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Abstract

As multiple modalities sometimes have a weak comple-
mentary relationship, multi-modal fusion is not always ben-
eficial for weakly supervised action localization. Hence, to
attain the adaptive multi-modal fusion, we propose a leaky
gated cross-attention mechanism. In our work, we take the
multi-stage cross-attention as the baseline fusion module to
obtain multi-modal features. Then, for the stages of each
modality, we design gates to decide the dependency on the
other modality. For each input frame, if two modalities
have a strong complementary relationship, the gate selects
the cross-attended feature, otherwise the non-attended fea-
ture. Also, the proposed gate allows the non-selected fea-
ture to escape through it with a small intensity, we call it
leaky gate. This leaky feature makes effective regulariza-
tion of the selected major feature. Therefore, our leaky gat-
ing makes cross-attention more adaptable and robust even
when the modalities have a weak complementary relation-
ship. The proposed leaky gated cross-attention provides a
modality fusion module that is generally compatible with
various temporal action localization methods. To show its
effectiveness, we do extensive experimental analysis and ap-
ply the proposed method to boost the performance of the
state-of-the-art methods on two benchmark datasets (Activ-
ityNet1.2 and THUMOS14).

1. Introduction
Temporal action localization has been an essential task

in computer vision with its great importance for diverse ap-
plications in video understanding. In a weakly-supervised
setting, when only video-level labels are available, most of
the expensive and time-consuming frame-level annotation
is avoided. Hence, a plenty of works [9, 13, 14, 19, 22–24,
26, 27, 34, 41] have studied the temporal action localization
task with weak supervision.

*Qualcomm AI Research is an initiative of Qualcomm Tech-
nologies, Inc.
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Figure 1. When one of the modalities is weak or dominated by the
background noise/clutter, it can contaminate the fused signal. (a)
Audio is clear but visual clutter affects the fusion. (b) Background
noise in audio signal deteriorates the fused representation com-
pared to only visual representation. Here, conditional to the input
sequence, gating the impact of modalities provides robustness to
these practical scenarios.

To address the challenging scenario, most of the existing
methods depend on fusion of RGB and optical flow fea-
tures, but the fusing strategies are rather simple like con-
catenation. These simple strategies are often insufficient
to capture and fuse complementary information of differ-
ent modalities. More recently, learning models from audio-
visual inputs is also explored [13,31,36,37] with a dedicated
fusion module. Nevertheless, there has been less effort to
collaboratively combine different modalities for this task.

Recently, Lee et al. [13] have developed the cross-
attention mechanism, and repeatedly applied it, in order to
enhance both audio and visual features from their comple-
mentary relationship. This results in a much improved fu-
sion by modeling the dependency of one modality on the
other. But what if one of the modalities is noisy or re-
strained? Modality that is weak or dominated by the back-
ground noise/clutter can potentially contaminate the fused
representation. This is illustrated in Figure 1(a) when audio
is clear but visual clutter affects the fusion, and Figure 1(b)
when background noise in audio deteriorates the fused rep-
resentation compared to only visual representation. Similar
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inconsistencies can sometimes occur in RGB and optical
flow fusion as well. For instance, appearance cues that are
also present outside the duration of action are better not re-
lied upon. Therefore, instead of indiscriminately integrating
information from multiple modalities, it is important to de-
cide how or when to integrate the multi-modal information
for accurate temporal action localization.

To attain the adaptive multi-modal fusion, we propose
a leaky gated cross-attention mechanism. In our work,
we take the multi-stage cross-attention [13] as the base-
line fusion module to obtain multi-modal features. For each
modality, we design multiple gates over the stages to decide
the dependency on the other modality. For each input frame,
if two modalities have strong complementary relationship,
the gate selects the cross-attended feature, otherwise the
non-attended feature. Also, the proposed gate allows the
non-selected feature to leak with a small intensity, hence the
name leaky gate. This leaky feature provides effective reg-
ularization by acting as noise signal to the selected feature.
We experimentally illustrate this. Our leaky gating provides
necessary flexibility to cross-attention to learn to limit the
impact of a modality when it is weak or unhelpful. Thus
making the leaky gated cross-attention more robust when
the modalities have weak complementary relationship.

The proposed leaky gated cross-attention provides a
modality fusion module with a key role of collaboratively
and adaptively fusing two modalities. Moreover, such fu-
sion module is generally compatible with various tempo-
ral action localization methods. To show its effectiveness,
we apply leaky gated cross-attention with four recent meth-
ods [13, 14, 19, 22] and boost the performance to beyond
state-of-the-art on two benchmark datasets (ActivityNet1.21

and THUMOS142). In summary, we make the following
contributions:

• We propose a leaky gated cross-attention that adap-
tively selects the better one between the cross-attended
and non-attended features.

• By marginally leaking the non-selected feature, the
leaky gating gives the regularization effect on the se-
lected feature.

• Detailed experimental analysis is done for each com-
ponent of the approach on two temporal action local-
ization datasets, where we achieve state-of-the-art per-
formance.

2. Related Work

Weakly-supervised action localization. Many attempts
have been made to solve temporal action localization with
weak supervision. Most of them focus on utilizing RGB

1http://activity-net.org/download.html
2http://crcv.ucf.edu/THUMOS14/download.html

and optical flow as input. In [34], Wang et al. learned at-
tention weights on pre-cut video segments using a temporal
softmax function and thresholded the attention weights to
generate action proposals. This was extended by Nguyen et
al. [23] by introducing a class-agnostic attention model with
sparsity constraints. To reduce classifier’s dependence on
specific instances, Singh and Lee [28] developed a tech-
nique to randomly hide several frames during training in or-
der to force the network respond to multiple relevant parts.
Pual et al. [26] introduced a co-activity similarity loss to
enforce the feature similarity for video pairs with a com-
mon class. Narayan et al. [22] devised three loss func-
tions to ensure the separability of instances at local-level,
to enhance discriminability of action categories at global-
level, and to delineate adjacent action sequences. Nguyen et
al. [24] proposed attention modules to describe both fore-
ground and background frames. In [14], background frames
are modeled as out-of-distribution samples, and then sep-
arated from foreground action frames by maximizing the
entropy of action probability distribution from background
frames. Jain et al. [9] segmented a video into interpretable
fragments, called ActionBytes, and used it to generate ac-
tion proposals. To distinguish action and near-action snip-
pets, Shi et al. [27] developed the class-agnostic frame-
wise probability conditioned on the attention using condi-
tional variational auto-encoder, and Ma et al. [19] learned
a separate class-agnostic model to predict if an instance in-
cludes any classes of target actions. Luo et al. [18] exploited
an expectation-maximization on the multi-instance learning
where the key instance is formulated by a hidden variable.

Recently, more works [15, 31, 37] have attempted to
fuse audio and visual modalities to localize actions. These
performed well on trimmed videos containing audio-visual
events with strong audio cues, such as playing guitar, etc.
Lee et al. [13] took it further to localize unconstrained ac-
tions in untrimmed video by proposing multi-stage cross-
attention mechanism to collaboratively combine audio and
visual features. In our work, we exploit their cross-attention
as the baseline module fuse multiple modalities (both audio-
visual and RGB-flow pairs) in a more adaptive manner.

Conditional computation via gating Conditional com-
putation in neural networks aims to adaptively allocate the
components of the model (e.g. layers, sub-networks, etc.)
depending on inputs. The conditional computation-based
methods can be grouped into two categories according to
the objectives. The first focuses on reducing the compu-
tational cost by dynamically deciding the topology of net-
works. In [32, 33], the residual connection is gated in each
residual block conditioned on the input. In [12, 30], the in-
put sample can exit the network early via the intermediate
classifiers. In [39], considering the spatial redundancy of
input samples, sub-networks with hierarchical depths and
input resolution are used together with early exit strategy.
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In [5], a cascade of gating modules are used to determine
when to stop further processing of the video frames.

The second line of works focuses on the accurate infer-
ence. In [2, 35, 38], to obtain the descent unified repre-
sentation of sequential input, the weight of each element
is computed by gating functions. In [29], the gates lo-
cally filter out the less informative spatial regions before
the spatio-temporal fusion. In [3], to relatively suppress a
weak modality, the weight of a modality is computed by the
complement of that of the other modality. In this field, the
gating functions are mostly designed by soft or hard gates,
where the latter is more efficient and often more effective
too. In our work, we propose the leaky gate, which is a hard
gate with a leakage to further exploit the less informative
modality for regularization.

3. Method
In this section, we introduce the proposed leaky gated

cross-attention mechanism for collaborative multi-modal
fusion in weakly-supervised temporal action localization.
Our framework for two-stage case is illustrated in Figure 2.

Problem setting: As in the most previous methods, we
consider two input modalities M and N in this task. For
an input video, L non-overlapping snippets are uniformly
sampled. Then, for each modality, a pre-trained network
extracts snippet-wise features by:

XM = (xlM)Ll=1, XN = (xl
N )Ll=1 (1)

where xlM ∈ Rd
M and xl

N ∈ Rd
N denote the feature repre-

sentation of snippet l for modalitiesM andN , respectively.
Thus, XM ∈ RdM×L and XN ∈ RdN×L.

The weakly-supervised action localization network, f :
(XM, XN ) → Y , outputs a sequence of snippet-level
class-activation scores often referred as class activation se-
quence. This can be divided into two modules: multi-
modal fusion module r(·) and localization head h(·), so
that f(XM, XN ) = h(r(XM, XN )). The fusion mod-
ule largely determines how effectively the two modali-
ties are combined, while the localization head accommo-
dates a combination of classification and localization losses.
In testing phase, the class activation sequences are post-
processed to temporally localize action instances, which is
a de facto standard of this task.

In our work, we focus on developing an effective multi-
modal fusion module r(·) which is generally applicable to
diverse localization heads.

3.1. Multi-stage cross-attention

As preliminary, we briefly describe our baseline fusion
module, multi-stage cross-attention mechanism [13].

In a single stage, to encode inter-modal information
and also preserve the exclusive and meaningful intra-modal

characteristics, features are separately learned for each
modality under constraints from the other modality. To this
end, the inter-modal relevance is measured by the cross-
correlation which is computed using a learnable matrix W :

Λ = XT
MWXN (2)

In the cross-correlation matrix, a high correlation co-
efficient means that the pair of the corresponding features
in different modalities are highly relevant. Based on this,
the cross attention weights AM and AN are generated by
column-wise soft-max of Λ and ΛT , respectively. Then, for
each modality, the attention weights are used to re-weight
the snippet features. Formally, the attention-weighted fea-
tures X̃M and X̃N are represented by:

X̃M = XMAM and X̃N = XNAN (3)

When multiple stages are used, the cross-attention is
repeatedly applied. To prevent the over-suppression of
original modality-specific characteristics, the dense skip-
connection [8] is exploited. Then, at stage t, the attended
features for two modalities are obtained by:

X
(t)
att,M = tanh(

t−1∑
i=0

X
(i)
att,M + X̃

(t)
M ) (4)

and X
(t)
att,N = tanh(

t−1∑
i=0

X
(i)
att,N + X̃

(t)
N ) (5)

where X(0)
att,M and X(0)

att,N are XM and XN , respectively.
tanh(·) denotes the hyperbolic tangent activation function.

At the last stage te, the final attended features are con-
catenated to yield multi-modal features as:

Xatt = [X
(te)
att,M; X

(te)
att,N ] (6)

3.2. Leaky gating for multi-stage cross-attention

Considering that the two modalities may be incompati-
ble for fusion in several frames, it is not effective to treat
them uniformly over every stage. To that end, we need
a mechanism to control the impact of each modality via
skip-connections and over stages. To adaptively decide
how/when to fuse two modalities, we develop a gating con-
troller leaky gate for cross-attention. Following [13], we set
te as two. Then, we can consider two kinds of gating: dense
skip-connection and stage gates.

Gate design: We design an efficient gating layer with
a single fully-connected (fc) layer. To implement gating,
we activate the output of fc layer using soft-max with small
temperature [7, 21]. Specifically, the temperature is set as
0.1, experimentally. With the small temperature, the gate
output is almost 1 on the selected major path, and close to 0
in other leakage paths. Hence, the unselected features leak
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Figure 2. Illustration of the proposed leaky gated cross-attention exemplified on the two-stage case. Colorized arrows denote skip-
connection gating on stage-1 (blue) and stage-2 (yellow), and stage gating (green).

through these leakage paths, with a very small intensity. We
call such feature leaky feature. Acting as a noise signal,
it can provide a regularization effect [25]. We empirically
observe that when the attended feature is not selected, it
provides regularization in training through the leakage path.

Skip-connection gating: Dense skip-connection is
helpful to preserve the information of previous stages. To
selectively exploit the skip-connections, we add a skip-
connection gate at the end of every stage of each modality.

Firstly, for the modalityM on the stage-1, the two-way
leaky gate g(1)M takes the attention-weighted snippet features
X̃

(1)
M as input, and yields the gating matrix U (1)

M ∈ R2×L.
Then, repeating each row of U (1)

M to a dM×L-sized matrix,
we obtain the gated feature of the stage-1 by:

Z
(1)
att,M = ReLU(XM ⊗ U (1)

M,0 + X̃
(1)
M ⊗ U

(1)
M,1) (7)

where U (1)
M,0 and U

(1)
M,1 are the matrices obtained by row

repetition, and ⊗ denotes the element-wise multiplication.
Next, on the stage-2, we develop the ternary gate g(2)M

which takes the attention-weighted snippet features X̃(2)
M as

input. Then, similarly to the stage-1, row-wisely reshaping
the gating matrix U (2)

M ∈ R3×L to dM × L-sized matrices,
skip-connection gating is performed by:

Z̃
(2)
att,M = (XM +X

(1)
att,M + X̃

(2)
M )⊗ U (2)

M,0 +

(XM + X̃
(2)
M )⊗ U (2)

M,1 + (X
(1)
att,M + X̃

(2)
M )⊗ U (2)

M,2 (8)

and
Z

(2)
att,M = ReLU(Z̃

(2)
att,M) (9)

where U (2)
M,0, U (2)

M,1 and U (2)
M,2 are the matrices obtained by

repeating the first, second, and last rows of U (2)
M , respec-

tively. The first term in Eq.8 sums the stage-2 feature with
the attended stage-1 feature and the initial unattended fea-
ture. Selecting only this term is same as multi-stage cross-
attention of [13], ignoring the use of ReLU activation. Sec-
ond term do not consider the attended feature of stage-1, and
third term ignores the unattended features. We tried other
variations and found the combination of these three terms
empirically best. Hence, the leaky gated cross-attention has
multiple options (plus leakage through gates) for the adap-
tive selection dependent on the input sample. Akin to the
modality M, the skip-connection gating is conducted on
both stages-1 and stage-2 of the modality N .

Stage gating: To adaptively select stages as well, we
devise the stage gating. In the stage gating, taking the
last attention-weighted features X̃(2)

M as input, the gate g(s)M
computes the gating matrix U

(s)
M ∈ R2×L. Then, the fi-

nal feature is one of the two skip-connection gated features
given by:

Zatt,M = Z
(1)
att,M ⊗ U

(s)
M,0 + Z

(2)
att,M ⊗ U

(s)
M,1 (10)

where U (s)
M,0 and U (s)

M,1 are the dM×L-sized expanded ma-

trices of rows of U (s)
M , respectively. Similarly, we also per-

form the stage gating for the modalityN . Finally, the multi-
modal feature is obtained by the concatenation of stage
gated features, which is represented as:

r(ZM, ZN ) = [Zatt,M;Zatt,N ] (11)

From the proposed leaky gating technique, the cross-
attention mechanism automatically selects attention-level
and strengthens important features for multi-modal tempo-
ral action localization.
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Table 1. Analysis of the proposed leaky gated cross-attention
applied to CAAV [13] on the THUMOS14 dataset. Avg
mAP@[0.1:0.1:0.7] scores (%) are reported with the computa-
tional costs.

Method Avg mAP MFLOPs

single-stage baseline 32.8 1.39
two-stage baseline 35.6 1.65

single-stage baseline + leaky gate 34.1 1.40
two-stage baseline + leaky gate 37.5 1.69

4. Experiments

In this section, we provide experimental analysis and
comparative evaluation to show the effectiveness of the pro-
posed method. To this end, we exploit four baselines: 3C-
Net [22], W-TAL [14], ASL [19], and CAAV [13]. The
proposed leaky gated cross-attention is added before their
localization heads.

4.1. Datasets and evaluation method

Datasets: We evaluate our approach on ActivityNet1.2
and THUMOS14 datasets.

THUMOS14 dataset consists of videos temporally anno-
tated for 20 classes. We follow the convention to train on
the validation set of 200 videos and evaluate on the test set
of 212 videos. A video includes 15.5 instances on average,
often with less than a second background between actions.

ActivityNet1.2 dataset contains 4,819 train and 2,383 val-
idation videos, which in the literature is used for evaluation.
It is temporally annotated has 100 action classes, with on an
average 1.5 action instances per video. The average length
of the videos in this dataset is 115 seconds.

Evaluation metric: Following the standard evaluation
protocol, we generate the action segments (start and end
time) from snippet-wise prediction, and then measure mean
average precision (mAP) at different intersection over union
(IoU) thresholds. Average of these mAPs are reported as
Avg mAP.

4.2. Implementation details
To obtain input multi-modal features, we follow the stan-

dard of the baselines. We use the I3D network [1] to ex-
tract the visual features. The I3D network is pre-trained on
Kinetics-400 [11], and the features consist of two compo-
nents: RGB and optical flow. For the audio features, as
in [13], we use the VGG-like network [6], which is pre-
trained on AudioSet [4].

For the baselines, we use the authors’ source codes
with their default setting, such as hyper-parameters, op-
timizer, learning rate, etc. Then, to apply the proposed
leaky gated cross-attention, we add the leaky gate cross-
attention on top of the earlier layers of RGB-flow-based

Table 2. Analysis of the proposed leaky gated cross-attention
applied to 3C-Net [22] on the THUMOS14 dataset. Avg
mAP@[0.1:0.1:0.7] scores (%) are reported with the computa-
tional costs.

Method Avg mAP MFLOPs

Baseline (w/o cross-attention) 33.1 4.44

+ single-stage naive cross-attention 33.1 3.40
+ single-stage leaky gated cross-attention 34.4 3.41

+ two-stage naive cross-attention 32.4 4.45
+ two-stage leaky gated cross-attention 32.9 4.50

baselines [14, 19, 22]. Especially, in the 3C-Net [22] base-
line, we replace the 2nd modality-specific fc layers with
the proposed leaky gated cross-attention, rather than sim-
ply attaching it. In the audio-visual baseline [13], the naive
multi-stage cross-attention is already included in the model.
Hence, we add the leaky gates on top of the cross-attention
for every stage of each modality. Commonly, the result-
ing features of the leaky gated cross-attention are activated
by ReLU, while the cross attended features are activated by
tanh as in [13].

4.3. Analysis on leaky gated cross-attention

Impact of leaky gating on cross-attention: We first
analyze the impact of applying leaky gating over 1-stage
and 2-stage cross-attention for both audio-visual and RGB-
flow fusion on THUMOS14 dataset. Varying the number
of stages, we apply the leaky gated cross-attention to the
audio-visual-based CAAV [13] (in Table 1) and to the RGB-
flow-based 3C-Net [22] (in Table 2). The computational
costs for various cases are also reported in these tables.

For CAAV, only cross-attention results (without leaky
gating) are the baselines taken from [13]. We apply our
leaky gating to them and improve the performance of both
single stage and two stage baselines by 1.3% and 1.9%
in Avg mAP, respectively. Further, the additional com-
putational cost of adding leaky gating is negligible: 0.01
MFLOPs for 1-stage and 0.04 MFLOPs for 2-stage. Also,
compared to single-stage baseline, the two-stage requires
0.29 more MFLOPs to obtain 1.9% Avg mAP improvement.
Therefore, with the leaky gated cross-attention, impressive
gains are obtained for action localization with practically no
loss in efficiency.

For 3C-Net, the result without cross-attention is taken
from [22]. We add four different fusion modules to the base-
line, which are single-stage and two-stage cross-attention
models with or without leaky gates. The naive (not gated)
single-stage cross-attention does not show an improvement,
but with the proposed leaky gated cross-attention, the Avg
mAP increases by 1.3% to 34.4%. The performance is
degraded with additional second stage due to over-fitting
while fusing RGB and Flow (discussed later). However,
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Table 3. Impact of applying the proposed leaky gated cross-attention to the four recent action localization methods on the THUMOS14
dataset. The mAPs (%) at different IoU thresholds and Avg mAP across the IoU thresholds are reported. Results improve in all four cases
for all the IoU thresholds.

Method Fusion
mAP@IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 Avg

3C-Net [22] RGB-flow 57.1 51.4 41.7 33.7 26.0 15.1 6.4 33.1
CAAV [13] Audio-visual 61.6 57.2 45.7 36.3 26.2 15.6 6.4 35.6
ASL [19] RGB-flow 67.3 61.2 51.5 41.3 30.6 19.7 11.1 40.4
W-TAL [14] RGB-flow 65.5 59.9 51.3 42.4 32.7 20.8 10.4 40.4

With leaky gated cross-attention ∆Avg to baseline

Ours (on 3C-Net) RGB-flow 59.2 53.6 43.6 33.8 26.6 16.1 7.8 34.4 +0.3
Ours (on CAAV) Audio-visual 63.1 58.3 48.4 38.4 30.1 17.1 7.1 37.5 +1.9
Ours (on ASL) RGB-flow 68.0 61.3 52.6 42.8 31.4 20.1 11.1 41.0 +0.6
Ours (on W-TAL) RGB-flow 67.5 61.6 53.4 42.4 34.1 22.3 10.4 41.7 +1.3

Table 4. Impact of applying the proposed leaky gated cross-attention to the two recent action localization methods on the ActivityNet1.2
dataset. The mAPs (%) at different IoU thresholds and Avg mAP across the IoU thresholds are reported. Results improve for CAAV
method while remaining similar for 3C-Net for the reasons mentioned in the text.

Method Fusion
mAP@IoU

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 Avg

3C-Net [22] RGB-flow 36.5 33.3 30.0 27.0 23.8 20.5 17.2 13.6 9.4 4.2 21.6
CAAV [13] Audio-visual 44.8 42.1 37.8 34.2 30.8 26.7 22.5 15.9 4.0 1.0 26.0

With leaky gated cross-attention ∆Avg to baseline

Ours (on 3C-Net) RGB-flow 36.5 33.1 30.0 27.2 23.9 20.5 17.2 13.2 8.9 4.4 21.5 -0.1
Ours (on CAAV) Audio-visual 44.1 41.1 39.0 34.8 30.5 26.5 22.3 16.8 10.3 1.2 26.6 +0.6

the leaky gating reduces the degradation by 0.5% in Avg
mAP, increasing the robustness to the number of stages.
On computational front, again there is practically no loss
of efficiency. In fact, the single-stage models need fewer
FLOPs than baseline as in 3C-Net we replace two parallel
modality-specific fc layers with the cross-attention or leaky
gated cross-attention. The two-stage models need slightly
higher number of FLOPs.

Efficacy of leaky gated cross-attention: Now, we show
the effectiveness of the proposed leaky gated cross-attention
by applying it to four different baseline methods: 3C-
Net [22], W-TAL [14], ASL [19], and CAAV [13]. We use
model with two stages for audio-visual CAAV, while only
one stage is used for the other three methods for RGB-flow
fusion. This is in accordance with the observations in last
paragraph (Tables 1 and 2). For THUMOS14 dataset, we
report the mAP scores for different thresholds [0.1:0.1:0.7]
and the average (Avg) of the mAPs in Table 3. We see that,
for every baseline, the proposed method improves the mAP
scores on most thresholds. In terms of Avg mAP, the pro-
posed method boosts the baselines by at least 0.3%. And
the maximal gain is 1.9% (on CAAV).

In Table 4, we also show the mAP scores for the thresh-
olds of [0.5:0.55:0.95] and the Avg mAPs on ActivityNet1.2
dataset. Since the hyper-parameters details of ASL [19] and

W-TAL [14] are not available for this dataset, we could not
reproduce the mAP scores they report. Hence, we only ap-
ply the leaky gated cross-attention to the CAAV and 3C-
Net baselines. As demonstrated in Table 4, we improve the
CAAV baseline by 0.6%, but slightly degrade the 3C-Net
by 0.1% in Avg mAP. Note that, for both baselines, the pro-
posed method is more effective on the THUMOS14 dataset
rather than the ActivityNet1.2 dataset, especially for RGB-
flow fusion. We analyze this in the following paragraph.

Relative significance of modalities: Now we analyze
the impact of relative significance of one modality with re-
spect to the other. This is to understand the different be-
haviour of RGB-flow fusion compared to the audio-visual
fusion that we observed in Tables 1, 2, 3 and 4. In the
upper part of Table 5, audio-visual fusion is analyzed on
THUMOS14 and ActivityNet1.2 datasets. Here, the gain
over each individual modality is significant for the cross-
attentional fusion of CAAV, which is further improved by
our leaky gating. The RGB-Flow fusion is analyzed in the
lower part of Table 5. Here, both modalities are strong,
and as a result relatively simpler late-fusion of 3C-Net al-
ready extracts much advantage of fusion. The gain of
applying leaky gating to the 3C-Net method is small for
THUMOS14, and diminishes for ActivtiyNet1.2 as the two
modalities become even more comparable. Also both be-
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Table 5. Analysis on relative significance of modalities for audio-
visual fusion (with CAAV [13]) and RGB-flow fusion (with 3C-
Net [22]). Avg mAP is computed on IoU thresholds [0.1:0.1:0.7]
for THUMOS14 and [0.5:0.05:0.95] for ActivityNet1.2.

Method Modality THUMOS14 ActivityNet1.2

CAAV [13]
Audio-only 1.0 7.8
Visual-only 32.4 22.1
Audio-Visual 35.6 26.0

Ours (on CAAV) Audio-Visual 37.5 26.6

3C-Net [22]
RGB-only 21.5 17.9
Flow-only 30.3 14.7
RGB-Flow 33.1 21.6

Ours (on 3C-Net) RGB-Flow 34.4 21.5

longing to the visual domain, RGB and flow are not het-
erogeneous like audio and visual modalities. From this, we
can infer that: (a) Leaky gated cross-attention is more bene-
ficial when one modality is weaker than the other, as greater
control over modality contribution through gating makes fu-
sion more robust, and (b) Leaky gated cross-attention is
more critical when the two modalities are heterogeneous.
The more comparable two modalities become, the less we
need the sophisticated fusion module, i.e., fewer stages are
enough. Therefore, we use two stages for audio-visual fu-
sion and only one stage for RGB-flow fusion.

Selection rate for paths: To see how adaptively the
gates choose among available paths, we measure the selec-
tion rate (ζ) which computes how often a particular path is
chosen as the major path for all snippets. To this end, our
two-stage leaky gated model on top of CAAV is analyzed
in Table 6. In the first stage, visual branch always selects
unattended features, while for audio modality occasionally
(1.6%) attended features are also selected. In the second
stage, audio branch solely utilizes the combination of sec-
ond stage features with the other two: stage-1 attended fea-
tures and unattended features. While the visual branch se-
lects all three combinations, majorly it focuses on the two
combinations with unattended features. As far as stage gat-
ing is concerned, selected path always goes up to the second
stage. Clearly being mutually heterogeneous, audio and vi-
sual modalities show different selection patterns.

We also analyze for RGB-Flow fusion with a single-
stage leaky gated model on top of 3C-Net. Here, always the
unattended features are chosen for both the modalities. Note
that, the baseline also uses non-attended features only, but
its performance is lower than the single-stage model with
the leaky gated cross-attention in Table 2. This is because
through the leakage path, attended features pass with the
small intensity, which may be a noise signal, gives regu-
larization effect to the major non-attended feature. This is
further addressed in the following paragraph.

Regularization effect of leaky gate: Regularization by
noise is a common technique to improve generalization per-

Table 6. Selection rates of gates on the THUMOS14 dataset.

Gate Path
CAAV [13] 3C-Net [22]

two-stage single-stage
ζ (Audio) / ζ (Visual) ζ (RGB) / ζ (Flow)

Skip-connec.
stage-1

X 98.4% / 100% 100% / 100%
X̃(1) 1.6% / 0% 0% / 0%

Skip-connec.
stage-2

X +X
(1)
att + X̃(2) 100% / 52.7% -

X + X̃(2) 0% / 44.3% -
X

(1)
att + X̃(2) 0% / 3.0% -

Stage
Z

(1)
att 0% / 0% -

Z
(2)
att 100% / 100% -

Table 7. Analysis on the regularization effect of the leaky gated
cross-attention for 3C-Net [22] on the THUMOS14 dataset. Avg
mAP@[0.1:0.1:0.7] scores (%) are reported.

Method Avg mAP (%)

Baseline (w/o cross-attention) 33.1

Frozen cross-attention 32.4
Gaussian Noise (scale 1.0) 25.4
Gaussian Noise (scale 0.1) 33.8
Hard-gated cross-attention 33.9
Soft-gated cross-attention 33.0
Leaky gated cross-attention 34.4

formance of deep neural networks [25]. We verify the ef-
fectiveness of the leaky features as noise regularization in
the proposed leaky gates in Table 7. We first compare our
method with soft-gated cross-attention where all the fea-
tures pass but are weighed differently. This yields 33.0%
while 34.4% is obtained with leaky gating. The hard-gated
cross-attention only let the selected feature pass through. To
implement the hard gates, we employ the gumbel soft-max
scheme [10, 20]. The leaky gate again yields higher Avg
mAP of 34.4% compared to 33.9% by hard-gating.

We also compare the effectiveness of the leaky features
with other regularization noises. First, after initializing the
learnable matrices W using random Gaussian distribution,
we freeze the learnable matrices during training. Then,
the attention weighted feature is less informative and noisy.
Secondly, rather than using cross-attention mechanism and
leaky gates, we simply add the Gaussian random noise to
the input features. In this case, we control the noise power
with a scaling parameter (1.0 or 0.1) to verify for both high
and small noise intensity. As shown in Table 7, the leaky
feature of the proposed method improves the baseline by a
margin larger than other noises. The gaussian noise with
scale 1.0 shows performance even lower than the baseline.
From this, we see that since the attention weighted feature
conveys useful complementary information, its leakage can
give more effective regularization compared to other noises.

Impact of various gates: In this section, we conduct
an ablation study to verify the efficacy of each of the skip-
connection and stage gating on the two-stage model of
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Table 8. Ablation studies on the skip-connection and stage gating
on the THUMOS14 dataset. Avg mAP@[0.1:0.1:0.7] scores (%)
are reported.

Method CAAV [13]

Baseline (with two-stage cross-attention) 35.6

+ skip-connection gate 37.0
+ stage gate 37.1
+ skip-connection & stage gates 37.5

Table 9. Comparison of our method with the state-of-the-art ac-
tion localization methods on the THUMOS14 dataset. The aver-
age (Avg) mAP across the IoU thresholds [0.1:0.1:0.7] is reported.

Method Supervision Avg mAP (%)

Liu et al. [16] Weak 32.4
3C-Net [22] Weak 33.1
Nguyen et al. [22] Weak 36.3
DGAM [27] Weak 37.0
EM-MIL [18] Weak 37.8
CAAV [13] Weak 35.6
ASL [19] Weak 40.4
W-TAL [14] Weak 40.4

Ours (on 3C-Net) Weak 34.4
Ours (on CAAV) Weak 37.5
Ours (on ASL) Weak 41.0
Ours (on W-TAL) Weak 41.7

CAAV. First, we only use the skip-connection gates (g(2)M
and g

(2)
N ) at the end of the stage-2. Next, to generate

the stage-gating only model, we remove the all the skip-
connection gating, and use the stage gates g(s)M and g

(s)
N .

Here, the features of each stage are obtained by (4) and (5).
As demonstrated in Table 8, we observe that both skip-
connection and stage gates are effective to boost the perfor-
mance of the baseline. And we obtain the best performance
by using the proposed two gates together.

4.4. Comparative evaluation

In this section, we compare the benefits of applying
leaky gating with the current state-of-the-art methods on
THUMOS14 and ActivityNet 1.2 datasets. Based on the
earlier analysis, we apply the leaky gated cross-attention
with two stages for the audio-visual method (CAAV) and
with one stage for the RGB-flow methods (3C-Net, W-
TAL, and ASL). In Table 9, the mAP scores for IoU thresh-
olds [0.1:0.1:0.7] are reported on THUMOS14 dataset. Our
method compares favourably to the other methods setting
up new state-of-the-art on this dataset for weakly super-
vised temporal action localization. This shows the effective-
ness of the leaky gates to collaboratively fuse two different
modalities, be it audio-visual or RGB-flow.

For the ActivityNet1.2 dataset, we report the mAP scores
for IoU thresholds [0.5:0.05:0.95]. As demonstrated in Ta-

Table 10. Comparison of our method with the state-of-the-art ac-
tion localization methods on the ActivityNet1.2 dataset. The av-
erage (Avg) mAP across the IoU thresholds [0.5:0.05:0.95] is re-
ported.

Method Supervision Avg mAP (%)

SSN [42] Full 26.6

W-TALC [26] Weak 18.0
3C-Net [22] Weak 21.6
TSM [40] Weak 17.1
CleanNet [17] Weak 21.6
Liu et al. [16] Weak 22.4
DGAM [27] Weak 24.4
EM-MIL [18] Weak 20.3
CAAV [13] Weak 26.0
ASL [19] Weak 25.8
W-TAL [14] Weak 25.9

Ours (on 3C-Net) Weak 21.5
Ours (on CAAV) Weak 26.6

ble 10, the proposed leaky gating applied to CAAV method
compares favourably to all other weakly-supervised meth-
ods and improves the state-of-the-art performance. Fur-
thermore, this performance is comparable to the fully-
supervised method, SSN [42].

The better performance for audio-visual fusion and on
THUMOS14 dataset compared to ActivityNet1.2, espe-
cially for RGB-flow fusion, is in accordance with the analy-
ses done in Section 4.3 and Table 5. We observed that leaky
gated cross-attentional fusion is critically important when
modalities are heterogeneous or when one of the modalities
is significantly weaker, as greater control over modalities
through gating makes the fusion more robust.

5. Conclusion
We propose a leaky gated cross-attention for weakly-

supervised temporal action localization. We build our ap-
proach on a the multi-stage cross-attention. For each modal-
ity, we add gates for the skip-connections and the stages to
decide its dependency on the other modality. Thus, in ad-
dition to collaboratively fusing multiple modalities, our fu-
sion module adaptively selects the better one between the
cross-attended and non-attended features. This makes it ro-
bust even when the modalities have weak complementary
relationship. Further, by letting the non-selected feature
leak through with small intensity, the leaky gating provides
regularization (by noise) for the selected feature. Finally,
our fusion module is compatible with various temporal ac-
tion localization methods. We demonstrate this by applying
it to four recent methods. Each component of the proposed
approach is analyzed and validated through extensive exper-
iments. We report our results on two benchmark datasets
(ActivityNet1.2 and THUMOS14) and improve the state-
of-the-art on both of them.
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