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Abstract

We tackle the problem of analyzing and retrieving techni-
cal drawings. First, we introduce DeepPatent, a new large-
scale dataset for recognition and retrieval of design patent
drawings. The dataset provides more than 350,000 design
patent drawings for the purpose of image retrieval. Unlike
existing datasets, DeepPatent provides fine-grained image
retrieval associations within the collection of drawings and
does not rely on cross-domain associations for supervision.
We develop a baseline deep learning model, named Patent-
Net, based on best practices for training retrieval models
for static images. We demonstrate the superior performance
of PatentNet when trained on our fine-grained associations
of DeepPatent against other deep learning approaches and
classic computer vision descriptors. With the introduction
of this new dataset, and benchmark algorithms, we demon-
strate that the analysis and retrieval of technical drawings
remains an open challenge in computer vision; and that
patent drawing retrieval provides a real-world testbench to
spur research.

1. Introduction

Drawings, illustrations, and free-hand-sketches are often
used to convey important scientific or technical information
more easily than can be described in text [19,39]. Research
indicates that humans can learn faster and gain deeper un-
derstanding from carefully constructed illustration, as op-
posed to text alone [5, 29]. A technical drawing1 is a vi-
sual description of an object or concept, conveying impor-
tant information to a person who does not need to have spe-
cific expertise to understand the image [14]. Technical and
scientific illustration remain a vital part of conveying in-
formation in science and technology [19]; especially in ar-
chaeology [30,42], medicine [16,21], design [11], and fash-
ion [20]. Yet, information retrieval for scientific, technical,

1We use “drawing” as the most appropriate term in computer vision,
whereas “illustration” would be more appropriate in the art community.

Figure 1: Mosaic of example drawings from five patents:
toy figure, moose-shaped animal toy, spectacles, toy wheel,
hairbrush. Each patent contains multiple drawings of a sin-
gle object from various views. One need not be an expert
to match which of these drawings belong to each of the five
patents (answer given in Supplement).

and scholarly information relies primarily on text-based re-
trieval — ignoring the drawings even though the drawings
may convey more human-accessible information than the
text [4, 28]. Our broad goal is to advance computer vision
in this area of understanding visual information which is
specifically created for human cognition of abstract, techni-
cal, and scientific concepts.

To better understand technical drawings, we focus on
patent drawings, as in Figure 1, which are a rich yet not
very well explored domain [36, 46, 52]. Patent drawings
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are similar to free-hand sketches in that they are both draw-
ings and thus share some properties: lack of background
or any contextual information present in natural photos, ab-
stractness, sparseness, etc [49]. In contrast, patents are often
more detailed and of higher quality than free-hand sketches
(existing sketch datasets self-describe as “badly drawn bun-
nies” [39]); giving a faithful — rather than exaggerated —
representation of an object [14]. Furthermore, patents typi-
cally provide a drawing of an object from several different
viewpoints including viewpoints that would rarely be fea-
tured in a free-hand-sketch (such as undersides and aerial
views) [39]; much as a photo could be taken of an object
from any viewpoint. We find that commercial image re-
trieval tools perform poorly on these patent drawings (see
Supplement).

Despite the similarity of technical drawings to free-
hand-sketch, our empirical results highlight critical gaps
in the capability of computer vision approaches to retrieve
semantically-similar technical drawings. The impressive
advances in sketch-based recognition rely on stroke infor-
mation and/or associated natural images [39, 49, 50]; nei-
ther of which are typically available for technical draw-
ings. DeepPatent provides within-domain fine-grained as-
sociations by grouping drawings within a patent as positive
examples of relevant drawings. Examples in Figure 1 show
that some drawings may not be easily identifiable as a par-
ticular object out-of-context; such as the top-view of a brush
or side-view of an animal toy; but these are still recogniz-
able to a human as belonging to the same patent as the other
views of the same object. These are reasons that we believe
the best approach to content-based drawing recognition and
retrieval is not classification, but image retrieval.

In addition to the dataset, we train baseline deep learning
models for drawing retrieval: PatentNet is a deep network
trained on the DeepPatent dataset. PatentNet is based on
best practices from recent retrieval approaches that lever-
age non-associated data from natural images and sketches
[15, 37]. We benchmark PatentNet, simpler deep learn-
ing approaches, and classic image descriptors on our Deep-
Patent dataset. We find that the classic image descriptors are
brittle due to their reliance on similarity of visual features
and lack of learning semantic similarity. Our evaluation of
learning-based approaches demonstrates the improved abil-
ity to identify images with similar objects through training
with fine-grained associations on patent drawings.

Key contributions of this paper are:

• DeepPatent dataset: We collect, process, and make
available a large dataset of patent drawings aimed at
understanding and retrieving technical illustrations.

• We benchmark several methods to evaluate their effi-
cacy on the DeepPatent dataset including: traditional
methods (e.g. fixed image descriptors) and deep learn-

ing methods; and provide a strong baseline deep learn-
ing approached named PatentNet which is trained on
DeepPatent with classification loss, contrastive loss
and triplet loss.

The rest of the paper is organized as follows. In Section
2, we discuss the work related to drawing retrieval. In Sec-
tion 3 we discuss the dataset collected by mining the patent
database. In Section 4 we discuss the models used for re-
trieving patent images. Section 5 discusses and illustrates
the quantitative and qualitative results. Section 6 concludes.

2. Related work
Image-based patent retrieval datasets Patent image

retrieval has not received as much attention as text-based
patent retrieval [28, 35]. CLEF-IP 2011 [36] provides two
image-based patent challenge datasets, but only 211 patents
are included for the retrieval task; and the image classifica-
tion task considers 9 classes of broad image types (such as
flow chart and chemical structure) rather than fine-grained
retrieval. The concept dataset is a collection of 1000 patent
drawings with a classification challenge of labeling 8 dif-
ferent types of shoe (ski boot, high heel, etc); and another
set of 2000 mechanical drawings with categories of rele-
vance [46]. As modern deep learning approaches require
more data for training and evaluation, we introduce a large-
scale database with more than 350,000 images.

Image-based patent retrieval methods Current ap-
proaches use image descriptors to find visually-similar
drawings [9,32,47] but these approaches perform poorly on
DeepPatent. Evidence of the limited effectiveness of visual-
similarity approaches are given in a recent survey [52]. Ma-
chine learning approaches focus on classification problems;
to predict an international patent classification (IPC) label
[22], or for classification of 8 types of shoes [1, 46].

Content-based drawing retrieval datasets ImageNet-
Sketch provides 50 drawings per class for the 1000 classes
of the ImageNet Challenge (ILSVRC) [38] for a total of
50k images [49]. Like our DeepPatent dataset, ImageNet-
Sketch provides in-the-wild examples of drawings. How-
ever, the variety of drawing styles makes the breadth of
the domain quite large with a limited number of examples
per class and no fine-grained associations. Retrieval-by-
sketch is an important computer vision research topic with
its related datasets. The TU-Berlin drawing dataset consists
of 20k human sketches covering 250 classes [12], while
QuickDraw has 50M sketches covering 345 classes [24];
yet these datasets do not have fine-grained associations. The
Sketchy dataset [39] does provide fine-grained associations
for 75k free-hand-sketches but we demonstrate better re-
trieval by training on our DeepPatent dataset.

Content-based drawing retrieval methods There are
only a few existing approaches for content-based drawing
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Figure 2: Qualitative examples from DeepPatent showing two objects with three views each.

or sketch retrieval [7], and they use weaker models than
PatentNet for encoding the sketch information [48, 50, 51]
- either AlexNet [26] or Sketch-A-Net [53]. Much more
common are multi-modal problems such as sketch-based
image retrieval (SBIR) where objects of higher complex-
ity (natural images) are retrieved through queries of simpler
representation (sketches) [39, 50]. Sketch-retrieval meth-
ods typically rely on information which we do not have in
technical drawings: stroke information, associations with
natural images, attributes, or well-defined classification la-
bels [2, 49, 54, 55]. When such auxiliary information is
not available, these methods reduce to the traditional ap-
proach of classification pre-training and ranking optimiza-
tion [15, 37] which we implement as PatentNet.

3. The DeepPatent dataset
We introduce the DeepPatent dataset for large-scale

drawing retrieval experiments, which we collected, evalu-
ated, and will make easily accessible as a benchmark chal-
lenge. With over 350,000 public domain images it is the
largest image collection focused on patent drawings. One
of the main benefits of design patent drawings is the pres-
ence of multiple views of each object in the patent (on the
order of 10 drawings per patent) as we can see in Figure 2.

Design patents (as opposed to the more numerous utility
patents), according to USPTO, capture the visual character-
istics or aspects of the object, and thus mostly drawings of
the particular object are present (rather than the flowcharts,
plots, mathematical expressions, and text-heavy mechanical
diagrams in utility patents). These detailed, abstract draw-
ings are intended to convey crucial information about the
patented object that is better described in picture than in
words. When searching patents, people often rely on visual
comparison of images in patents to quickly identify rele-
vant prior art [36]. Yet, searching patent drawings based on
computer vision is an open challenge.

3.1. Data collection

We first mine the United States Patent and Trademark
Office (USPTO) bulk downloads website to collect patent
drawings [44]. To establish a computer vision benchmark
for technical drawing retrieval, we select only the drawings

from patents of the design category.
The dataset consists of a total of 45,000 unique design

patents that span the year 2018 and the first half of the
year 2019. We randomly sample 15% of given patents and
reserve them as a test set. This results in 13,133 queries
and more than 38,000 database drawings belonging to 6927
patents. To choose queries, we sample 1 or 2 drawings from
each test set patent and withhold them. The rest of the draw-
ings from the test-set of patents are set aside to serve as a
database of drawings to search through. In the remaining
set of patents, 15% of those are further sampled to serve as
a validation set resulting in 254787 images in the training
set (across 33364 patents), and 44815 images in validation
(across 5888).

USPTO provides a weekly bulk download of patents in-
cluding figures (drawings) in TIF format and an XML con-
taining the text and metadata of all patents awarded in the
week. From the bulk download, we extract just the drawings
and metadata XML from the design category of patents, and
convert the TIF images to PNG using ImageMagick. PNG
is more widely accepted by computer vision software pack-
ages, so we provide this conversion for consistency when
comparing methods. Our set of images with metadata is
less than 10% of the size of the original bulk download.

3.2. Dataset availability and distribution

The DeepPatent drawing retrieval dataset will be avail-
able for download from Google Drive and will have an as-
sociated DOI. The dataset includes all image files in PNG
format and patent ID labels. The images and labels are dis-
tributed as Public Domain CC0 license2. Works created for
the purpose of USPTO patent application are generally not
subject to copyright [44]. See Supplement for notes on the
ethics of distributing this dataset.

3.3. Comparison with other datasets

Drawings in DeepPatent are much more detailed than
simple sketches and provide more viewpoints for each ob-
ject. We cannot count the strokes in static images, as is
a standard metric in quantifying complexity of sketches

2https://creativecommons.org/publicdomain/zero/
1.0/
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(Sketchy and TU-Berlin report the median strokes per im-
age as 14 and 13 respectively [12, 39]). Instead, we count
the number of connected components in each image, noting
that for a sketch, the number of strokes is an upper limit on
the number of connected components in the corresponding
rendered image. The median number of connected com-
ponents in DeepPatent (705) is orders-of-magnitude larger
than in Sketchy sketches (2). The median number of con-
nected components in ImageNet-Sketch (244) is more sim-
ilar to DeepPatent than to Sketchy — indicating that patent
drawings may be similar in level of detail to the broader
class of drawings found on the web.

We investigate the similarity of DeepPatent to photos of
objects by generating edge maps for photos in ImageNet
and Sketchy, using the Canny edge detector [3], and then
counting the connected components of the edge map. The
median number of connected components in DeepPatent
(705) is similar to that of the edge maps generated from the
ImageNet validation set (673), providing evidence that the
complexity of shapes in the DeepPatent dataset is similar to
that of photos of objects. See Supplement for implementa-
tion details and quantified results. Yet, edge maps generated
from photos look noisier than the clean lines of technical il-
lustrations; and furthermore, not all technical illustrations
have a meaningful photo-like representation.

4. PatentNet model for drawing retrieval

This section describes details of the baseline model
for patent drawing retrieval, which we denote PatentNet.
Though much work has been devoted to creating sketch-
specific architectures, many of the accuracy improvements
over standard CNN models come from leveraging the stroke
information that are available with free hand sketches, or
using a hybrid CNN-RNN architecture to process the raster
and stroke versions of the sketches, or using multi-domain
information to share weights [2, 50]. This auxiliary infor-
mation is not available for static drawings, therefore our
baseline PatentNet model adopts the best practices found
in literature for natural static images [15, 37].

Network structure: The base network for all of our
models, is either the ResNet18 or ResNet50 [18], as both
demonstrate strong performance in many tasks and provide
a better baseline and are faster to train than the ever popu-
lar VGG-16 [40]. Differing from the original architectures,
we replace average pooling with Generalized Mean (GeM)
pooling [37]:

f (g) = [f
(g)
1 . . . f

(g)
k . . . f (g)

n ], (1)

and

f
(g)
k =

(
1

|Xk|
∑
x∈Xk

xpk

) 1
pk

, (2)

where Xk is the kth feature map, and pk is the pooling pa-
rameter for that map. These parameters can be set manu-
ally, or finetuned separately [37]. In our implementation,
we use the same value of p = 3 for all feature maps. After
pooling we have a single n-dimensional feature vector. Fur-
thermore, similarly to [15], the pooled feature vector f (g) is
l2 normalized. This output is then passed through a fully
connected layer and again l2 normalized. This last step is
equivalent to learning a whitening and dimensionality re-
duction end-to-end [37]. Also, the l2 serves to normalize
the vector as the feature vectors are going to be compared
via inner product.

Weight initialization: First we explore whether self-
supervised training of network weights using the patent data
could provide a better baseline retrieval performance than
using ImageNet trained weights. Singer et al. [41] sug-
gest that networks trained on natural images achieve worse
classification performance on drawings and even worse on
sketches. To obtain the self-supervised baseline set of
weights, we use a self-supervised method introduced by Gi-
daris et al. [13] which learns image features by learning to
predict image rotations for the particular dataset, and we
refer to this model as RotNet.

Patent based retrieval: Our patent retrieval models fol-
low the training protocol outlined by Gordo et al. [15]. With
weights initialized according to the previous section (step
1), the network weights are then finetuned by classifica-
tion (step 2), and then further finetuned with retrieval loss
(step 3). Step 2: Due to the availability of large datasets
of sketch images, we compare whether fine-tuning the Im-
ageNet weights on sketches could provide a better baseline
performance as opposed to patents. For sketches, we fine-
tune the network by predicting the 125 classes of sketches
of the Sketchy dataset [39]. For finetuning on patents, each
patent is given its own label, i.e. all images for a given
patent have the patent ID as a class label. Such model is
referred to as the classification loss (Cl) model.

Step 3: After finetuning the network weights, the classi-
fication layer is removed and the rest of the network serves
as a base for the retrieval network. We finetune the net-
works using either the triplet (Tri) or contrastive (Ct) loss.
The triplet loss acts on triplets of images:

L(Iq, I
+, I−) =

1

2
max

(
0,m+ ∥q − d+∥2 − ∥q − d−∥2

)
,

(3)
where the triplets (Iq, I

+, I−) and (q, d+, d−) are the no-
tations for images and their feature representations for the
triplet (query, positive example, and negative example) re-
spectively. Letter m is the margin parameter.

Contrastive loss [37] acts on matching and non-matching

2312



pairs of images:

L(Ii, Ij) =

{
1
2∥q − d+∥2 if Y (i, j) = 1
1
2 (max(0,m− ∥q − d−∥))2 if Y (i, j) = 0

(4)

5. Results and experiments

In this section we discuss further details of our imple-
mentation, comparison models, and experimental results on
the DeepPatent dataset.

5.1. Implementation details

All networks are implemented using the PyTorch [33]
deep learning framework. The training is performed on
NVIDIA Quadro RTX 8000 (48 GB of VRAM) paired with
an Intel Xeon CPU. During training, before an image is pro-
cessed through the network it goes through a set of augmen-
tations that include random flipping and rotations. Then,
following [39], a mean and standard deviation of 0.5 is
subtracted and divided for each color channel (this is dif-
ferent from traditional pre-processing in which means and
standard deviations come from the ImageNet [38] dataset).
Though the patent drawings are black and white images,
they are treated as 3-channel color images as most deep ar-
chitectures take color images. All of the classification net-
works were trained for 100 epochs, with a batch size of 256
and starting learning rate of 0.01 optimized using SGD with
Nesterov momentum [43]. The retrieval networks3 were
trained using the Adam optimizer [25], with a learning rate
of 5 ∗ 10−7 and a batch size of 32.

5.2. Evaluation

Following recent retrieval papers [15, 37] to evaluate
each of the methods, we calculate the mean Average Pre-
cision (mAP ) [17] , and Top-K Accuracy Acc@K [27].

Let X be the set of all images in the dataset, and let
S ⊂ X be the database of images we search through. Given
a query image q, let S+

q and S−
q be the set of matching

and non-matching images. Given a distance metric D, and
a ranking {x1, x2, . . . , xn} for images in S ( D(xi, q) ≤
D(xj , q) if i ≤ j). The the Average Precision (AP) for a
given query q can be computed as:

Prec@K =
1

K

K∑
i=1

1
[
xi ∈ S+

q

]
, (5)

AP =
1

|S+
q |

N∑
K=1

1
[
xK ∈ S+

q

]
· Prec@K (6)

3Training based on https://github.com/filipradenovic/
cnnimageretrieval-pytorch

Method mAP Acc@1 Acc@5 Acc@20

RotNet RN50 0.169 0.416 0.510 0.584
ImageNet RN50 0.291 0.634 0.716 0.779
Sketchy RN50 Cl 0.229 0.532 0.631 0.703
Patent RN18 Cl 0.284 0.590 0.694 0.763
Patent RN50 Cl 0.366 0.682 0.783 0.844
Patent RN18 Ct 0.275 0.578 0.680 0.754
Patent RN18 Tri 0.278 0.586 0.689 0.756
Patent RN50 Ct 0.332 0.636 0.745 0.819
Patent RNet50 Tri 0.379 0.701 0.794 0.851

Table 1: Quantitative comparison of various design choices
for the retrieval network on the validation set of the Deep-
Patent dataset. The first three models compare the re-
trieval performance of baseline network weights trained via:
(RotNet ResNet50) self-supervised training on DeepPatent
dataset; (ImageNet ResNet50) supervised training on the
ImageNet dataset; and (Sketchy ResNet50) finetuning on
the Sketchy dataset. All PatentNet models are pre-trained
on ImageNet and finetuned on DeepPatent. Cl denotes the
network after classification finetraining. Ct and Tri denote
the networks after retrieval finetuning using the contrastive
and triplet losses respectively.

where N is the number of images in the database. Lastly, we
report the mean Average Precision (mAP) over all queries
in the dataset. The Top-K Accuracy is computed as:

Acc@K =
1

Q

Q∑
i=1

1
[
S+
qi ∩ SK

qi

]
, (7)

where 1
[
S+
q ∩ SK

q

]
is an indicator function that indicates

whether the Top-K retrieved set of images contains at least
one image matching the query, and Q is the number of query
images in the test set.

5.3. Comparison models

In this section we provide a description of the compari-
son models. We first describe models that take inspiration
from sketch-recognition and retrieval, which will either be
trained on sketch recognition, sketch-based image retrieval
(SBIR), or on DeepPatent. Then we describe traditional
computer vision methods that are currently used to perform
patent retrieval.

Sketch-a-Net is a seminal model, as it is the first deep
network to beat human level performance on sketch recog-
nition [53]. Sketch-a-Net serves as a network of choice for
many works on SBIR, where it is used as the feature de-
scriptor for static images of sketches [6, 23, 54]. The model
contains specific architectural choices that are aimed at im-
proving sketch understanding (e.g. larger filters and pooling
regions).

Sketchy-Resnet is a sketch-based network trained for
the purpose of sketch-to-image retrieval. Motivated by the
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work of Bhattarai et al. [1], we include this model to assess
the domain generalization performance between sketches
and patent drawings. The network is trained in a two-step
process similar to [39]. First, two ImageNet pre-trained
ResNet50 networks are re-trained on Sketchy photos and
sketches to predict the 125 Sketchy categories. Next, the
networks are optimized for retrieval using the triplet loss on
fine-grained associated sketches. The triplet loss is in the
end combined with the softmax classification loss for pre-
dicting the object categories.

Adaptive hierarchical density histogram (AHDH)
creates adaptively-sized regions of the image by hierarchi-
cally calculating the centroid of the region and estimates the
distribution of black points in these regions and is demon-
strated to work well on patent drawings [47]. Histogram of
oriented gradients (HOG) [10] counts the occurrence of
discrete number of gradient orientations in an image patch.
VisHash generates a signature based on relative brightness
in regions of the image and is demonstrated to match vi-
sually similar images on a wide variety of image types in-
cluding drawings [32]. Local binary patterns (LBP) [31]
is a rotation-invariant texture descriptor that classifies each
local region into one of 58 so-called uniform patterns. The
normalized histogram of these patterns is used as the image
descriptor. Fisher vectors (FV) [8, 34] are an extension of
the popular bag-of-visual-words representations which gen-
erate a fixed-length image representation. Further imple-
mentation and training details are given in the Supplement.

5.4. Results

5.4.1 Modular evaluation of the retrieval model

We first compare Step 1 weight-initialization strategies for
the model. The standard in image retrieval (including
sketch-based) is to pre-train using ImageNet [39], yet a
recent study suggests that models trained on natural im-
ages may not be the most appropriate [41]. Therefore, we
compare the retrieval performance of an ImageNet trained
ResNet50 model with the RotNet ResNet50 model initial-
ized by self-supervised feature learning on the patent data
directly. As we can see from the first two rows of Table
1, the ImageNet pre-trained weights achieve better retrieval
performance as opposed to self-supervised training on the
target data, despite the network never having “seen” any
patents. This suggests that networks trained on natural im-
ages might be a good starting point for developing models
on drawings.

We explore the the following choices for Step 2 training
the retrieval model: (a) the set of data used for classifica-
tion fine-tuning akin to Gordo et al. [15], (b) the backbone
architecture, and (c) the ranking loss. Due to the maturity
of sketch-based datasets, e.g. Sketchy [39], and the simi-
larity of sketches to drawings, we check if using Sketchy
would would provide a better fine-tuning over patents. As

Figure 3: Plot of the model performance in terms of the
mean average precision (mAP), top-1 accuracy, and top-10
accuracy as a function of the database size.

we can see from Table 1, fine-tuning on patent drawings
provides better performance, and sketches make the perfor-
mance worse even as compared to the baseline ImageNet
weights. For backbone networks, we choose to compare the
ResNet18 and ResNet50 models. As we can see from rows
4 and 5 in Table 1, a deeper ResNet50 model achieves better
performance on patent retrieval as compared to ResNet18.
We can see that ResNet18 achieves slightly lower perfor-
mance when trained with either retrieval loss as compared
to classification model, though the difference between the
two losses is negligible. In the case of ResNet50, the triplet
loss learns a better retrieval model, significantly outper-
forming the contrastive loss in this case. As the best model,
ResNet50 Tri is used in comparison to other deep features
and traditional approaches.

Scalability The test set itself consists of more than
fifty thousand images spread across 6927 patents, split into
13,133 queries and 38,834 database images. To further
demonstrate the challenge of patent drawing retrieval, we
experiment with expanding the size of the database we
search through by adding in the training and validation im-
ages. Note that this is not a problem, as we do not use train-
ing and validation images as queries. Figure 3 shows the
plot of the model performance as a function of the database
size. As we can see, adding additional images further in-
creases the difficulty of the problem. As we can see mAP
and top-1 accuracy go from 0.376 and 69.1% respectively
when we search through roughly 38,000 images down to
0.262 and 55.1% when we search through roughly 350,000
images. This demonstrates the difficulty of the problem as
we see a significant drop in the metrics by simply searching
though one and a half years worth of images.
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(a) Retrieval example showing some patents contain very similar images

(b) Sample failure case

Figure 4: Qualitative examples of retrieval results for PatentNet

Method mAP Acc@1 Acc@5 Acc@20

AHDH 0.095 0.288 0.343 0.399
VisHash 0.093 0.274 0.340 0.402
SIFT FV 0.092 0.206 0.289 0.375
HOG 0.083 0.272 0.317 0.359
LBP 0.069 0.210 0.252 0.343
PatentNet 0.376 0.691 0.784 0.841
SANet Sketches 0.086 0.258 0.324 0.388
SANet Patent 0.135 0.361 0.451 0.536
SK Sketches Cl 0.229 0.532 0.631 0.703
SK Sketches RT 0.156 0.428 0.513 0.586
SK Photo RT 0.132 0.353 0.452 0.539

Table 2: Comparison of PatentNet, traditional computer vi-
sion approaches, and other deep representations in retrieval
performance on the DeepPatent test set. For PatentNet, we
use the best performing model on the validation set from
the various design choices. SANet denotes the Sketch-a-
Net network, SK denotes the Sketchy-ResNet SBIR model
and the additional term denotes the domain the network was
trained on. For SK models, Cl denotes the models after
classification pretraining and RT indicates that the domain
specific model was trained SBIR as described in Section 5.3

5.4.2 Comparison to classic computer vision

We perform quantitative comparison of PatentNet to non-
learning computer vision methods and other deep features
using the metrics defined in Section 5.2. Table 2 shows the
improved performance of PatentNet, the best model from
our deep architecture studies (ResNet50 Tri), against the
previous top-performing image descriptors for drawing re-
trieval. Furthermore all learning-based models (even the

self-supervised RotNet) outperform all of these classic ap-
proaches. The superior performance of deep-learning ap-
proaches validates the creation of the large-scale Deep-
Patent dataset. Additionally, we compare our model to other
learning-based approaches - Sketch-A-Net and Sketchy-
ResNet, an SBIR model trained on the Sketchy dataset. As
we can see, PatentNet and ResNet50 pretrained on either
patent drawings or Sketches outperform the Sketch-a-Net
model (trained on either domain). Though this is not sur-
prising as Sketch-a-Net is based on the AlexNet architec-
ture and achieves much weaker performance as compared
to ResNet50 and newer models. Furthermore, we can see
that PatentNet and ResNet50 outperform Sketchy-ResNet
deep features.

It is surprising to find that the performance of the
ImageNet-pretrained ResNet50 (ImageNet RN50) drops
when finetuned on sketches (Sketchy RN50 Cl in Table 1
and SK Sketches Cl in Table 2), and further drops when
the networks are trained for SBIR (SK Sketches RT and SK
Photo RT in Table 2). To investigate how patent drawing
data informs sketches, we train two SBIR ResNet 50 mod-
els with different initialisations for the network used to ex-
tract features for sketches. The sketches branch is either
pretrained on sketches from the Sketchy database or patent
drawings, and then the sketches branch and photo branch
are fine-tuned for sketch-based image retrieval using the
Sketchy database. However in this case, we find that the
cross-domain retrieval performance for the sketch-trained
network is significantly better than the network pre-trained
on patents. This demonstrates that despite the seeming sim-
ilarity between sketches and drawings, they comprise two
different domains and further that methods must be devel-
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Figure 5: t-SNE visualization of a random subset of 1000 images from the test set.

oped to achieve cross-modal understanding.

5.4.3 Qualitative results

Figure 4 shows qualitative examples from the PatentNet
model. For qualitative comparison of PatentNet with other
models, please refer to the Supplement. Figure 4a shows an
example of a successful retrieval in which all but one of the
retrieved examples are arguably relevant to the query. We
are interested in such cases, as this could help one search
for prior art. Figure 4b, shows a failure case in which when
searching for drawings of toy rings, the model fails to re-
trieve any correct examples. Though none of the retrieved
examples are correct, we can see the top three retrieved ex-
amples are circular similar to the query.

Figure 5 visualizes a subset of the testing set by pro-
jecting the feature descriptors of the PatentNet model into
a two dimensional space using t-SNE [45]. From further
inspection, we notice that patent drawings that are photo-
like renderings (bottom left) are all clustered together, most
likely due to their similar texture. In top left of the fig-
ure, we highlight a cluster of images that each depict some
sort of a display, table or a figure. Lastly, on bottom left
we show a cluster of drawings that show objects from a
very similar perspective. This indicates that the network
has learned some higher level semantics about the draw-
ings, despite only providing fine-grained associations with
any further supervision through class labels or attributes.

5.5. Opportunities and future work

The DeepPatent dataset and findings from the develop of
PatentNet open up new opportunities for future work.

Learning image representations at different levels of
abstraction In our earlier discussion, we pointed out the
unique nature of patent drawings as being in a level of ab-
straction between sketches and natural images. Given that
previous datasets were either limited in size, or focused on
particular patent types ( i.e. shoes) [46], we believe a large
collection of patents such as this would pave the way to
building models that could understand objects at various
levels of abstraction [41].

Learning robust image representations Recent work
notes that Imagenet-trained models rely heavily on color,
texture and background pixels rather than the foreground
and shape features that are most prominent to people; and so
DeepPatent could be used to develop models that are more
sensitive to shape and robust to image type [49].

6. Conclusion

We introduce the DeepPatent dataset, a large-scale col-
lection of patents for content-based drawing retrieval. The
dataset contains over 350,000 design patent drawings split
into train, validation and test sets. We find that although
deep learning methods outperform hashing based methods,
our retrieval networks achieve a much better performance
both in terms of the mean Average Precision as well as Top-
K retrieval accuracy. From our results, we see that patent
drawing retrieval is a challenging problem and we hope
this will spur further research into developing methods that
effectively analyze abstract drawings that are prevalent in
technical publications and on the web.
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