
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Figure 5. In the training stage of Vision Transformer, we insert the
inner part of ground-truth image into the region between two hints
Ihint to apply image-level loss such as adversarial loss, perceptual
loss, and style loss.

(H,W/2) is the resolution of the original image having only
half the width, C is the number of channels, (P, P ) is the
resolution of each image patch, and N = H · (W/2)/P 2

is the resulting number of patches. To estimate the hint
patch, similar to original Vision Transformer, we utilize
learnable token embeddings xh ∈ RM×(P 2·C) where M =
H · (2K)/P 2, M is the number of hint patches and K is the
width of the hint patch. Position embeddings are also added
to the patch embeddings to retain positional information.
We use standard learnable 1D position embeddings.

In Fig. 4, the transformer encoder [33] consists of al-
ternating layers of Multiheaded Self-Attention (MSA) and
Multi-Layer Perceptron (MLP) blocks. LayerNorm (LN) is
applied before every block, and residual connections after
every block are as follows:

z0 =
[
x1
h;x

2
h; · · ·xM

h ;x1
p;x

2
p; · · ·xN

p

]
E+Epos, (1)

z′l = MSA(LN(zl−1)) + zl−1, (2)

zl = MLP(LN(z′l)) + z′l, (3)

y = LN(zL), (4)

where E ∈ R(P 2·C)×D,Epos ∈ R(M+N)×D, l =
1, 2, ..., L, and D is the constant latent vector size. After all
tokens y ∈ R(M+N)×(P 2·C) pass through the transformer
encoder, hint token embeddings yhint ∈ RM×(P 2·C)

are re-projected to 2D patches and reshaped by Ihint ∈
RH×(2·K)×C which indicates hints for both sides of image.

To train the proposed Vision Transformer, we exploit a
joint loss similar to EdgeConnect [15]. As the estimated hint

should be naturally connected to the inner region of the im-
age, we additionally used image-level loss (adversarial loss,
perceptual loss, and style loss) as well as pixel-level loss
(ℓ1 loss). Then, to apply the image-level loss, we generated
Ipred by inserting inner part of ground-truth image into the
region between two hints Ihint as in Fig. 5. Using the Ipred,
the adversarial loss is employed to generate realistic results
as follows:

LGadv
= −E[Dadv(Ipred)], (5)

LDadv
= E [max (0, 1−Dadv(Igt))]

+E [max (0, 1 +Dadv(Ipred))] ,
(6)

where Dadv is the discriminator. The perceptual loss, which
penalizes results that are not perceptually similar, is defined
as follows:

Lperc=E
[∑

i

1

Ni
||φi(Igt)− φi(Ipred)||1

]
, (7)

where φi is the activation map in the i’th layer of the VGG-
19 network pre-trained on the ImageNet dataset [34]. The
style loss is defined as follows:

Lstyle=Ej

[
||Gφ

j (Igt)−Gφ
j (Ipred)||1

]
, (8)

where Gφ
j is a Cj × Cj gram matrix constructed from the

activation map φj . To ensure proper scaling, the ℓ1 loss is
normalized by the hint size. The final total loss is defined as

LALL=λℓ1Lℓ1 + λGadv
LGadv

+ λpLperc + λstyleLstyle.
(9)

For our experiments, we set λℓ1 to 1, λGadv
to 0.2, λp to

0.1, and λstyle to 250, respectively. In Section 4.7, we com-
pared the outpainting performance of the proposed Vision-
Transformer-based hint and ResNet50-based hint.
Inpainting Module Next, generated hints are attached to
both ends of the input image as in Fig. 3. Given that the out-
painting problem is converted to an inpainting problem, we
can utilize various kinds of image inpainting networks. Af-
ter passing through the inpainting network, the final output
can be obtained by removing the hints. The hint generation
module and inpainting module are trained separately, i.e.,
end-to-end learning is not performed for stable training.

4. Experiments
In this section, we first describe the baseline inpainting

methods, datasets, and system set-up. Then, we analyze the
impact of the proposed hints by using quantitative, qualita-
tive and subjective test results. We additionally conducted
ablation studies for hint sizes and hint generation modules.
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Table 1. Quantitative results for conventional and proposed models on Beach dataset [20]. Evaluation of BRISQUE [35] (the lower, the
better), PSNR and SSIM [36] (the higher, the better), and F́renchet Inception Distance (FID) [37] (the lower, the better). The best result of
each column is in red and the second-best is in blue.

Image Completion Outpainting to Inpainting No-Reference IQA Reference IQA
Method Conversion Method BRISQUE ↓ PSNR ↑ SSIM ↑ FID ↓

Image-Outpainting [20] w/o - 14.63 0.34 -
Outpainting-srn [21] w/o - 18.22 0.51 -

Boundless [23] w/o 22.22 19.33 0.79 35.14
SieNet [24] w/o - 20.80 0.65 -

In-N-Out [38] w/o - 19.52 0.71 30.17

EdgeConnect [15] BR [1] - 18.96 0.81 -
Hint 21.93 20.05 0.81 29.86

RFR-Net [12]

w/o 15.28 19.78 0.80 36.00
BR [1] 15.47 18.39 0.78 37.19
MR [2] 14.56 18.02 0.77 36.65

Hint 13.44 20.01 0.81 31.81

Table 2. Quantitative results for conventional and proposed models on SUN dataset [39]. Evaluation of BRISQUE [35] (the lower, the
better), PSNR and SSIM [36] (the higher, the better) and FID [37] (the lower, the better). The best result of each column is in red and the
second-best is in blue.

Image Completion Outpainting to Inpainting No-Reference IQA Reference IQA
Method Conversion Method BRISQUE ↓ PSNR ↑ SSIM ↑ FID ↓

Pix2Pix [40] w/o - - - 19.73
GLC [41] w/o - - - 14.82
CA [13] w/o 24.46 20.42 0.84 19.04

StructureFlow [16] w/o 26.36 22.94 0.85 15.69
NS-OUT [22] w/o 23.59 19.53 0.72 13.71

EdgeConnect [15]
w/o 23.62 21.41 0.84 17.75

BR [1] 21.61 22.45 0.86 15.72
Hint 23.53 22.15 0.86 17.17

RFR-Net [12]

w/o 20.08 21.95 0.86 22.90
BR [1] 18.04 20.73 0.84 23.16
MR [2] 17.95 20.35 0.83 24.30

Hint 18.04 22.45 0.86 21.39

4.1. Baseline Inpainting Methods

The inpainting module of the proposed methodology is
model-agnostic. Among various types of networks, we used
the representative inpainting network named EdgeConnect
[15] and RFR-Net [12] in our experiments. The detailed
descriptions of EdgeConnect and RFR-Net are provided in
Appendix A.

4.2. Datasets

We evaluate our method on SUN [39] and Beach [20]
datasets that are the most representative used in outpainting.
SUN dataset Modified Sun dataset has a pixel resolution of
256 × 128, which ns-out [22] used. Half of the images are
taken from nature scenes of SUN dataset while others are
collected from the internet. It consists of 5, 000 images for
training and 1, 000 images for testing.
Beach dataset This dataset is a subset of Places365 dataset

comprising beach scenes. It consists of 9, 465 images for
training and 1, 050 images for testing, each having a pixel
resolution of 256× 256.

4.3. System Set-up

Using ViT to generate hints, we used a patch size of
16×16, transformer with embedding dimension D of 1024,
MLP dimension of 2048, 6 layers, and 16 heads at each
layer. The loss function consists of l1 loss, adversarial loss,
perceptual loss, and style loss with a batch size of 16 and
learning rate of 1e−4. Adam optimizer with β1 = 0 and
β2 = 0.9 was used. For training inpainting module with
hints, the original setup was used. All networks were imple-
mented using a PyTorch framework with an 24G NVIDIA
RTX3090 GPU.
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Figure 6. Qualitative results for conventional and proposed methods on non-symmetric scenes in Beach dataset.

Figure 7. Qualitative results for conventional and proposed methods on object scenes in Beach dataset.

4.4. Quantitative Results

We used a variety of evaluation metrics to diagnose the
effectiveness of our method, including Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [35], Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) [36], and F́renchet Inception Distance
(FID) [37]. The results for Beach and SUN datasets are pre-
sented in Tables 1 and 2, respectively. In these tables, the
specific outpainting-to-inpainting conversion method was
applied for each RFR-Net and EdgeConnect. Note that BR
[1], MR [2] and the proposed method were tested in the

same environment; the learning methods and optimizations
proposed in each paper are not applied. The only difference
is the conversion method from outpainting to inpainting.
Our method exhibited improved performance compared to
the baseline (w/o) result in all metrics. Also, compared to
BR and MR, the proposed hint achieved similar values in
terms of No-Reference IQA (BRISQUE), but better values
in Reference IQA (PSNR, SSIM, and FID). It means that the
proposed hint method generates a high-quality image close
to the ground-truth image compared to BR and MR. Espe-
cially, our method was more effective on the Beach dataset
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Table 3. Effect of hint size; The proposed hint generated by ViT is
applied to an RFR-Net on SUN dataset [39] with varied horizontal
sizes of hint patch K.

Hint Size RFR-Net (Hint)
(Pixels) BRISQUE ↓ PSNR ↑ SSIM ↑ FID ↓

8 17.94 22.42 0.86 19.71
16 18.04 22.45 0.86 21.39
32 22.79 22.30 0.85 24.12

because the Beach dataset includes more asymmetric im-
ages than SUN dataset.

4.5. Qualitative Results

Figs. 6 and 7 show a comparison of qualitative results
among Baseline, BR, MR, and the proposed method. Fig. 6
portrays the results on asymmetric scenes in Beach dataset
while Fig. 7 portrays results on objects scenes in Beach
dataset. In Fig. 6, MR and BR tend to produce structurally
unnatural image for asymmetric data. They could not pro-
duce images of beachfronts or waves that are naturally con-
nected in a straight line. Instead, they produced unnatural
images of V- or N-shaped curves. In Fig. 7, MR often gen-
erated repetitive structure for the boundary regions of an
image when there were objects in the center of the image
due to the mirrored flipping. As BR rearranges the images
at both ends, distortion often occurred because of the bias of
connecting the images on both sides (Fig. 7). Our proposed
method produced images that had high content preserving
ability with structure coherence and were more natural than
those obtained by using MR and BR. Additional results are
in Appendix B.

4.6. Subjective Test using Mean Opinion Score

We have performed a Mean Opinion Score (MOS) test
to quantify the quality of outpainting-to-inpainting conver-
sion methods. Specifically, we asked 30 raters to assign an
integral score from 1 (bad quality) to 5 (excellent quality)
to the outpainted images. Fig. 8 shows the summarized re-
sults. For each method 900 samples (30 images × 30 raters)
were assessed. Consequently, the comparison results veri-
fied that our proposed method outperforms other methods
in generating a visually clearer image for human viewers.

4.7. Ablation Studies

Effect of Hint Size Table. 3 summarizes the performance
of RFR-Net with various hint sizes. It shows that the per-
formance deteriorates as the size of hint increases. The dif-
ference stands out in the FID score. This result supports the
reason we did not use ViT for generating the entire missing
regions and only use for generating small size of hints.
Effectiveness of Hint Generation Module We used
ResNet50 and ViT [6] for generating a hint to compare the
performance of convolutional neural network (CNN) model
and patch-based model. From Table. 4, we can conclude that

Table 4. Effect of hint module architectures; The hints generated
by Vision Transformer [6] or ResNet50 [42] were applied to an
RFR-Net on SUN dataset [39].

Hint Module RFR-Net (Hint)
(Architecture) BRISQUE ↓ PSNR ↑ SSIM ↑ FID ↓

ViT [6] 18.04 22.45 0.86 21.39
ResNet50 [42] 20.39 21.60 0.85 23.16

Figure 8. MOS scores on Beach dataset. Comparison of the
outpainting-to-inpainting conversion methods.

the patch-based model is better than CNN model for hint
generation.

5. Conclusion
Recent studies attempted to solve the outpainting prob-

lem by converting image outpainting to image inpaint-
ing. However, there are some limitations in that they re-
quire datasets where both ends of the image have to be
similar or symmetric. In this paper, we proposed a novel
outpainting-to-inpainting conversion method that uses Vi-
sion Transformer to select the image-adaptive hints. The
proposed hint-based conversion framework consists of two
neural network modules: 1) hint generation module and 2)
inpainting module. By incorporating the hint-based tech-
nique, our method enhanced the performance of the origi-
nal image completion network without requiring any archi-
tectural change. Among the outpainting to inpainting con-
version methods, our method achieved outstanding perfor-
mance and realistic image generation.
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