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Abstract

Few-shot semantic segmentation addresses the learning
task in which only few images with ground truth pixel-level
labels are available for the novel classes of interest. One
is typically required to collect a large mount of data (i.e.,
base classes) with such ground truth information, followed
by meta-learning strategies to address the above learning
task. When only image-level semantic labels can be ob-
served during both training and testing, it is considered
as an even more challenging task of weakly supervised
few-shot semantic segmentation. To address this problem,
we propose a novel meta-learning framework, which pre-
dicts pseudo pixel-level segmentation masks from a limited
amount of data and their semantic labels. More impor-
tantly, our learning scheme further exploits the produced
pixel-level information for query image inputs with segmen-
tation guarantees. Thus, our proposed learning model can
be viewed as a pixel-level meta-learner. Through exten-
sive experiments on benchmark datasets, we show that our
model achieves satisfactory performances under fully su-
pervised settings, yet performs favorably against state-of-
the-art methods under weakly supervised settings.

1. Introduction

Recent advances in deep convolutional neural networks
(CNNs) [19] have significantly improved the performances
of several computer vision tasks. Among them, semantic
segmentation aims at predicting class labels for each pixel in
an image, with applications ranging from autonomous driv-
ing to medical imaging. With the help of CNNs, state-of-
the-art semantic segmentation models including FCN [25],
SegNet [1] and DeepLabs [5, 6, 7, 8] have all achieved very
promising results and been successfully applied to the above
applications. However, these models are generally trained
in a fully supervised manner, requiring a huge amount of
training data with pixel-level annotation for each category
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Figure 1: Illustration of weakly supervised few-shot seg-
mentation. With only semantic labels but not pixel-level
masks observed during few-shot training and testing, se-
mantic segmentation of particular image categories can be
achieved. Note that a 2-way 3-shot scheme is depicted.

of interest. This substantially limits the scalability and prac-
ticality of these models, as collecting densely labeled data
would be very time-consuming.

Extended from the learning task of semantic segmen-
tation and few-shot learning, few-shot semantic segmenta-
tion considers a more challenging setting in which only a
few images are with ground-truth pixel-level labels for the
(novel) classes of interest. In order to realize the learning of
few-shot segmentation models, existing methods typically
adopt meta-learning schemes [13, 30, 34], utilizing support
and query images sampled from base categories (i.e., those
with a sufficient amount of training data) for performing
pixel-wise classification. Recent methods like AMP [38],
PANet [46], FWB [27], PFENet [42] and ASGNet [20]
choose to extract prototypes from support-set images us-
ing their ground truth masks, and expect such prototypes to
sufficiently describe the associated semantic category. Nev-
ertheless, these existing methods require pixel-level ground
truth labels for each image of the base categories, and can-
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not be easily extended to weakly supervised settings.
In order to alleviate the requirement of annotating pixel-

level ground truth label information, we consider an even
more challenging yet practical setting of weakly supervised
few-shot segmentation, which requires only image-level la-
bels collected for images in both base and novel categories,
as depicted in Figure 1. As shown in the figure, we aim at
inferring pixel-level labels from image-level labels in few-
shot settings, followed by a meta-learning scheme enforced
at pixel-level for segmentation purposes.

With this goal in mind, we propose a novel learning
scheme in this paper, focusing on deriving a pixel-level
meta learner for weakly supervised few-shot semantic seg-
mentation. During the meta-training stage, our proposed
learning framework observes only image-level labels and
utilizes Classification Activation Maps (CAM) [59, 35] for
prediction of pseudo pixel-level labels for each input im-
age. While the class label embedding [2, 26] is exploited to
bridge the gap between image and pixel-level information,
our proposed method does not encounter any information
leak since the class labels of both base and novel categories
are not present in those of CAM.

Under the guidance of the produced pseudo pixel-level
labels, we uniquely reinterpret the original problem as a
pixel-wise few-shot classification task. That is, we view
each pixel in support/query set images as individual sam-
ples, and turn the proposed model into a pixel-level meta
learner for few-shot semantic segmentation. As confirmed
later by our experiments, our model not only achieves sat-
isfactory performances on standard fully supervised few-
shot semantic segmentation tasks, it would perform favor-
ably against several state-of-the-art approaches on bench-
mark datasets under weakly supervised settings.

The contributions of this work are summarized below:

• We address weakly supervised few-shot semantic seg-
mentation, which requires only image-level labels dur-
ing both training and testing.

• We bridge the gap between image and pixel-level la-
bels using classification activation maps with no infor-
mation leak, which allows prediction of pseudo pixel-
level labels in weakly supervised settings.

• We uniquely design a pixel-level meta learner which
enforces segmentation consistency across support and
query set images during few-shot semantic segmenta-
tion. The proposed model can be realized in both fully
supervised and weakly supervised settings.

2. Related Works
Semantic Segmentation. The task of semantic segmenta-
tion aims at performing pixel-level classification for each

image. Most recent methods involve the use of deep
convolutional neural networks (e.g., FCN [25]). Follow-
ing works include SegNet [1], PSPNet [58], U-Net [32],
DeepLabs [5, 6, 7, 8] and FastFCN [47]. A notable im-
provement is achieved by embedding features that contain
multi-scale context information by applying dilated convo-
lution [53, 5] or spatial pyramid pooling [58, 6]. These
methods, however, are trained in a fully supervised man-
ner and require a huge amount of pixel-level labels, which
are time-consuming and laborious to obtain.

Weakly Supervised Semantic Segmentation. To allevi-
ate the need for densely annotated ground truth data, some
recent works address semantic segmentation in weak su-
pervision, which utilize multiple-instance learning [43, 44],
graph [55, 49, 28] and self-training based [50, 51, 56, 48]
techniques. However, such weakly supervised methods can-
not be easily extended to few-data or open-set scenarios.

Few-Shot Semantic Segmentation. Few-shot learning
aims at learning models which would generalize to cat-
egories with only a limited amount of labeled data [12,
11]. Meta-learning [13, 30, 34] has been widely applied
for this task, with the core idea of adapting the learning
scheme from base to novel categories. For example, metric-
based meta-learning algorithms such as ProtoNet [40] and
RN [41] learn feature embeddings that exhibit proper dis-
tance metrics for classification and generalization. Few-shot
semantic segmentation, on the other hand, aims at gener-
alizing the ability of pixel-level classification across cat-
egories, while only a limited number of images are with
ground truth pixel-level labels. OSLSM [36] is the first pro-
posed method to tackle this problem, leveraging informa-
tion learned from support-set images and outputs parame-
ters for query image segmentation. PL [9] adopts metric
learning methods [40] to extract prototypes of each seman-
tic class, and measures their distances between feature maps
of query images; CANet [54] adds an iterative optimization
module to refine the predicted results; PFENet [42] gener-
ates additional prior masks to enrich the extracted features.

Moreover, PANet [46], FWB [27] and CRNet [23] pro-
pose to further leverage information from the support set
by performing segmentation in the reversed direction (i.e.,
segmentation of the support set) for improved model learn-
ing. To exploit knowledge from the foreground objects,
DAN [45] and SimPropNet [14] introduce attention mecha-
nisms, PMMs [52] and ASGNet [20] employ multiple pro-
totypes for a single category, and PPNet [24] proposes part-
aware prototypes to capture fine-grained features. While
some of the existing few-shot semantic segmentation meth-
ods present results in weak supervision settings (e.g., use of
bounding boxes or scribbles [29, 46, 54] as guidance), they
cannot produce satisfactory performance with only image-
level annotation observed. More recently, [31, 4, 37] follow
the few-shot setting using image-level supervision, but they
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Figure 2: Comparisons of different few-shot semantic segmentation schemes. (a) Fully Supervised [38, 46, 54, 27, 42]: M
required in meta-training and meta-testing; (b) Loosely Weakly Supervised [37]: both M and c available during meta-training,
while only c observed in meta-testing; (c) Weakly Supervised: only image-level labels c available in both phases.

Method Weak Supervision Few-Shot Setting
DeepLab [5] - -
EDAM [48] ✓ -
PFENet [42] - ✓
Co-att [37] △ ✓

Ours ✓ ✓

Table 1: Comparisons of different semantic segmentation
methods. Existing methods cope with either weak supervi-
sion or few-shot settings, while ours combine both. Note
that [37] still requires full supervision during training, as
detailed in Figure 2(b).

still require collection of ground truth pixel-level masks
for base-class images during meta-training. As depicted
in Figure 2 and Table 1, to the best of our knowledge, we
are the first to tackle few-shot semantic segmentation us-
ing only image-level annotations during both (meta) train-
ing and testing stages.

3. Proposed Method
3.1. Notation and Problem Formulation

For the sake of completeness, we define the notations
which will be used in this paper. The semantic classes
are denoted as C, which are split into two disjoint sub-
sets: base categories Cbase and novel categories Cnovel (i.e.,
Cbase ∪ Cnovel = C and Cbase ∩ Cnovel = ∅). Note that the
novel categories are with only a few samples available dur-
ing training (typically less than 5 per class). For each in-

put RGB image I ∈ RH×W×3, we denote its image-level
labels as c ⊆ C, and the associated ground truth pixel-
level semantic mask as M ∈ {c ∪ 0·}H×W , where 0· in-
dicates the background pixels. For each training episode,
we sample a support/query pair from the image dataset
Dtrain = {(Sj , Qj)}ntrain

j=1 that contain the same set of base
categories, while the testing episodes consist of those from
Cnovel (i.e., Dtest = {(Sj , Qj)}ntest

j=1).
In standard fully supervised N -way K-shot settings,

each support set Sj = {(Isi ,Ms
i )}

N×K
i=1 contains N ×

K image/label example pairs (K pairs from each of N
categories), and the query sets are denoted as Qj =
{(Iqi ,M

q
i )}

nq

i=1 where nq is the number of query images in
a single episode. As for the weakly supervised setting con-
sidered in this work, only image-level labels are available
during training and testing, so that support/query sets are
denoted as Sj = {(Isi , csi )}

N×K
i=1 and Qj = {(Iqi , c

q
i )}

nq

i=1,
respectively. Our proposed weakly supervised learning
framework is able to produce pseudo masks of each image
given only its class label (as depicted in Figure 3), followed
by our pixel-level meta-learner for few-shot semantic seg-
mentation (see Figure 4 for the complete framework).

3.2. Pixel-Level Pseudo Label Generation

In the weakly supervised scenario, only the class labels
are available for the image data during both training and
inference. Thus, we first present a module that is able to
generate pseudo pixel-level semantic masks, guiding the
following segmentation process. As shown in Figure 3,
this pseudo pixel-level label generation can be viewed as
the process of semantics-oriented heatmap extraction. As
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Figure 3: Illustration of pixel-level pseudo label generation. Given an input I and its image-level label c, the CAM module
extracts heatmaps T for each training class ck of CAM (not in Cbase nor Cnovel). w denotes the visual similarity for the heatmap
of each CAM category, which is measured by the distance between the word embeddings of the associated class labels. The
output heatmap T is converted into the pseudo mask M̃ for I via saliency gating. Note that π represents the word embedding
function.

adopted in previous works like [18], Classification Activa-
tion Maps (CAM) [59] have been utilized to localize dis-
criminative regions in images that are informative in classi-
fying image-level labels. In order to produce the heatmap
for the input image I as its pseudo pixel-level labels, we
follow [46, 54] and apply a VGG-16 [39] network as our
CAM backbone. It is worth noting that, the CAM back-
bone is pre-trained on a reduced subset of ImageNet [33],
in which the images do not belong to either the base or novel
categories in our segmentation task. This would minimize
possible leakage of semantic information.

With CAM obtained, we extract per-class heatmaps T of
the input image I:

CAM(I) = T = [T1, T2, . . . , TNCAM ], (1)

where Tk ∈ [0, 1]H×W denotes the heatmap of the k-th
image class in CAM, whereas NCAM is the total number of
pre-training image categories.

With the above per-class heatmaps observed, we next
leverage the word embedding features of each class label
as intermediate representations, with the associated similar-
ity indicating the weight for each of the NCAM categories.
More specifically, as depicted in Figure 3, we extract word
embedding features of each class label in CAM and that of
the input image. We perform pairwise comparisons between
these features to obtain weighting factors wk for each CAM
category ck:

wk = d(π(c), π(ck))
−1, (2)

where π(·) represents the word embedding function. We
note that d(·, ·) denotes the distance metric, and we use con-
sine similarity in our work. Thus, categories that are se-
mantically similar with each other (e.g., goat/sheep) would

result in a higher weight, and vice versa for those that are
dissimilar (e.g., goat/tree). As a result, a weighted heatmap
T can be obtained by averaging the above NCAM heatmaps,
which is calculated as

T = w ·T⊤ =

NCAM∑
k=1

wkTk. (3)

As the CAM heatmaps identify only regions that are
helpful in terms of classification, more detailed structural
information such as edges and boundaries would not be well
described. To this end, we impose a class-agnostic saliency
map on the weighted heatmap as a gating mechanism, al-
leviating the presence of false-positive pixels in the gener-
ated pseudo labels. Here we note that, to comply with our
weakly supervised setting, the saliency maps are obtained
via a network pre-trained with only foreground/background
information without any categorical supervision. In other
words, minimized leakage of semantic information is also
enforced at this stage.

3.3. Pixel-Level Meta-Learner for Few-Shot Seman-
tic Segmentation

We now detail our proposed meta-learning scheme for
few-shot semantic segmentation. Under the guidance of
CAM, the pseudo pixel-level labels obtained in Section 3.2
tend to contain only partial discriminative areas, and may
not sufficiently cover the entire foreground object. In order
to learn few-shot segmentation models with only such infor-
mation from pseudo labels, we present a unique pixel-level
meta-learning framework, as illustrated in Figure 4. In our
pixel-level meta-learner, we utilize DeepLabv3+ [8] as the
feature extractor, together with the introduced pseudo label
generation and learning modules for pixel-wise classifica-
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Figure 4: Architecture of our pixel-level meta-learner for weakly supervised segmentation. During (meta) training,
DeepLabv3+ extracts pixel-wise feature maps F s and F q for support and query inputs, with the produced pseudo pixel-
level labels M̃s and M̃q , respectively. Our meta-learner encoder E transforms the above F into a latent space, in which
the pixel-level prototypical loss Lmeta can be calculated based on M̃ for segmentation purposes. During inference (i.e.,
meta-testing), segmentation M̂q for the query can be performed by pixel-wise k-NN classification using F s and M̃s.

tion. It is worth noting that, the DeepLabv3+ is pre-trained
on categories not appeared in C, and this module remains
fixed throughout the meta-learning process. In other words,
no semantic information is leaked from its training stage.
By removing the final classification layers of DeepLabv3+,
we obtain a pixel-wise feature map F s ∈ RH×W×d from
the support image Is, where (H,W ) is the original image
dimension and d is the feature channel size.

Next, we label each spatial location in F s using the gen-
erated support pseudo mask M̃s. By randomly sampling
a fixed number of pixels from each background/foreground
category, the resulting pixel-wise features are then collected
into a set of support pixel features. It is worth noting that,
we choose not to use all the labeled pixel features. This
is not only because that such pseudo labels might not match
the ground truth ones (although not available), this sampling
mechanism also makes the meta-learning process more ro-
bust against weak labels.

Likewise, a pixel-wise feature map F q ∈ RH×W×d

of the query image Iq is also obtained via the same
DeepLabv3+ feature extractor, resulting in a total of H×W
d-dimensional query pixel features. All support and query
pixel features are then jointly embedded into a latent space
via the learnable encoder E. With the support pixel features

and pseudo labels obtained, we define the prototypes pc for
each associated category c ∈ {cs ∪ 0·} as

pc =

∑
l E(F s

l )1[M̃
s
l = c]∑

l 1[M̃
s
l = c]

, (4)

where l iterates over each pixel, and 1[·] is an indicator
function which only outputs 1 when the condition holds.

Inspired by [40, 9, 42], we advance the prototypical
loss Lmeta as the objective during the meta-training stage,
which is calculated by accumulating the distance between
each query pixel (with pseudo labels) and its corresponding
pixel-level prototype from the support sets:

Lmeta = −
∑

c

∑
l exp(−d(E(F q

l ), pc))1[M̃
q
l = c]∑

c

∑
l 1[M̃

q
l = c]

. (5)

During inference (i.e., meta-testing), the labels of the
embedded query pixel features are determined by perform-
ing pixel-wise k-nearest neighbors classification, as de-
picted by the blue dotted arrows in Figure 4. The final pre-
dicted query semantic mask M̂q is then compared with the
ground truth Mq for performance evaluation.
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(fully sup. / weakly sup.) 1-shot 5-shot

Method Backbone Split-0 Split-1 Split-2 Split-3 Mean ∆ Mean ∆

1-way
Co-att [37] VGG-16 49.5 65.5 50.0 49.2 53.5 — 51.7 —
AMP [38] VGG-16 41.9 / 10.6 50.2 / 14.1 46.7 / 7.6 34.7 / 10.9 43.4 / 10.8 32.6 46.9 / 14.7 32.2
PANet [46] VGG-16 42.3 / 25.7 58.0 / 33.4 51.1 / 28.8 41.2 / 20.7 48.1 / 27.1 21.0 55.7 / 37.7 18.0

PFENet [42] ResNet-50 61.7 / 33.4 69.5 / 42.5 55.4 / 43.6 56.3 / 39.9 60.8 / 39.9 20.9 61.9 / 44.8 17.1
Ours VGG-16 38.3 / 36.5 57.6 / 51.7 54.0 / 45.9 40.1 / 35.6 47.5 / 42.4 5.1 50.6 / 45.5 5.1

2-way
PANet [46] VGG-16 45.1† / 24.5 45.1† / 33.6 45.1† / 26.3 45.1† / 20.3 45.1 / 26.2 18.9 53.1 / 36.6 16.5

Ours VGG-16 36.5 / 31.5 51.8 / 46.7 48.5 / 41.4 38.9 / 31.2 43.9 / 37.7 6.2 49.3 / 43.0 6.3

(a) PASCAL-5i

(fully sup. / weakly sup.) 1-shot 5-shot

Method Backbone Split-0 Split-1 Split-2 Split-3 Mean ∆ Mean ∆

1-way
PANet [46] VGG-16 20.9† / 12.7 20.9† / 8.7 20.9† / 5.9 20.9† / 4.8 20.9 / 8.0 12.9 29.7 / 13.9 15.8

Ours VGG-16 26.0 / 24.2 14.5 / 12.9 20.0 / 17.0 18.3 / 14.0 19.7 / 17.0 2.7 27.0 / 17.5 9.5
2-way
Ours VGG-16 18.2 / 17.4 12.2 / 9.5 9.1 / 10.4 6.5 / 7.1 11.5 / 11.1 0.4 14.8 / 11.9 2.9

(b) MS COCO

Table 2: Performance evaluation on (a) PASCAL-5i and (b) MS COCO in terms of mean-IoU (Mean) and performance
difference ∆ due to change of settings. The numbers before and after ‘/’ indicate results under fully and weakly supervised
settings, respectively. Note that [37] considers a loosely weakly supervised setting and requires ground truth pixel-level
masks during training, while [42] utilizes a stronger backbone (ResNet-50) compared to others (VGG-16).

4. Experiments

Datasets. We follow the evaluation protocol in [36] and
conduct experiments on the PASCAL-5i dataset. It con-
tains a total of 20 object categories from the PASCAL VOC
2012 [10] and the extended SDS [15] datasets, which are
evenly divided into 4 splits (i = 0, 1, 2, 3). Additionally, we
consider the MS COCO 2014 [21] dataset, which contains
80 object categories and thus is more challenging. Follow-
ing the settings of [46], we divide MS COCO into 4 splits
with 20 categories each. For both datasets, three of the splits
are used as base (training) classes, with the remaining one
as novel (testing) classes in each experiment.
Evaluation Metrics. We follow [36, 57, 46, 54, 27] and
apply the mean intersection over union (mean-IoU) as the
evaluation metric, which computes separate IoUs for each
foreground category, and then averages them along with the
background class. Following the protocol in [46], the mean-
IoU in each evaluation is calculated by the average of 5 runs,
with each run randomly sampling 1,000 episodes from the
testing set.
Implementation Details. In our experiments, all images
are normalized and reshaped to 129 × 129 pixels. For
pseudo pixel-level label generation, we choose the VGG-
16 [39] network as the CAM backbone, with weights pre-
trained over a reduced subset of ILSVRC 2012 [33] with

†Split-wise results not reported in the original paper.

categories in Cbase and Cnovel removed. For semantic la-
bels, we use the word embedding vectors pre-trained on
Wikipedia using fastText [3]. We apply DSS [16] to extract
saliency maps for the gating mechanism in Fig. 3, which is
a model pre-trained over MSRA-B [22] without categorical
supervision.

For the segmentation model, we use a DeepLabv3+ [8]
pre-trained over irrelevant categories, which remains fixed
throughout the meta-learning process. The encoder E is a
multilayer perceptron with two hidden layers, and the out-
put dimension (for the latent space) is set to 64. All ex-
periments are implemented by PyTorch, and are run using
a single NVIDIA Titan RTX graphics card with 24GB of
video memory.

4.1. Comparison with State-of-the-art Methods

Since no previous work was designed to address this
weakly supervised few-shot segmentation task, we choose
to implement modified versions of state-of-the-art super-
vised methods by replacing the ground truth masks for train-
ing with our generated pseudo labels (i.e., as introduced in
Section 3.2). As depicted in Figure 4, our proposed frame-
work can be trained in a fully supervised fashion (i.e., using
ground truth pixel-level masks during training). Thus, we
include this fully supervised version of our model as the
performance upper bounds. We compare our results mainly
with methods using the same backbone [37, 38, 46], with
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Figure 5: Example 1-way 1-shot segmentation results on PASCAL-5i. We have green, yellow and red pixels represent ground
truth pixel-level foreground labels, generated pseudo masks, and the predicted outputs, respectively. Note that our weakly
supervised setting does not observe ground truth pixel-level labels for the support set images (in dotted frames).

the exception of [42] for cross-backbone analysis.
PASCAL-5i. We first compare the performances of differ-
ent methods on PASCAL-5i, with results listed in Table 2a.
In the first row of this table, we consider a loosely weakly
supervised model of [37] (as illustrated in Figure 2b). For
other methods (including ours) in this table, we present
results under both fully and weakly supervised settings.
While our fully supervised model achieved comparable per-
formance with state-of-the-art methods in the standard 1-
way 1-shot setting, our model reported a significant im-
provement over PANet [46] by 15.3% (42.4% v.s. 27.1%)
in the weakly supervised setting. It is worth noting that
PFENet [42] is trained using a stronger backbone (ResNet-
50), while all other methods (including ours) utilize VGG-
16. Nevertheless, our model still outperforms [42] by a con-
siderable margin of 2.5% in the weakly supervised setting.
We also observe that the performance drop between the two
different settings of our model is significantly less than the
others. That is, when only image-level labels (instead of
ground truth pixel-level masks) are observed during both
training and testing, both PFENet [42] and PANet [46] suf-
fered from a >20% performance drop while only 5.1% was
reported by our model.
MS COCO. As shown in Table 2b, despite the increased
difficulty in few-shot segmentation on MS COCO, our

model is able to achieve satisfactory performances under
both fully and weakly supervised settings when compar-
ing to [46]. Specifically, we only observe a 2.7% perfor-
mance drop between the two settings on the 1-way 1-shot
task, while that of [46] is 12.9%. The above quantitative
results support the use of our propose framework for solv-
ing few-shot semantic segmentation, especially when only
image-level labels can be observed during both training and
testing (i.e., the weakly supervised setting).

Multi-way Segmentation. We now show that our model is
applicable to the cases when there is more than one fore-
ground object category in an image, which is more chal-
lenging since it requires more information to be learned
in each episode. In the lower parts of Table 2, we list
the performances of different methods under the 2-way set-
ting (i.e., two types of foreground objects exist in an im-
age). It is worth noting that, while most existing meth-
ods [36, 38, 54, 27, 17, 42] are designed to tackle only 1-
way segmentation, they typically claim such extension can
be realized by forward passing K times with additional de-
cision rules. On the contrary, our method can directly pro-
duce output labels of a multi-category image as the final
classification by a k-NN search. As shown in Table 2a, our
model performed favorably against previous methods by a
margin of 11.5% on the PASCAL-5i 2-way 1-shot task. To

2176



‘c
ha

ir
’

‘b
ot

tle
’

Ground Truth Ours PFENet

Figure 6: Example failure cases for our weakly supervised
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the best of our knowledge, we are the first to report results
of 2-way tasks for the MS COCO dataset, as shown in the
last row of Table 2b.

4.2. Analysis of Our Proposed Method

Ablation Study. As our meta-learning process is mainly
achieved by the episodic learning of encoder E, we now
design a baseline version such that it directly predicts the
output mask by a k-NN search on the pixel features encoded
by the DeepLabv3+ backbone (i.e., without embedding into
the latent space via E). As shown in the first row of Ta-
ble 3, the results were severely degraded with a drop of up
to 18%, if the model was not learned via the meta-learning
objectives. This further confirms that, the promising per-
formance achieved by our proposed method is not a direct
result of using particular strong backbones. Instead, it lever-
ages spatial and structural details captured by the backbone,
upon which semantic and category-wise information is re-
inforced via the meta-learning process.

Additionally, we provide results that are trained using
pseudo masks generated without saliency gating (as men-
tioned in the last step of Section 3.2). As shown in the sec-
ond row of Table 3, a slight decrease in mean-IoU (less than
5%) was observed, while still outperforming the baseline
version by a large margin. Thus, the use of saliency gat-
ing as the post-processing step for pseudo pixel-level masks
would be preferable but not critical.
Qualitative Analysis. For visual comparisons, we
present qualitative results of 1-way 1-shot segmentation on
PASCAL-5i dataset in Figure 5. As detailed in Section 3.1,
our model is realized in the weakly supervised setting and
does not observe ground truth masks of support images dur-
ing training (i.e., column 1 in Figure 5). Instead, given each
image and its image-level label (i.e., class name), we first
generate its pseudo mask, which serves as the guidance for
our meta-learning framework. As evident in column 2 of
Figure 5, our generated pseudo masks do not cover the en-
tire foreground object, but instead contain only discrimina-

Method 1-shot 5-shot

1-way 2-way 1-way 2-way
Ours w/o E 30.0 19.7 31.5 25.4

Ours w/o Saliency 41.0 35.4 42.1 39.4
Full Version 42.4 37.7 45.5 43.0

Table 3: Ablation study of our model on PASCAL-5i in
mean-IoUs. Ours w/o E denotes our framework without
meta-learner encoder E, while w/o Saliency indicates our
model without applying saliency gating to process the gen-
erated pseudo masks.

tive regions that are informative in classifying image-level
labels (e.g., muzzle of a horse, or wheels and pedals of a
motorcycle). Nevertheless, from this figure, we see that our
proposed model is able to predict masks for query images
with satisfactory performances (e.g., columns 4 and 6 in
Figure 5). It is also worth noting that no post processing
is performed on our predicted results.

From the split-wise mean-IoUs listed in Table 2, we see
that some data splits would generally suffer from perfor-
mance drops across different models including ours. In
Figure 6, we show failure segmentation example results
by our weakly supervised model and the fully supervised
PFENet [42]. As evident in this figure, the ground truth im-
ages of such categories generally contain small foreground
regions (e.g., bottle), or those that cannot be easily distin-
guished from the background (e.g., chair). For such image
categories, training with few-shot samples would not be ex-
pected to address semantic segmentation tasks well. This
would be the limitation of developing solutions for few-shot
semantic segmentation.

5. Conclusion

In this paper, we proposed a unique learning frame-
work for few-shot semantic segmentation in a weakly super-
vised manner, which only observes image-level labels dur-
ing both training and testing. Under such weak supervision,
our proposed model serves as a pixel-level meta-learner,
which produces pseudo segmentation masks for guiding
pixel-wise classification in a meta-learning fashion. Our ex-
periments confirmed the effectiveness of our model, which
achieved satisfactory results on two benchmark datasets un-
der fully supervised settings, while surpassing the state-of-
the-art methods in weakly supervised settings. Finally, we
point out the challenge and limitation of the task of few-shot
semantic segmentation.
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