
Tailor Me: An Editing Network for Fashion Attribute Shape Manipulation

Youngjoong Kwon1 Stefano Petrangeli2 Dahun Kim3 Haoliang Wang2

Viswanathan Swaminathan2 Henry Fuchs1

1University of North Carolina at Chapel Hill 2Adobe Research 3KAIST

Abstract

Fashion attribute editing aims to manipulate fashion im-
ages based on a user-specified attribute, while preserving
the details of the original image as intact as possible. Re-
cent works in this domain have mainly focused on direct
manipulation of the raw RGB pixels, which only allows
to perform edits involving relatively small shape changes
(e.g., sleeves). The goal of our Virtual Personal Tailoring
Network (VPTNet) is to extend the editing capabilities to
much larger shape changes of fashion items, such as cloth
length. To achieve this goal, we decouple the fashion at-
tribute editing task into two conditional stages: shape-then-
appearance editing. To this aim, we propose a shape editing
network that employs a semantic parsing of the fashion im-
age as an interface for manipulation. Compared to operat-
ing on the raw RGB image, our parsing map editing enables
performing more complex shape editing operations. Sec-
ond, we introduce an appearance completion network that
takes the previous stage results and completes the shape dif-
ference regions to produce the final RGB image. Qualitative
and quantitative experiments on the DeepFashion-Synthesis
dataset confirm that VPTNet outperforms state-of-the-art
methods for both small and large shape attribute editing.

1. Introduction

Fashion attribute editing aims to manipulate the appear-

ance of a fashion image based on a user-specified attribute

(e.g, sleeve, cloth length or width) and corresponding at-

tribute value (e.g, long, short, narrow, or wide). It has a wide

range of applications in fashion industries, online shopping,

personalized marketing, advertising and entertainment.

Since pixel-level groundtruth for target image is not
available, fashion attribute editing is learned in an unsuper-

vised manner. The lack of strong supervision leads to the

main challenges of this task: 1) the desired target attribute

often requires editing a large area with complex shape oper-

ations and 2) the source image details and identity should

Source Sleeve Length

Figure 1: Fashion Attribute Editing. Our Virtual Personal

Tailoring Network (VPTNet) is able to perform complex fashion

shape attribute edits, even for challenging poses, while preserving

the details and identity of the original image.

be retained in the attribute-irrelevant regions. Existing

works [4, 10, 17, 14, 2] perform the unsupervised editing

directly on the input image, trying to manipulate both shape

and appearance at the same time. Although these direct

methods have already achieved high-quality results on ap-

pearance editing, their performance on the shape counter-

parts is still quite limited. For example, most prior works

only deal with minimal shape changes on sleeves or collars

which only take up very small portion of the entire image.

Therefore, we focus on more flexible shape editing without

affecting the wearer’s identity. In addition, we demonstrate

that the prior works are sub-optimal when it comes to large-

shape manipulations, e.g., cloth length and width (see Fig-

ure 4-(c)). Finally, since existing methods generate whole

image pixels from scratch, they involve unwanted changes

in attribute-irrelevant regions which can hurt preservation of

the wearer’s identity (see Figure 4 - 6th column). We note

that although this paper’s focus is on more flexible change

manipulation, it can be easily extended for appearance edit-

ing by adding an existing appearance editor.

To address these challenges, we present our Virtual Per-

sonal Tailoring Network (VPTNet), where we decouple

the fashion attribute editing into two stages: shape editing

(parsing map attribute editing) and appearance completion

(parsing-guided fashion image inpainting). Figure 1 shows

the effectiveness of our two-stage - shape-then-appearance
- decoupling strategy. VPTNet performs the desired at-
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tribute edit on the attribute-relevant regions, while main-

taining identity and fine-grained details of the source im-

age (e.g., face and hair), even for large shape changes (e.g.,

cloth length change in 1st and 2nd row) and with challeng-

ing asymmetric poses (2nd row).

Given a target attribute, the first stage of VPTNet con-

sists of a shape editing network which leverages an external

parsing map estimator. High-quality parsing maps can be

obtained at near-free cost by using an off-the-shelf mod-

ule [24]. Here, we learn to edit shapes on the parsing map

instead of the raw input image. Such explicit shape manipu-

lation enables learning more complex and large-shape edit-

ing as it the parsing map contains less details than the origi-

nal input image. However, a naive unsupervised training of-

ten leads to undesirable shape changes and distortions near

edges due to lack of pixel-level supervision (see Figure 3

- (b, c)). To tackle this issue, we employ edge map infor-

mation obtained from the parsing map, and propose edge-
preserving constraints during training that can provide an

effective guidance. The network learns to jointly modify the

shape of the parsing map and the edge map, while fusing

both complementary information for more accurate shape

manipulation. We also introduce Target Region Localiza-

tion (TRL) module to accurately localize which semantic

components (e.g., uppercloth and arms) and spatial parts

(e.g., around the upper arm region) should be edited. This

leads to effective manipulation of the attribute-relevant re-

gion, even when the editing requires larger shape changes

and the human subject presents challenging poses.

In the second stage, our appearance completion network

directly samples the RGB pixels from the source image into

the intersection region between the source and the synthe-

sized parsing maps. The final result is obtained by only

inpainting the cloth shape difference regions, guided by the

synthesized parsing map. This approach minimizes the gen-

eration of raw RGB pixels and maximizes the usage of the

source pixels from attribute-irrelevant regions, which re-

sults in high-quality results where the fine-grained details

of the source image are well-preserved (Figure 1).

In summary, our contributions are as follows:

• We propose VPTNet, a two-stage shape-then-
appearance framework for fashion attribute editing. It

enables performing more flexible shape manipulation

and, in turn, more accurate attribute editing;

• The proposed shape editing network and edge-

preserving constraints exploit the complementariness

of the edge and parsing maps. Also, the proposed TRL

attention module accurately localizes the attribute-

relevant regions.

• An appearance completion network to inpaint the

attribute-relevant regions only, which allows to better

retain the fine details and identity of the source image.

• To evaluate our method, we have extended the

DeepFashion-Synthesis dataset [27] by adding cloth

length and width attribute annotations. Extensive

quantitative and qualitative results, including a user

study, confirm the benefits of VPTNet, when compared

to several state-of-the-art methods [10, 17, 4, 14].

2. Related work

In this section, we review prior works in the area of fash-

ion image editing that are conditioned on two types of user

inputs: attribute vector and user sketches.

Attribute vector conditioned editing. Isola et al. [11]

present pix2pix and Zhu et al. [26] propose CycleGAN,

which perform image-to-image translation in a supervised

and unsupervised setting, respectively. However, arbitrary

attribute editing is a multi-domain image-to-image prob-

lem, which cannot be fully solved by pix2pix or Cycle-

GAN, which only support translation between two domains,

i.e., a new generator should be trained for every attribute

value pair. StarGAN [4] addresses this issue by adopt-

ing a single generator that learns to perform multi-domain

translations through a classification loss. Nonetheless, Star-

GAN is still limited when applied to the fashion domain,

where many fine-grained details should be accurately ma-

nipulated. This happens because the downsampling of the

StarGAN generator diminishes spatial resolution and fine

details of the feature map.AttGAN tackles this problem by

adopting skip connections in the generator, which however

limits its ability to perform attribute editing for better im-

age quality. STGAN [14] alleviates this problem by adopt-

ing the Selective Transfer Unit instead of plain skip connec-

tions. It is challenging to apply these image attribute editing

works to the fashion image editing task, as fashion editing

often requires more global shape changes (e.g., changing

cloth length). Fashion-AttGAN [17] extends AttGAN to the

fashion domain, while improving the attribute manipulation

ability of the generator by backpropagating the classifica-

tion loss only to the decoder. AMGAN [2] leverages an

attention mechanism to perform manipulations on attribute-

relevant regions. All the aforementioned methods directly

operate on the RGB pixels, which require the simultaneous

manipulation of both shape and appearance. Our VPTNet

employs a two-stage shape-then-appearance editing strat-

egy. This allows VPTNet to effectively perform shape at-

tribute editing while at the same time retaining the source

image identity and fine-grained details.

User sketch conditioned editing. Yu et al. [21] propose

a general image inpainting framework that inpaints incom-

plete images guided by user-provided sketchs. Portenier

et al. [18] and Jo et al. [12] present a face editing system

that takes sketch and color as input. Directly applying gen-

eral inpainting or face inpainting approaches to the fash-
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ion image inpainting is challenging because fashion images

present many fine-grained details. Therefore, Han et al. [8]

and Dong et al. [6] propose fashion image-specific inpaint-

ing frameworks.

3. Virtual Personal Tailoring Network

The overall architecture of the Virtual Personal Tailor-

ing Network (VPTNet) is illustrated in Figure 2. Instead

of manipulating the raw RGB images directly, VPTNet per-

forms shape-then-appearance editing in a two-stage fash-

ion: a shape editing network followed by an appearance

completion network. The shape editing network manipu-

lates the parsing map of the fashion image based on the tar-

get attribute. This is a crucial stage to synthesize a new

parsing map, which is then used to guide the appearance

completion network, whose goal is to fill in pixel-level tex-

tures/content to generate the final edited image. The two

networks are trained separately and used together at infer-

ence time. To better introduce notations and the two stages

operations performed our framework, we first detail the in-

ference operations of VPTNet (Section 3.1), followed by

training (Sections 3.2 and 3.3).

3.1. Inference

The inference pipeline of our VPTNet is structured as

follows (Figure 2-third row). xa, ea and b are the inputs

of the parsing network. xa ∈K×H×W is the source pars-

ing map with n binary attributes a = [a1, · · · , an]. It con-

sists of K binary masks, each corresponding to the seman-

tic parsing of a clothed human, i.e., hair, face, . . . , feet.

ea ∈H×W is the edge map calculated from the parsing map

xa, while b is the target attribute vector. GP , the gener-

ator of the shape editing network, synthesizes the parsing

map x̂b edited according to the target attribute vector b, de-

noted as GP (xa; ea, b) = x̂b. GI , the generator of the ap-

pearance completion network, takes three inputs to generate

the final inpainted image Îb. First, the synthesized target

parsing map x̂b. Second, the cloth shape difference mask

Mdiff = [xa − (xa � x̂b)] + [x̂b − (xa � x̂b)] caused

by the attribute editing operation. Third, the source RGB

image Ia multiplied by the inversion of the cloth shape

difference mask Mdiff . GI inpaints the cloth shape dif-

ference regions to output the final RGB image, denoted as

GI(x̂b,Mdiff , I
a � (1−Mdiff )) = Îb.

3.2. Shape Editing Network

The goal of this stage is to manipulate the source parsing

map based on the given target attribute vector b (see Figure

2-first row). As no pixel-wise guidance is available, we pro-

pose to leverage edge information of the input shape to bet-

ter preserve the delineation of the editing results. Our shape

editing network incorporates the source parsing map xa and

its edge map ea as inputs, and learns to manipulate both xa

and ea into the target shape by (xb, eb) = GP ((xa; ea), b).
Specifically, our shape editor GP is an encoder-decoder

network. The encoder GP
enc takes as inputs the concatena-

tion of the source parsing map and edge map and transforms

them into the latent representation z. It is then concatenated

with the target attribute vector b, and it is fed into the the

two branches for map prediction x̂b and edge map predic-

tion êb, respectively. For training, we use the discriminator

DP , which is composed of two branches DP
adv and DP

att.

DP
adv is used to determine whether an image is fake or real;

DP
att predicts an attribute vector.

Edge map pose cue. The manipulation of the source pars-

ing map should conform with the underlying human pose.

While the input parsing map itself contains the pose in-

formation implicitly, we empirically found that adding the

edge information to the shape editing network can have a

stronger pose cue and achieve more pose-faithful synthesis

results. The edge map can be easily computed by Laplacian

operator on the input parsing map.

Edge-preserving parsing map editing. When manipulat-

ing the parsing map, results are often coarse and unstable

due to the lack of pixel-level ground truth. Moreover, such

self-supervised approach mainly relies on classification to

drive learning, which ignores the shape information of the

source clothed humans. This often generates unreasonable

shapes and poor edge results. (see Figure 3 - (b.c)) To ad-

dress this issue, we propose an edge-preserving constraints

where the edge map is used to provide more explicit shape

information, and to better guide the parsing map synthesis.

Our shape editing network improves the parsing map

synthesis by exploiting edge features and edge prediction,

as illustrated in Figure 2-first row. The parsing map predic-

tor and edge map predictor of the decoder jointly learn the

parsing and edge map in an end-to-end manner. This ap-

proach allows to exploit the close relationship between the

two maps. Indeed, features from the parsing map predic-

tor can provide high-level semantic information for learning

the edge map. On the other hand, after obtaining the edge

map, the implicit shape information in the edge map fea-

tures can guide more precise parsing map synthesis results.

Parsing map features contain rich high-level information,

i.e., the pixel-wise semantic parsing information, which is

beneficial to predict the edge map. To exploit this mutual

information, our VPTNet employs a fusion block that inte-

grates parsing map features and edge map features for edge

map prediction. The parsing map feature is first applied a

1 × 1 convolution followed with a ReLU activation. Next,

the output is summed with the edge map features to become

fused edge map features. We also fuse the final edge map

features with the parsing map features so that the edge map

features can guide a more precise parsing map synthesis.

A similar fusion block is employed to enrich the edge map
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Figure 2: Architecture. VPTNet consists of a shape editing network and an appearance completion network, which are trained separately

and used together at inference time.

with parsing map features. Each fused feature goes through

the rest of its branch to become parsing map and edge map

respectively. Synthesized parsing and edge maps are super-

vised as described in the following section.

Target Region Localization module. In order to correctly

localize the parsing map channels relevant to the target ma-

nipulation as well as the spatial locations within the selected

channel where the editing should be performed, we employ

the Target Region Localization (TRL) module that consists

of channel-wise and spatial-wise attention modules [19].

Zhu et al [2] also makes use of a localization module,

where they use a pretrained attribute classifier to obtain the

class activation map (CAM) [25]. This is often not opti-

mal for shape editing task because CAM tends to fire on

the dominant region in an image regardless of the target at-

tribute, and is low-resolution and coarse. Our TRL attention

is trained end-to-end with the shape editing objective, and

thus it focuses on the shapes as well as better delineates the

attribute-relevant regions, which will be shown later in the

experiments (see Figure 3 - (a, c)).

The channel attention module focuses on localizing

which parsing semantics (i.e., channels of the parsing map)

are relevant for the target attribute change. Given the in-

termediate feature F , the channel attention is computed as

Mc(F ) = σ(w(F c
avg)) + (w(F c

max)). F
c
avg and F c

max de-

note spatial feature maps aggregated by average-pooling

and max-pooling operations, respectively. w denotes a

multi-layer perceptron with one hidden layer followed by

ReLU activation, and σ denotes the sigmoid function. The

spatial attention module focuses on where the attribute-

relevant modifications should be performed. The spatial at-

tention is computed as Ms(F ) = σ(g([F s
avg;F

s
max])). F

s
avg

and F s
max denote the average-pooled features and max-

pooled features across the channel axis, respectively, which

are concatenated before being fed to a convolutional layer

g. The final refined output is obtained by sequentially ap-

plying the channel attention and the spatial attention.

Our proposed TRL module is applied to the first layer

of the encoder, as well as the first and second layers of the

decoder, and effectively improves the parsing map attribute

manipulation quality.

Training. Our shape editing network is trained by a recon-

struction, adversarial, and attribute manipulation loss.

First, the shape editing network should be able to cor-
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rectly reproduce the source map when the target attribute

is the same as the source attribute. We therefore define

the reconstruction loss Lrec as the L1 pixel regression loss

between the source parsing map and the synthesized pars-

ing map when the target attribute is the same as the source

attribute. We consider the edge map reconstruction as a

pixel-level classification problem, following common prac-

tice in the edge detection domain [20, 23]. Most edge de-

tection works [20, 23, 1] take advantage of the weighted

cross-entropy to alleviate the class-imbalance problem in

edge prediction. However, weighted binary cross-entropy

leads to thick and coarse boundaries [5]. Following Deng et
al. [5], we use the dice loss [16] and binary cross-entropy

to optimize the edge map learning. The dice loss mea-

sures the overlap between predictions and ground truths,

and is insensitive to the number of foreground/background

pixels, thus alleviating the class-imbalance problem. Our

edge reconstruction loss Ledge is formulated as Ledge =
LDice(ê

a, ea) + LBCE(ê
a, ea).

where êa ∈H×W denotes the predicted edge and

ea ∈H×W denotes the edge ground truth. where i denotes

the i-th pixel and ε is a smooth term to avoid zero division

(set to ε = 1 in this paper).

Second, when the target attributes are different from the

source ones, we do not posses the ground truth for the edit-

ing result anymore. Therefore, we employ an adversarial

loss to help the network generating realistic parsing and

edge maps results. Specifically, our adversarial loss LDP
adv

and LGP
adv

to train DP
adv and GP , respectively, are imple-

mented following the Wasserstein GAN (WGAN) [3] and

WGAN-GP [7] works. The adversarial loss is applied to the

concatenation of the synthesized parsing and edge maps.

Third, we actively leverage the attribute manipulation

loss to enforce that the synthesized parsing map correctly

possess the desired target attribute, despite the lack of

ground truth. For this reason, we introduce the attribute

classifier DP
att. DP

att and GP are jointly trained together

through the attribute manipulation loss LDP
att

and LGP
att

.

The attribute manipulation loss is applied on the concatena-

tion of the synthesized parsing and edge maps.
In summary, the objective to train the discriminator DP

can be formulated as minDP LDP = −LDP
adv

+ λ1LDP
att

,

and that for the generator GP as:

min
GP

LGP = −LGP
adv

+ λ2LGP
att

+ λ3Lrec + λ4Ledge, (1)

where λ1, λ2, λ3, λ4 are set to 1, 10, 100, 100 respectively.

3.3. Appearance Completion Network

After the shape editing operation, the difference between

the source and the shape-edited parsing map specifies the

attribute-relevant regions of the source image. The goal of

our appearance completion network is to inpaint the pixels

in these specific regions. The architecture of the proposed

appearance completion network is illustrated in Figure 2-

second row. It is composed of two main components: a gen-

erator GI and an attribute classifier DI . For the generator,

we use a simple encoder-decoder network. We replace all

vanilla convolutions with gated convolutions, which have

been proven effective on image inpainting tasks [21, 22].

The attribute classifier consists of five convolution layers

and two fully-connected layers; given an image, its role is

to predict the associated attribute vector.

The input to GI is the concatenation of the target parsing

map x, the inpainting mask M , and the incomplete RGB

image I ′ = I � (1−M), where I denotes the ground truth

image. GI performs inpainting under the guidance of the

input parsing map, as GI(x,M, I ′) = Î .

Training. The goal of our appearance completion net-

work is to inpaint the cloth shape difference regions in the

final image caused by the attribute edit task, so that the in-

painted regions are semantically aligned with the synthe-

sized parsing map generated at inference time. Typical

training approaches of classical inpainting works [21, 22,

13] are not directly applicable in this context for two rea-

sons. First, they train with random masks, e.g., free-form,

rectangle, scribbles, which are very different from the arti-

facts introduced by fashion attribute editing (see Mdiff in

Figure 2). Second, inpainting operations are learned to fill

the mask regions with anything plausible, while our goal is

to teach the network to inpaint while respecting the input

semantic parsing map.
We therefore automatically generate masks on-the-fly to

resembles the cloth shape difference generated at inference
time, and use them during training. In addition, to produce
better inpainting results, we introduce an attribute classifier
DI . DI and GI are jointly trained through the attribute
classification loss LDI

att
and LGI

att
. The objective to train

the discriminator DI is formulated as minDI LDI = LDI
att

,

and that for the generator GI is:

min
GI

LGI = γ1Lrecon + γ2Lhole + γ3LGI
att

, (2)

where γ1, γ2, and γ3 are set to 1, 5, and 1 respectively.

Lrecon is calculated as the L1 and SSIM losses between

the synthesized image Î and the ground truth image I . Lhole

is the masked loss between M � Î and M � I .

4. Experiments
In this section, we evaluate our VPTNet both quantita-

tively and qualitatively. For comparison, we select AM-

GAN and Fashion-AttGAN, two state-of-the-art methods

in the fashion attribute editing task [2, 17], and STGAN

and AttGAN, two state-of-the art methods in the face at-

tribute editing task [14, 10]. Following Ak et al. [2], we

evaluate our VPTNet for fashion attribute editing on the

DeepFashion-Synthesis dataset [27], a refined version of
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AttGAN
Fashion-

AttGAN
STGAN AMGAN VPTNet

VPTNet

w/o A

VPTNet

w/o E

VPTNet

w/o F

VPTNet

w/o C

Sleeve↑ 76.63 79.54 78.06 81.66 85.71 83.35 82.29 83.76 82.83

Length↑ 75.05 76.74 82.41 82.05 85.90 82.57 82.42 83.65 82.23

Avg↑ 75.84 78.14 80.24 81.86 85.81 82.96 82.36 83.71 82.53

Table 1: Evaluation of attribute editing accuracy. We train a classifier to predict the attribute of a fashion image. Higher values indicate

that the attribute editing task has been successful. Our VPTNet approach consistently outperforms the other methods.

AttGAN
Fashion-

AttGAN
STGAN AMGAN VPTNet

VPTNet

w/o A

VPTNet

w/o E

VPTNet

w/o F

VPTNet

w/o C

L1 ↓ 0.0477 0.0433 0.0228 0.0222 0.0039 0.0047 0.0101 0.00529 0.0045

PSNR↑ 23.5324 24.0409 29.9748 30.5343 32.2967 31.4136 29.6751 30.7484 31.8406

SSIM↑ 0.8591 0.8695 0.9424 0.9410 0.9862 0.9835 0.9624 0.9816 0.9760

Table 2: Evaluation of image reconstruction quality. We keep the same target attribute as the source one to evaluate the reconstruction

capabilities of our method. VPTNet is able to retain the highest level of fidelity.

the DeepFashion dataset [15], consisting of 78,979 images.

We perform editing on two fashion attributes: sleeve length

(long, short, sleeveless) and cloth length. To enable the lat-

ter, we automatically create additional pseudo-labels in the

DeepFashion-Synthesis dataset for the length of the upper-

cloth, i.e., tops and dresses, by calculating the ratio between

the uppercloth channel of the parsing map and the shorts

plus legs channels (labels will be made public upon publica-

tion). The cloth length attribute consists of five values rang-

ing from short to long. All images are resized to 128x128;

we use the original train and test sets of the DeepFashion-

Synthesis dataset (70,000 and 8,979 images, respectively).

4.1. Quantitative Experiments

We evaluate the performance of our attribute editing ap-

proach regarding two aspects, i.e., attribute editing accuracy

and final image overall quality.

Attribute editing accuracy. To measure the attribute edit-

ing accuracy, we use the classification accuracy score of

an attribute classifier, which allows us to evaluate if the at-

tribute manipulation is successfully applied to the original

image. Following Ak et al. [2], we train a ResNet-50 archi-

tecture [9] with cross-entropy loss as attribute classifier. We

report the classification accuracy results in Table 1, where

higher values indicate that the attribute has been success-

fully modified in the final image. Our VPTNet achieves the

best performance against the other methods for both sleeve

and cloth length attribute manipulation. We also investigate

the impact of the different components of VPTNet by re-

moving each one at the time: TRL module, edge branch,

parsing-edge fusion of the shape editing network, and clas-

sification loss of the appearance completion network. Re-

moving the TRL module from the shape editing network

(VPTNet w/o A in Table 1) has a strong impact on the per-

formance of the cloth length editing task, which indicates

that the proposed TRL module can help manipulating larger

shape attributes. Removing the edge branch (VPTNet w/o

E) leads to the highest performance drop in the sleeve ma-

nipulation task. This shows the importance of the infor-

Attribute generation↑ Image quality↑
Sleeve Length Avg Sleeve Length Avg

VPTNet (ours) 67.9 71.7 69.8 58.5 78.1 68.3
AMGAN 9.2 12.4 10.8 20.5 5.2 12.9

STGAN 3.9 5.8 4.9 14.8 5.8 10.3

F-AttGAN 14.9 7.0 11.0 4.3 7.0 5.7

AttGAN 4.1 3.1 3.6 1.9 3.9 2.9

Table 3: User study results (63 participants). VPTNet outper-

forms all other methods in the human perspective evaluation.

mation provided by the edge map to perform high-quality

attribute editing. Lastly, removing either the parsing-edge

fusion (VPTNet w/o F) or the classification loss from the

appearance completion network (VPTNet w/o C) produces

slight performance decreases in both editing tasks, albeit

more limited than in the previous cases. Overall, when all

the improvements are enabled, our VPTNet is able to in-

crease the classification accuracy by almost 4% when com-

pared to the second-best method (AMGAN in Table 1).

Image quality. To evaluate the final image quality pro-

duced by VPTNet, we keep the same target attribute vector

as the source image, and compute the L1, PSNR, and SSIM

reconstruction results (Table 2). Our VPTNet achieves the

best reconstruction performance on all metrics. Particularly,

VPTNet outperforms the other state-of-the-art methods by

a large margin in terms of L1 loss, since VPTNet directly

re-uses the source pixels in the regions of the original im-

age that are irrelevant for the target attribute manipulation.

In terms of ablative effects, we observe that removing the

edge branch leads to the most performance degradation in

all metrics, which is consistent with the results in Table

1. Similar trends can be found for the other components,

which confirms that each of the proposed improvements has

a positive impact on the final image quality as well as on the

attribute editing accuracy.

User Study. In order to confirm the objective benefits of our

VPTNet, we perform a user study to evaluate the attribute

editing accuracy and image quality from a human perspec-

tive, for both the sleeve and length attribute manipulation

tasks. 63 people were involved in the study; each partici-
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Figure 3: Visualization of the effect of the TRL attention module and edge branch.

Source VPTNet AMGAN STGAN F-AttGAN AttGAN

(a) Sleeve: sleeveless long sleeve 

(b) Sleeve: long sleeve short sleeve 

(c) Length: short long 

(d) Length: long short 

Figure 4: Comparison results on attribute manipulation on asym-

metric poses (b, c) and large shape operations (c, d).

pant was asked to answer 21 questions, each composed of

2 sub-questions (total 21 × 2 = 42). We randomly sam-

ple 21 corresponding source images that are manipulated

by a target attribute of sleeve (10 images) and uppercloth-

length (11 images). We shuffle the results of compared

methods [2, 14, 10, 17] and ours.

In each question, participants were given a pair of source

images and edited results from the test set, obtained from all

compared methods. First, participants were asked to iden-

tify the image presenting the highest visual quality and pre-
serving the identity and fine details of the source image, re-

gardless of how successful the target attribute manipulation

was. Second, participants had to evaluate the image with the

most successful attribute edit manipulation. The responses

on the faithfulness and visual quality are separately sum-

marized in Table 3. Each element in ‘Sleeve’ (or ‘Length’)

column is calculated by averaging the scores over 10 (or

11) image tuples and over 63 participants. The ‘Avg’ col-

umn is the average of the previous two columns. Our VPT-

Net again achieves the best performance, both from an im-

age quality and attribute manipulation perspective, for both

sleeve and cloth length editing tasks. Particularly, these re-

sults confirm that VPTNet is superior in altering the tar-

get attribute editing without altering the source image iden-

tity and details. Moreover, our VPTNet greatly outperforms

competing methods in the cloth length editing task, which

confirms that our approach can produce convincing results

even when the manipulation requires larger shape changes,

as opposed to the other methods that often fail in this case.

4.2. Qualitative Experiments

Impact of Edge-preserving constraints. in Figure 3, We

first present the effectiveness of two main components of

VPTNet: the TRL module and the edge branch. As pre-

sented in Section 3, we propose the TRL module to better

localize the semantic and spatial regions where to perform

the attribute manipulation. Figure 3-(a, c) clearly shows

that the attention mechanism leads to improved parsing map

synthesis quality.

Impact of Target Region Localization (TRL). The sec-

ond column in the figure shows a visualization of the TRL

spatial attention when the target manipulation is to change

the short sleeve into long sleeve and sleeveless, respectively.

We can observe that our TRL module accurately attend to
the target region around the arms. In Figure 3-(b, c), we

present the editing results without and with the edge branch.

Adding the edge branch allows VPTNet to synthesize more

precise parsing maps, especially around the boundary re-

gions.

Comparison with other methods. We also present a com-

parison in Figure 4 on four representative attribute ma-
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Source Sleeve Length

VPTNet

AMGAN

STGAN

F-AttGAN

AttGAN

Figure 5: Comparison results on attribute manipulation with
one source. VPTNet outperforms all the other benchmarking

methods, resulting in high-quality realistic images.

nipulation tasks: long-to-short sleeve (and vice-versa) and

long-to-short cloth length (and vice-versa) changes. VPT-

Net achieves precise attribute manipulation and shows the

best results overall. We notice that even when the required

shape change is small (e.g., sleeve changes as in Figure 4-

(a, b)), AMGAN and STGAN generate sleeves with unclear

boundaries (hands region) and inconsistencies (shoulders

region). The VPTNet is able to generate realistic-looking

sleeves. When the human subject presents a highly asym-

metric pose (Figure 4-(b)), the other benchmarking methods

fail to accurately synthesize a realistic image. Moreover, we

can notice how Fashion-AttGAN and AttGAN fail retain-

ing several fine-grained details of the source image (arms,

skirt color, face details etc.). For the cloth length editing

task (Figure 4-(c, d)), all the other methods fail to localize

the regions to be edited and show severe artifacts. On the

other hand, VPTNet is able to successfully modify the cloth

length producing high-quality, realistic results. This con-

firms that our VPTNet can provide superior results in the

shape attribute editing, even for asymmetric poses ((b) and

(c)) and challenging tasks that require multiple regions to

be edited, as in the cloth length manipulation ((c) and (d)).

We also evaluate on all attributes manipulation with a

challenging asymmetric pose (Figure 5). In the sleeve edit-

ing task, AMGAN and STGAN only generate the silhou-

ette or an incomplete sleeve. Also, while editing the cloth

Figure 6: Editing of more shape attributes, and multiple at-
tributes. Our VPTNet can manipulate more (width of hemline

and waist) and multiple attributes (sleeve and cloth length) at the

same time.

length, Fashion-AttGAN and AttGAN alter the neckline re-

gion, which should remain unchanged. Moreover, all the

benchmarking methods leave visible artifacts of the origi-

nal cloth. This behavior is due to the difficult nature of the

cloth length editing, which involves editing multiple parts

at the same time: uppercloth, bottomcloth and legs. Even

though AMGAN employs a similar attention mechanism as

VPTNet to localize the target region to manipulate, it di-

rectly operates on the RGB pixels, which can cause sub-

optimal results when dealing with large edits and/or chal-

lenging poses, as in Figure 5. On the other hand, our VPT-

Net is able to successfully perform the target attribute ma-

nipulation in all cases, while maintaining the source image

details that should remain unchanged.

Multiple attribute editing. The VPTNet can work on sev-

eral other shape attributes: width of hemline and waist. We

show the results in Figure 6 - (a). This confirms the ap-

plicability of VPTNet on a wide range of shape attributes.

Also, the VPTNet can also successfully perform multiple

attributes editing operations (sleeve and cloth length) at the

same time, as shown in Figure 6 - (b).

5. Conclusion

We presented VPTNet, a two-stage framework for high-

quality fashion attribute editing. First, a shape editing net-

work modifies the source parsing map with respect to the

queried attribute. Second, an appearance completion net-

work completes the pixels on the modified regions. The

VPTNet enables complex editing operations with large

shape changes while retaining the identity the original

wearer. Extensive quantitative and qualitative experiments

confirm that our VPTNet is able to provide higher quality

attribute editing results compared to several state-of-the-art

methods [10, 17, 14, 2].
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