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Abstract

Adversarial attack on learning tasks has attracted sub-
stantial attention in recent years; however, most existing
works focus on supervised learning. Recently, research has
shown that unsupervised learning, such as clustering, tends
to be vulnerable due to adversarial attack. In this paper,
we focus on a clustering algorithm widely used in the real-
world environment, namely, ensemble clustering (EC). EC
algorithms usually leverage basic partition (BP) and en-
semble techniques to improve the clustering performance
collaboratively. Each BP may stem from one trial of cluster-
ing, feature segment, or part of data stored on the cloud. We
have observed that the attack tends to be less perceivable
when only a few BPs are compromised. To explore plausible
attack strategies, we propose a novel generative adversarial
attack (GA2) model for EC, titled GA2EC. First, we show
that not all BPs are equally important, and some of them
are more vulnerable under adversarial attack. Second, we
develop a generative adversarial model to mimic the attack
on EC. In particular, the generative model will simulate be-
haviors of both clean BPs and perturbed key BPs, and their
derived graphs, and thus can launch effective attacks with
less attention. We have conducted extensive experiments on
eleven clustering benchmarks and have demonstrated that
our approach is effective in attacking EC under both trans-
ductive and inductive settings.

1. Introduction
Data clustering has been extensively studied in the past

few decades [16, 32, 40, 41, 44, 46] and has many poten-
tial contributions in the field of computer vision and pat-
tern recognition [5, 17, 30]. Considerable clustering algo-
rithms have been developed for real-world applications, but
no single algorithm has proved effective on various datasets.
Thus, choosing appropriate clustering algorithm for a given
task becomes challenging [15]. While there is limitation
presented by a single clustering, the idea of combining re-
sults from multiple clusterings on a given data for stabil-
ity and improved performance becomes prevalent. Multi-
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Figure 1: Top part: It shows a real world scenario where BPs
that stem from distributed system or different sources may be per-
turbed and thus compromise the overall ensemble clustering per-
formance. Bottom part: Our proposed Generative Adversarial At-
tack on Ensemble Clustering (GA2EC) model mimics the above
scenario.

ple clustering may stem from different algorithms, different
data sources, or features [12, 35], which is termed as En-
semble Clustering (EC).

Recently, considerable research has undergone on EC
due to its promising performance in addressing noisy and
bizarre data. Most importantly, it works well in distributed
computing that does not require original data or features in
clustering and thus benefits privacy [15, 22–24, 26, 38, 42].
In EC, a single clustering result is referred to as basic parti-
tion (BP), whereas final clustering assembles all BPs. One
of the most popular way to achieve such ensemble is using
co-association (CA) matrix, which encodes co-occurrence
of data in the same cluster [25].

However, with recent advances in deep learning, the im-
pact of adversarial samples and learning models has be-
come significant, especially for high-dimensional visual
data [14,36]. While most adversarial modelings are relevant
to supervised learning tasks [1, 20, 21, 29, 48], it has been
demonstrated that unsupervised methods including cluster-
ing could also be a victim of such attacks. Preliminary ad-
versarial research work has been done recently for conven-
tional clustering tasks [6, 7], and yet the adversarial model-
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ing for EC is still underexplored. In fact, EC is more vul-
nerable as BPs from different sources/features/trials may be
easily attacked without notice. In this paper, we hypothesize
that ensemble clustering is subject to adversarial attack due
to minor changes in BPs, which ultimately compromises the
CA matrix used in the final clustering task, as shown in top
part of Fig 1. It depicts a real world scenario where some
sources in a distributed environment can generate perturbed
BPs that can have significant impact on the overall EC. Mo-
tivated by this, we developed a Generative Adversarial At-
tack on Ensemble Clustering (GA2EC) model which per-
turbs the key BPs while minimizes the change to the origi-
nal BPs.

Note our adversarial attack is completely unsupervised
and capable of simulating attack through generative mod-
eling and thus applicable to even unseen test data. To that
end, first, we empirically prove that BPs are vulnerable un-
der supervised adversarial attacks through gradient-based
approaches and attacking key (selective) BPs are more ef-
fective. Second, we propose a generative model to simulate
the gradient-based attack through pseudo labels. The gen-
erative model manages to generate both compromised EC
features and graph given the clean data. The generator is
built with a variational autoencoder (VAE) [18] as the in-
frastructure, and driven by both conventional VAE loss and
perturbed EC feature and graph losses. It balances differ-
ent losses to minimize the perturbation level while secures
the effectiveness of the adversarial attack. Last, extensive
experiments on eleven popular visual datasets validate our
generative model and adversarial attacks on CA-based EC.

In brief, the contributions of this paper are:

• We examine the feasibility of ensemble clustering
(EC) and the possibility of attacking selective basic
partitions (BPs) for an effective adversarial attack.

• A generative model is developed to simulate the ad-
versarial attack on EC through a gradient-based ap-
proach in a complete unsupervised learning fashion,
where both EC features and induced graphs are com-
promised.

• Quantitative and qualitative results on eleven visual
datasets have demonstrated the effectiveness of our
model on attacking EC, with extensive discussions on
parameters analysis, and model insights.

2. Background and Observations
In this section, we will introduce the ensemble cluster-

ing (EC) with a co-association (CA) matrix and then present
the preliminary results of using a gradient-based adversar-
ial attack on EC. It will demonstrate the vulnerability of EC
and the feasibility of the adversary under this context. The
pipeline of this section is shown in Fig. 2. Table 1 summa-
rizes frequently used variables throughout the paper.

Table 1: Summary of notations.

Variable Description

x ∈ RD A single sample from dataset X
X ∈ RN×D Input dataset with N samples
H ∈ RN×r Basic partitions (BPs) matrix
Hi ∈ RN A basic partition in H

Ĥ ∈ RN×r Perturbed H by gradient attack
H ′ ∈ RN×r Perturbed H using our method
B ∈ RN×d Binary indicator matrix
S ∈ RN×N Co-association matrix
L ∈ RN Ground truth labels
L′ ∈ RN Pseudo labels
N ∈ R1 Total number of samples in X
D ∈ R1 Number of features in x
r ∈ R1 Number of basic partitions
d ∈ R1 Total number of indicators in B
m ∈ R1 Number of selected key BPs

2.1. Ensemble Clustering

Ensemble clustering (EC), also known as consensus
clustering, refers to combining the output of multiple basic
partitions (BP) or base clusters by mapping the BPs output
into a co-association (CA) matrix or similarity matrix, fol-
lowed by the final clustering [11, 35]. Basic partition refers
to a single run of any clustering algorithm, which results in
a vector containing the cluster ids for each data vector, and
in ensemble clustering, each basic partition vector is used as
a feature vector [22–24]. The merit of EC over an individ-
ual clustering algorithm is it may not require access to the
original data features for final clustering, which in turn pro-
tects the privacy [43, 47]. In addition, it is more robust and
stable than individual clustering as the latter usually gener-
ates varied results due to random or different initialization
of clusters centers [3, 39, 50].

Given a dataset X = {x1, · · · , xN} ∈ RN×D where xi
refers to the i-th data sample,N refers to the total number of
objects inX , andD is the dimension of feature. In addition,
let H = {H1, H2, ...,Hr} ∈ RN×r be the BP matrix with
Ki clusters in Hi, and r the number of BPs. Note in reality,
there are several options for generating BPs, including dif-
ferent data sources, feature representations, trials, and clus-
tering algorithms. In this paper, we practice with multiple
trials, and the developed algorithms are also applied to other
BPs options. Once BPs were generated, they are expected
to combine and create a consensus clustering. There are
two typical ways for this purpose: (1) co-association (CA)
matrix [23]; (2) utility function [25, 27, 37]. We stick to the
CA matrix based consensus clustering, as recently it was
claimed that CA matrix has significant success in ensemble
clustering than utility function [23].

We follow a typical way of creating CA matrix through
the binary indicator matrix B = [B1, B2, B3, ..., Br] ∈
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Figure 2: Illustration of adversarial attack on EC.

RN×d where d =
∑

j Kj , Kj is the number of unique clus-
ters in the j-th trial (BP), and Bj ∈ RN×Kj , j ∈ [1, r] is
a sub-matrix of B for the j-th trial. Specifically, in each
row of Bj , the clustering result is presented by 1-of-Kj

coding. Thus, the CA matrix S can be computed through
S = BBT , which can be further leveraged as an N × N
adjacency matrix or generally a graph. We may either apply
Kmeans on the column space, or graph clustering on S for
the final clustering task.

2.2. Adversarial Attack in Clustering

Although deep learning methods have offered state-of-
the-art performance for visual data, it has been identified
vulnerable to adversarial attacks [14, 36], and in classifica-
tion tasks in particular [1, 48]. One of the popular meth-
ods in this line is gradient based attack, which adds a small
noise to the original data according to the sign of the gra-
dient of the model loss with respect to the inputs, e.g., Fast
Gradient Sign Method (FGSM) [14]. One upfront challenge
is the lack of label information under the clustering con-
text. To that end, we propose to create pseudo labels first,
which could then be used in FGSM model. In our work,
Kmeans is used due to its simplicity to generate pseudo la-
bels, but other efficient clustering algorithms are also ap-
plicable here. Pseudo labels are used to keep the proposed
GA2EC approach fully unsupervised. Once the pseudo la-
bel set L′ is built, the perturbed BP will be generated by:

Ĥ = H + η, η = ϵsign(∇HJ(ψ,H,L
′)), (1)

where ψ is model parameters,∇H is the gradient of the loss
function J(·) regarding the input H , and ϵ is a model pa-
rameter to define the magnitude of the perturbation applied
on the input features. Finally, the perturbation η generated
in Eq. 1 is added to the original BPs to create the adver-
sarial samples and fool the clustering models. Note that
other recent gradient attack methods could be applied here
for similar purposes.

Figure 3: Gradual vs. Key BPs attack on USPS dataset. The
selected number of BPs varies from 100 to 1,500.

2.3. Vulnerability of BPs

In this section, we will implement an FGSM + pseudo la-
bels based adversarial attack to demonstrate the feasibility,
as shown in Fig. 2. First, we use an off-the-shelf clus-
tering method Kmeans to generate pseudo labels for the
dataset. Second, we follow the conventional adversarial at-
tack pipeline and use the BPs matrix H as the basic input.
Third, upon the efficacy, selected perturbed BPs and clean
BPs are blended for EC tasks.

In this experiment, we choose r = 1500 BPs generated
from different clustering trials. The reasons are two-fold:
first, it can provide enough EC features for better represen-
tation; second, both empirical observations and theoretical
results show that more trials can secure stable performance.
We follow the attack model shown in Eq. (1) to obtain the
perturbed BPs. It should be noted that not all BPs were
equally attacked by FGSM, which enlightens us that fewer
BPs could be selected for a less noticeable but effective at-
tack. To that end, we rank the residual γj between the j-th
original BP and j-th perturbed BP, namely:

γj = ∥Hj − Ĥj∥2, (2)

and choose the first m(m < r) BPs based on their residual
values. We will combine the selected m BPs with the rest
(r − m) clean BPs to formulate the perturbed BPs Ĥ . To
demonstrate the effectiveness of Ĥ , we conduct two exper-
iments with different ways of selecting BPs in building Ĥ .
In the first one, we gradually choosem perturbed BPs based
on their default order in H , while in the second one, we
choose m perturbed BPs based on the ranks of their resid-
ual γ. In Fig. 3, it can be seen that the selected key BPs
attack is more effective than the gradual attack, and a large
margin can be identified when m = 500 based on the clus-
tering accuracy and NMI.

3. Methodology
In this section, we will describe our Generative Adver-

sarial Attack on Ensemble Clustering (GA2EC) framework,

2850



Encoder 
𝝓

Z

Latent Space

Decoder 
𝜽

BP Mutation 
Loss

Graph 
Mutation Loss

෡𝑯෡𝑯𝑻

Adversarial 
Attack 
Model

𝑯′𝑯′𝑻
𝑯′ ෡𝑯

𝑯′𝑯

𝑯𝒆

Ensemble 
Clustering 

Generating 
BPs 𝑯′𝒆

Input
Output

Figure 4: The complete pipeline of generative adversarial attack on ensemble clustering (GA2EC). Note the blue path shows
the transductive setting, while the red path shows the inductive setting, with unseen dataset and its BPs matrix He.

which is illustrated in Fig. 4. GA2EC is built upon a
deep generative model, and in particular variational autoen-
coder (VAE) [18] in this paper. Dedicated losses consists
of (1) BP reconstruction loss, (2) BP mutation loss, and (3)
graph mutation loss, are developed to mimic the behaviors
of adversarial samples from the adversarial model, includ-
ing both feature vectors and graphs. The newly generated
adversarial samples are expected to render poor clustering
performance. These details are presented in the following
subsections.

3.1. Generative Model to Mimic Adversary

The BPs’s vulnerability has been proved and now we
plan to mimic such behaviors through a dedicated gener-
ative model with two aims:

• Offer less noticeable adversarial change on BPs
• Extend the generative model to unseen data

The two aims were motivated by the fact that BPs under
attack may deviate too much from the clean data, and thus
can be easily detected. The generative model may mitigate
this issue and ensure attack effectiveness. In addition, it is
supposed to extend to unseen data sampled from the same
data sources or following similar distributions.

To that end, we leverage VAE as our infrastructure to
mimic the adversarial behavior of BPs, while offering a
“mild” attack. Essentially, VAE reconstructs clean BPs with
two additional constraints. First, we create a BP mutation
loss to allow for minor mutations in potential BPs that lead
to the malicious effect. Second, we incorporate graph mu-
tation loss to enable further engagement of BP mutations in
the final clustering. The two losses together with the con-
ventional loss of VAE secure the performance, while mak-
ing the attack less noticeable in a measurable way.

BP Reconstruction Loss. Given the BPs matrix H , we
will first normalize the data into [0,1] before feeding it to
the deep generative model VAE. The basic VAE structure

includes an encoder and a decoder, where the former en-
codes H into latent space z and the latter decodes the z into
H ′. Similar to conventional autoencoder modeling, H ′ and
H are expected to be similar under certain measurement,
namely, Frobenius norm:

LR = ∥H ′ −H∥2F, (3)

where LR is referred to as reconstruction loss in the pa-
per. In addition, the latent space is learned from input data
and assumed to be parameterized by Gaussian distributions
N(0, I). In training, Kulback-Leibler (KL) divergence is
used to regularize between learned and standard Gaussian
distributions, which is usually defined as follows:

LKL(ϕ, θ,H) = DKL(qθ(z|H)∥pθ(z))
− Eqθ(z|H)(log pθ(H|z)),

(4)

where ϕ and θ are encoder and decoder network parameters
and pθ(H|z) represents the posterior distribution. Finally,
the VAE model is learned by integrating two loss functions
above for data generation.

BP Mutation Loss. Original VAE aims to model the
underlying distribution of latent vector z and thus faith-
fully generate new samples under the same distribution. To
mimic the adversary imposed on H , we leverage the per-
turbed BPs from the previous adversarial model. Basically,
m(m < r) are selected according to residual defined in Eq.
(2). The noisy BPs are then concatenated with the clean
BPs to formulate the intended perturbed BPs termed as Ĥ .
We define the following loss function to encourage a minor
mutation of the reconstructed BPs H ′, namely,

LP = ∥H ′ − Ĥ∥2F. (5)

Graph Mutation Loss. In EC, CA matrix is used for
the final clustering task and we propose to add another loss
function regarding the CA matrix. Recall in adversarial at-
tack, the perturbed BPs matrix Ĥ , and the derived binary
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Algorithm 1: Generative Adversarial Attack on
Ensemble Clustering

Part I: Ensemble Clustering for Pseudo Labels
Input: X
Output: L

′
(Pseudo Labels)

while i ≤ r do
Compute basic partitions: Hi = Kmeans(X);

end
H = [H1, H2, · · ·Hr];
Binary matrix: B ← H by one-hot coding;
CA matrix: S ← BBT ;
Ensemble clustering: L′ ← Kmeans(S);

Part II: Data Perturbation
Input: {H,L′

,m}
Output: Ĥ (Perturbed Data)
Initial Ĥ: Run FGSM (H,L

′
) by Eq. (1);

Ĥ with key BPs: Select first m BPs by Eq. (2);

Part III: Generative Adversarial Model
Input: {H, Ĥ}
Output: {H ′, ϕ, θ}
Parameters {ϕ, θ}: Minimize the loss in Eq. (7);
Reconstructed BPs H ′: Run H on network {ϕ, θ} ;
Transductive setting: B′ ← H ′ by one-hot coding,
S′ ← B′B′T , Kmeans(S′) ;

Inductive setting: Run external data BPs He on
network {ϕ, θ} and obtain the output H ′

e,
B′

e ← H ′
e by one-hot coding, S′

e ← B′
eB

′T
e ,

Kmeans(S′
e) ;

matrix B are used to construct CA matrix S. This inspires
us to leverage ĤĤT as the measurement for the perturbed
CA matrix. The CA matrix based on H ′H ′T is assumed to
approach ĤĤT , which defines the following loss function:

LG = ∥H ′H ′T − ĤĤT ∥2F. (6)

Following this assumption, the VAE based generative model
will directly mimic the perturbed CA matrix to secure the
adversary effectiveness. On the other hand, the significant
mutation of the CA matrix caused by LG is less noticeable
in the learning process, as it is already different from the
original BPs.

3.2. Solution

In brief, our generative model GA2EC can be learned by
minimizing four losses which are shown below:

L = LKL + λ1LR + λ2LP + λ3LG, (7)

where λ1 ∼ λ3 are balancing parameters, and L is differen-
tiable which can be solved by backpropagation, similar to

Table 2: Details of datasets used in experiments.

Dataset Type #Instance #Attribute #Class

MNIST digit 10000 784 10
MFashion article 10000 784 10

USPS digit 11000 256 10
CIFAR-10 object 10000 3072 10

STL-10 object 5000 27648 10
COIL-20 object 1440 1024 20

PIE faces 1407 900 67
YaleB faces 1440 1024 15

Amazon object 2817 1000 31
Dslr object 498 1000 31

Webcam object 795 1000 31

MNIST MFashion USPS

CIFAR-10 STL-10 Dslr

Figure 5: Sample images of benchmark datasets.

the existing solution to VAE. Essentially, the balancing pa-
rameters are responsible for controlling the mutation of BPs
and make sure it is not stretched too much from the clean
data, but also provides effective attack. Discussions and em-
pirical discoveries will be provided in the experiments. The
overall algorithm for GA2EC can be found in Algorithm 1.
Once the GA2EC model is learned, it can be run under both
transductive and inductive settings. The unseen data and its
BPs matrix He can be fed into the proposed VAE to gener-
ate H ′

e to be used in EC tasks.

3.3. Insights and discussions

Recent research revealed that EC may be interpreted and
parameterized from a Bayesian perspective [42], in a way
similar to the topic modeling and Latent Dirichlet Alloca-
tion (LDA) [4]. Essentially, [42] explains the BPs and en-
semble clustering process through a multinomial mixture
model, which is then solved through variational inference
for approximation since the posterior distribution cannot be
computed in closed form. In our study, the attack is ini-
tialized through a discriminant model and then simulated
via a generative model. It would be more interesting to
see whether EC can be compromised or attacked from a
Bayesian perspective. Relevant works for LDA on security
and privacy have been discussed in [9, 28, 49], which may
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inspire our future work.

4. Experiments

4.1. Database Introduction

For evaluation of our proposed study, we have conducted
experiments on 11 datasets of varied sizes, and their in-
formation can be found in Table 2. Sample images from
some datasets are shown in Fig. 5. MNIST and USPS
consist of handwritten digit images from 0 to 9. MNIST
Fashion (MFashion) [45] is a set of article images, e.g,
clothes, shoes, handbags, etc. CIFAR-10 [19], STL-10 [8]
and COIL-20 [31] include color images of different objects
such as ship, bird, cat, etc. PIE and YaleB [13,34] are pop-
ular face image datasets. We use raw data as features for
above datasets. Finally, Amazon, Dslr and Webcam [33]
are popular object image datasets and decaf [10] deep fea-
tures are used.

4.2. Experiment Setup

We will discuss the evaluation metric, features, pre-
processing, the number of BPs attacked, and other hyper-
parameters used in the experiments.

Evaluation metrics. For clustering evaluation, we have
incorporated two commonly used evaluation metrics: clus-
tering accuracy and Normalized Mutual Information (NMI)
[44]. These metrics are evaluated against Kmeans output
and ground truth labels (L).

Pre-processing and features. In our experiments, we
have performed EC after Part I ∼ III as described in Algo-
rithm 1. When generating BPs on given data as described
in Part I in the Algorithm 1, we also normalize the feature
vector so that each vector has a length of 1.

Number of BPs. We set the number of basic partitions
to 1500 throughout the experiments when generating H , as
explained in Sec. 2.3. When applying adversarial attack to
H , 500 BPs will be selected based on the residual defined
in Eq. (2).

Experiment platform. All experiments are run on a
workstation with an Intel i7-7700K CPU, 32GB memory,
and a NVIDIA 1080ti GPU. The code was implemented in

Python 3.7.4 and PyTorch 1.2.
Other parameters. For the perturbation in Eq. (1), we

have set ϵ = 0.75, which empirically works well, as shown
later in Fig. 9. We have also explored the balancing param-
eters λ1 ∼ λ3, and set the values as: λ1 = 0.001, λ2 = 1
and λ3 = 0.2. These parameters work well in most cases,
as demonstrated later in Fig 10.

(a) (b) (c) (d)
Figure 7: Graph visualization on USPS dataset. (a) Clean BPs
(b) VAE reconstructed BPs (c) Gradient attacked BPs (d) Ours.

4.3. Experimental Results

Transductive setting results. In a transductive setting,
we learn GA2EC model and apply attacks on the same
dataset. To evaluate the effectiveness, four experiments are
conducted. First, clean data and its BPs go through EC to
obtain the clustering results. Second, we apply plain VAE
and then use the output, i.e., reconstructed BPs, for EC
tasks. This is to verify whether the generated data by plain
VAE has similar distribution as the clean data, and provides
similar ensemble clustering results as the input data. Third,
gradient attack with pseudo labels is applied to the clean
data to get perturbed BPs, which is then fed to EC tasks.
This demonstrates the effectiveness of the original adver-
sarial attack, with excessive mutations on clean data. Lastly,
we show our EC performance via GA2EC. As expected, in
Table 3, the performance based on clean and VAE recon-
structed BPs are very close. As our method offers minor
mutation to make attack less noticeable, the performance is
slightly inferior to the gradient attack based approach, but
very close in most cases.

Inductive setting results. Another merit of GA2EC is
the extension of unseen data under the inductive setting. Ba-
sically, the generative model will be trained as shown in the
blue path in Fig. 4, and then tested through the red path. For
this purpose, we split each dataset into training and testing
with a ratio of 80:20. After the generative model is built,
we let both training and testing data go through model for
EC tasks. In addition, we compare the EC performance of
clean training and testing data, as the baseline. The results
are shown in Fig. 6 and we can see that our model per-
forms consistently on unseen data as compared to the train-
ing data, showing that the model can extend well to data
sampled from the same source.

Comparisons with existing method. To the best of our
knowledge, none of the existing work explores the adver-
sarial learning on EC tasks. Very recently, research works,
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Table 3: Clustering performance on benchmark datasets by different models. Clean: clustering on the original dataset; RC:
reconstructed BPs from plain VAE; GA: perturbed BPs by FGSM; Ours: perturbed BPs by GA2EC. Note standard deviation
of NMI in the table is usually very small and rounding to 0 in some cases.

Dataset
Accuracy (%) NMI

Clean RC GA Ours Clean RC GA Ours

MNIST 56.45±5.59 54.40±3.45 22.45±0.29 28.26±1.33 0.53±0.03 0.48±0.01 0.09±0.00 0.18±0.01
MFashion 52.61±2.30 50.01±2.46 25.01±0.55 38.03±2.20 0.56±0.01 0.52 ±0.01 0.12±0.00 0.32±0.02

USPS 45.58±3.11 45.08±2.11 21.36±0.46 23.58±1.07 0.45±0.02 0.42±0.00 0.10±0.00 0.12±0.01
CIFAR-10 23.15±0.70 17.47±0.25 15.23±0.26 15.59±0.53 0.10±0.00 0.04±0.00 0.02±0.00 0.03±0.00

STL-10 24.85±0.45 22.54±0.46 17.04±0.34 17.23±1.05 0.15±0.00 0.10±0.00 0.05±0.00 0.06±0.01
COIL-20 56.36±3.75 50.61±4.99 16.32±0.43 22.29±0.62 0.72±0.01 0.70±0.02 0.14±0.00 0.24±0.00

PIE 26.35±1.32 23.16±0.87 9.99±0.21 11.03±0.14 0.58±0.01 0.54±0.00 0.31±0.00 0.32±0.01
YaleB 38.00±3.33 40.96±3.17 23.39±0.58 25.39±0.92 0.43±0.01 0.45±0.01 0.29±0.00 0.31±0.01

Amazon 53.08±1.63 50.44±2.29 10.35±0.22 8.32±0.10 0.60±0.00 0.58±0.01 0.10±0.00 0.07±0.01
Dslr 58.15±3.31 61.00±2.81 18.05±0.60 18.82±0.58 0.76±0.01 0.77±0.01 0.30±0.00 0.32±0.01

Webcam 60.31±2.66 56.02±3.39 16.57±0.46 16.69±0.31 0.76±0.00 0.75±0.01 0.26±0.00 0.27±0.00

Table 4: Comparison with existing adversarial clustering
method. “# of error” means the number of mis-clustered
samples (the larger the better), and “ℓ2 norm” indicates
the Frobenius norm between perturbed and clean BPs (the
smaller the better).

# of error Spill-over Poisoning Ours

MNIST 1&4 11 12±4.5 13
MNIST 2 & 3 2 12.2±1.0 20
Digits 1 & 4 24 24±0.0 13
Digits 8 & 9 21 21±0.0 37

ℓ2 norm Spill-over Poisoning Ours

MNIST 1 & 4 585.38 782.7±124.20 567.41±10.19
MNIST 2 & 3 872.84 497.9±92.50 513.85±9.07
Digits 1 & 4 23.93 19.84±1.96 7.62±0.40
Digits 8 & 9 15.70 13.86±2.96 8.51±0.51

Figure 8: Ablation study: different loss functions and their
results on MNIST and USPS datasets.

i.e., spill-over [6] and poisoning clustering [7] discussed the
adversarial learning on standard clustering. Moreover, they
consider only two classes for attack at a time while we con-
sider all the classes for attack. For fair comparisons, we
restrict our model to two classes on the same dataset as [6]

and compare based on their provided code and data. In par-
ticular, [6] and [7] have evaluated their model on MNIST
(digits 1&4, 2&3) and Digits [2] (digits 1&4, 8&9). For fur-
ther details on database selection, readers can refer to [6].
Note in [6] and [7], their models attacked one sample at a
time, whereas our model has the option to attack different
samples with minor noises. Note that we have compared
our results to poisoning clustering [7] where they have set
noise threshold to the maximum. As we can see from Table
4, in most cases, our model is able to achieve higher mis-
clustered rates, compared to state-of-the-art methods, while
keeping the perturbation level low measured by ℓ2 norm.

Graph loss and visualization. It is also important to un-
derstand how graph constraint and mutation loss contribute
to the EC tasks. To that end, we visualize graph generated
byHHT on USPS dataset in Fig. 7. As expected, the graph
generated by plain VAE is very close to the clean data, while
the one by gradient attack is very different, which explains
why it can compromise performance badly. On the other
hand, our model achieves a good balance between (b) and
(d) in Fig. 7.

Empirical time complexity. The time taken to train
the generative model is proportional to the number of data
points in a given dataset. For instance, large datasets such as
MNIST and MFashion take around 151 and 265 minutes re-
spectively while small datasets such as COIL-20 and Ama-
zon take around 11 and 34 minutes respectively. Compar-
atively testing time for EC is very less and it takes around
1.59, 1.63, 0.20 and 0.45 minutes for MNIST, MFashion,
COIL-20 and Amazon datasets respectively.

4.4. Ablation Study

Our model includes four losses: (1) VAE reconstruction
loss, (2) VAE KL divergence loss, (3) BP mutation loss,
and (4) graph mutation loss. The four losses work syner-
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Table 5: Attack sensitivity analysis via Frobenius norm be-
tween the original H and attacked H . RC: reconstructed
BPs from the plain VAE; GA: perturbed BPs by FGSM;
Ours: perturbed BPs by GA2EC. For norms in the table, the
smaller the better.

Dataset RC GA Ours

MNIST 0.48±0.01 0.97±0.00 0.74±0.00
MFashion 0.54±0.16 1.41±0.03 0.84±0.08

USPS 0.51±0.13 0.97±0.00 0.77±0.00
CIFAR-10 0.58±0.19 0.92±0.00 0.87±0.00

STL-10 0.57±0.27 1.18±0.00 0.79±0.00
COIL-20 0.82±0.74 1.54±0.18 1.36±0.04

PIE 0.94±0.02 0.97±0.06 0.93±0.00
YaleB 0.77±0.74 0.89±0.05 1.14±0.23

Amazon 0.94±0.71 1.79±0.14 1.59±0.05
Dslr 0.86±0.67 1.53±0.26 1.64±0.06

Webcam 0.46±0.15 1.11±0.50 1.09±0.63

gistically to drive data towards adversarial in nature but still
preserving the features similar to original data. To demon-
strate the necessity and impact of each loss, we add and re-
move the loss one at a time in this ablation study. As shown
in Fig. 8, we first use the VAE reconstruction and KL diver-
gence loss which gives us the reconstruction data and results
similar to clean data. Second, we add BP mutation loss and
we can see there is a drop in results. Third, we remove the
BP mutation loss but add the graph mutation loss instead,
and performance is further reduced. The downside of BP
mutation is that it cannot achieve a competitive adversary.
On the other hand, graph mutation offers an aggressive at-
tack and make it noticeable. Our model maintains the right
balance among all losses.

4.5. Parameters Analysis

Attack sensitivity. BPs after attack will deviate from the
original values and quantitative measurement of the devia-
tion, namely, mutation should be provided for each step. We
compare the ℓ2 norms between perturbed BPs and original
BPs in Table 5. It can be seen that reconstructed BPs by
the plain VAE offer the lowest norm difference, while gra-
dient attack the highest one. Our method lowers the recon-
struction error on most datasets, while secures an effective
attack. This is desired in real-world adversarial learning.

Value of ϵ. The magnitude (ϵ) of gradient attack on
MNIST and USPS datasets is shown in Fig. 9. It can be
seen that a larger ϵ value usually offers lower accuracy and
NMI, and the same trend can be found for both datasets.
Therefore, we use ϵ = 0.75 throughout all experiments.

Balancing parameter λ. The four losses in Eq. (7) shall
be balanced through parameters λ1 ∼ λ3. We visualize
their impacts on YaleB dataset, and show both accuracy and
NMI in Fig. 10. Note x, y axis indicate λ2 and λ3, while
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Figure 9: Impacts of ϵ on MNIST and USPS datasets.

Figure 10: Impacts of λ on Yale dataset.

meshes show different λ1 values. This is consistent with
our setting on these balancing parameters, which also em-
pirically works well on other datasets.

5. Conclusion
In this paper, we proposed a novel generative adversar-

ial ensemble clustering method, which demonstrated that
ensemble clustering tends to be vulnerable due to gradient-
based adversarial attack, a common strategy in adversarial
machine learning. To that end, we first examined the feasi-
bility of conventional adversarial attack on ensemble clus-
tering through pseudo labels. Second, a dedicated genera-
tive model was developed to mimic the attacks, which could
be extended to unseen data under an inductive setting. Ex-
tensive experiments on eleven clustering tasks and thorough
analysis showed that our method is effective, yet less notice-
able compared to the existing methods. In the future, adver-
sarial attack from a Bayesian perspective could be explored
to offer probabilistic insights and interpretable solutions.
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