We propose a light-weight, self-supervised adaptation for a visual navigation agent to generalize to unseen environment. Given an embodied agent trained in a noiseless environment, our objective is to transfer the agent to a noisy environment where actuation and odometry sensor noise is present. Our method encourages the agent to maximize the consistency between the global maps generated at different time steps in a round-trip trajectory. The proposed task is completely self-supervised, not requiring any supervision from ground-truth pose data or explicit noise model. In addition, optimization of the task objective is extremely light-weight, as training terminates within a few minutes on a commodity GPU. Our experiments show that the proposed task helps the agent to successfully transfer to new, noisy environments. The transferred agent exhibits improved localization and mapping accuracy, further leading to enhanced performance in downstream visual navigation tasks. Moreover, we demonstrate test-time adaptation with our self-supervised task to show its potential applicability in real-world deployment.

1. Introduction

Vision-based navigation is a fundamental task for embodied AI agents that traverse the environment while conducting a series of actions. The agent needs to plan and execute a sequence of movements based on its perception of the surrounding area to interact with the environment in a desirable way. Training an agent in the real world is costly and thus, many research has made progress by leveraging simulators [40, 42] utilizing 3D scene datasets [6, 47]. While recent works demonstrate a nearly perfect performance with an agent trained in a noiseless simulator [46], the agent is bound to experience a critical decrease in its performance when deployed in a noisy, realistic environment [26]. One may try to close the domain gap by fine-tuning the policy in a new, noisy environment [7, 26], but it is difficult to obtain ground truth labels or poses in a real-world deployment. Furthermore, it is impossible to exactly model the various actuation and odometry sensor noise given the unlimited combinations of motors and sensors for custom robots deployed in various spatial layout and environmental configurations.

We investigate the scenario where the pre-trained model in a noiseless environment needs to be transferred to a new environment where the agent’s actuator is noisy and the odometry measurement is also erroneous. As a means to generalize in different environments, recent works propose modular approaches that separate the observation space and the action space [8, 22, 28], as shown in Figure 1. The observation module transfers the sensory perception into the domain-agnostic intermediate representation, and a subsequent policy module deduces the agent’s action from the intermediate representation. Then it suffices to fine-tune the observation module to produce the stable intermediate representation given corrupted measurements. Still, adapting the observation module requires either ground-truth poses or explicit noise models, which are not available in our realistic set up.

To this end, we formulate a self-supervised learning task where the agent is encouraged to generate consistent global maps over a round-trip trajectory. The agent generates the first global map during the forward trajectory. After the turn point, the agent resets and generates a new map during the backward path from which we train the prediction of newly generated map. The self-supervision signal compares the consistency between the overlapping maps generated from different trajectories and fine-tunes the pre-trained navigation agent to the noisy real world. Our method does not require ground-truth poses as long as there exist overlapping observations of the global map. After the observation module is fine-tuned to suppress the errors caused by the domain shift, we can combine it with the pre-trained action policy to perform various downstream tasks.

We extensively evaluate our self-supervised learning approach in fundamental navigation tasks such as localization, mapping, and exploration [15] and demonstrate that our ap-
approach can quickly adapt the pre-trained agents to the new environment. Our proposed method finishes the adaptation process within 5 minutes, much faster than the domain randomization approach which converges after 65 minutes of fine-tuning. We further enhance the performance by data augmentation method utilizing random crops of trajectories. Lastly, we train our agent in a test-time adaptation setting to demonstrate the task’s applicability in the real world.

In summary, our main contributions are as follows: i) we introduce a simple self-supervised task for robust visual navigation amidst actuation and sensor noise, ii) we demonstrate that the suggested formulation enhances the localization, mapping, and the final task performance, iii) we show that our method is applicable for test-time adaptation indicating the potential applicability for real-world deployment.

2. Related Work

Our work proposes a self-supervised approach to transfer an embodied agent trained in a noiseless environment to a noisy environment where actuation and odometry sensor noise is present. We thus discuss relevant literature from the field of visual navigation for embodied AI, Sim2Real, and self-supervised learning.

Visual Navigation In visual navigation for an embodied agent, the principal tasks are mapping and planning. Classical robotics approaches focus first on building a map of the environment [2, 18, 33] followed by path planning [30, 44, 49] on the map. Recent deep-learning based approaches, on the other hand, often train an intelligent agent jointly for mapping and planning [23, 38]. Such approaches have enabled to train the embodied agents for end-to-end tasks and adapt to a large number of challenging tasks including goal-oriented navigation [8, 45, 46], audio-visual navigation [13], or embodied Q&A [16].

To perform the various navigational tasks, the intelligent agents utilize diverse forms of memory systems to represent the observed environment. Neural networks can create implicit memory structure with LSTM or GRU [15, 32] or a topological graph that aligns with location information such as landmarks or image frames on the graph nodes [9, 14, 17, 39, 41]. However, the traditional map-based memories such as occupancy grid maps [7, 23, 28, 45] still perform competitively, especially for long-range navigation tasks. The explicit maps can also be easily extended into other map-based planning tasks and therefore widely deployed for visual navigation of embodied agents. We utilize the occupancy map as the memory representation and the mean to define the self-supervision task.

Sim2Real When training an agent in a real-world setting, it is difficult to collect a large amount of data with ground-truth labels. Simulators are great tools for training embodied agents before deploying in the real world. However, the policy learned from simulated environment often fails to maintain its performance in the real world setting [27]. Imitation learning observes the videos of desired trajectories collected by human demonstration in the real environment [15, 16], but there still exists the gap between human and robot execution. Thus, bridging the domain gap has become a new direction of research [11, 24]. Inspired by the domain randomization approach in visual domain [24], the approach from [10] randomizes the dynamic corruptions such as actuation and odometry noise. However, we demonstrate that our self-supervision approach can better compensate for the unknown noise in terms of both accuracy and efficiency, by transforming the observations into an intermediate representation [12, 31].

Self-Supervised Learning The major success of deep learning owes to a large amount of training data. However, it is not scalable to collect the desired amount of labelled data for every task. Self-supervised learning proposes to obtain labels from known information, namely auxiliary tasks, and apply techniques of supervised learning to extract useful representation for desired tasks. Examples of such auxiliary tasks include predicting the random rotation of a given image or estimating depth and surface normals from observation frames [19, 21, 24]. With the careful design of auxiliary tasks, it has been demonstrated that the self-supervision can improve the performance of vision tasks such as image translation [35], or video object segmentation [25]. We suggest an orthogonal self-supervision task for various sensor noises, which could complement the aforementioned self-supervision for visual representation learning. While previous studies on indoor navigation suggest selecting more reliable information from multi-modal sensor data [3, 37], our proposed self-supervision does not utilize any additional sensors. Instead, we demonstrate that enforcing the consistency of the global maps is a useful auxiliary task to quickly adapt to the new sensor noise without ground truth labels.

3. Method

We introduce a simple and generic, self-supervised learning method for noise-robust visual navigation. Our objective is to transfer a pretrained agent to the novel, unseen environments where different types of actuation and odometry sensor noises are present. The proposed method enforces consistency on global maps generated over time in a round-trip trajectory. In this section, we explain the overall setup, the various types of actuation and sensor noise, and how the global map consistency is implemented. We also introduce our data augmentation method.
3.1. Visual Navigation with Spatial Memory

Our self-supervision works on the consistency of the global map, therefore it can be applied to most visual navigation agents that are based on spatial map memory [7, 8, 28, 38, 45, 50]. Such approaches train two neural networks for mapping and planning, which we will refer as \(f_\theta \) and \(\pi_\psi \), respectively.

Figure 1 shows the overall flow of our approach. Given the current observation \(o_t \) and the odometry sensor measurement \(s_t \), the mapping model predicts the egocentric map \(m_t \) and the localization model estimates the current position \(\hat{p}_t \). Two models are jointly referred as the mapping and localization module \(f_\theta \), where the global map \(M_t \) is generated by combining \(m_t \) using \(\hat{p}_t \). Note that the predictions from the previous time step, the estimated egocentric map \(m_{t-1} \) and global map \(M_{t-1} \), are also utilized. Simply, we represent our mapping and localization module as

\[
f_\theta(o_{t:t}, s_{t:t}) = M_t, \hat{p}_t.
\]

For the purpose of proposition, we demonstrate the applicability using a sequence of RGB image observations for \(o_t \) as the input, and the 2D occupancy grid map for \(M_t \) and the 2D pose for \(\hat{p}_t = (x, y, \phi) \). Here \((x, y)\) denote the 2D coordinate and \(\phi \) indicates the 1D orientation.

Then the planning module \(\pi_\psi \) is implemented with a separate neural network, which is a policy network that observes the output of the mapping module and generates the action \(a_t \in \mathcal{A} \)

\[
\pi_\psi(M_t, \hat{p}_t) = a_t.
\]

We allow a discrete set of agent actions, specifically \(\mathcal{A} = \{\text{Forward, Turn Right, Turn Left}\} \).

Our supervision works on the intermediate representation between the two modules (\(f_\theta \) and \(\pi_\psi \)), namely the consistency of \(M_t \). Note that the consistency of \(M_t \) is tightly coupled with the accuracy of \(\hat{p}_t \) because the pose \(\hat{p}_t \) can be defined with respect to the generated map \(M_t \) and the network \(f_\theta \) fuses the current observation \(o_t \) to \(M_t \) using the current pose \(\hat{p}_t \). The formulation allows disentangling the variations in measurements from the policies designed for different downstream tasks. We can train a desired policy network \(\pi_\psi \) in an ideal simulation setup with the ground truth oracle and fine-tune only the observation module \(f_\theta \) in a different environment set-up. More specifically, in our setup, we only fine-tune the localization part of the module as the egocentric map prediction is not disturbed by the odometry or actuation noise. Nevertheless, the proposed method is generic as it can be applied to various visual navigation models with distinct modules for perception and action sharing an intermediate representation.

Actuation and Odometry Sensor Noise We first train both networks in a noiseless setup and demonstrate the feasibility of the proposed self-supervision in realistic noise models. There are two main streams of expected variation: actuation and sensor noise. A large amount of both classical and latest work [20, 29, 40] has presented the approach to model realistic actuation and odometry noise. In this section, we briefly describe the noise models used as an un-
The actuation noise is the addition of both motion bias and added towards left or right only for the forward movement.

\[\epsilon_{\text{act}} = \delta_c + \delta_s + \alpha \]

where the \(\delta_c \in \mathbb{R}^3 \), and a stochastic bias, \(\delta_s \in \mathbb{R}^3 \) drawn from \(\mathcal{N}(\mu_s, \Sigma_s) \). Then, the motion drift, \(\alpha \in \mathbb{R}^3 \), is added towards left or right only for the forward movement. The actuation noise is the addition of both motion bias and motion drift.

The ground-truth pose of the agent after an action is defined as

\[(x_{t+1}, y_{t+1}, \phi_{t+1}) = (x_t, y_t, \phi_t) + (u_x, u_y, u_\phi) + \epsilon_{\text{act}}, \]

where the \((u_x, u_y, u_\phi)\) indicates the intended action control.

In addition, the odometry sensor noise affects the pose estimation accuracy, which further degrades the mapping accuracy and the navigation performance. The pose reading noise from odometry sensors is drawn from a Gaussian Mixture Model. The final pose reading is measured as

\[(x'_{t+1}, y'_{t+1}, \phi'_{t+1}) = (x_{t+1}, y_{t+1}, \phi_{t+1}) + k\epsilon_{\text{sen}}, \]

where the \(k \) denotes the sensor noise severity. The noise models are derived from the real-world observation, and we employ them based on the noise parameters modeled from actual physical deployment [1, 34] to test the performance of our algorithm in a noisy environment.

3.2. Self Supervision with Global Map Consistency

We assume deploying a pre-trained agent in an unseen environment, where the ground truth poses or the changes in the observation noise model are not known. Instead, we can create a supervision signal by enforcing consistency of the generated global map \(M_t \). While we cannot assure that the map is error-free, we can assume that the error accumulates over time. This leads to incorporating more accurate pose data in generating the global map in the earlier steps compared to the ones generated later in a continuing trajectory.

To implement the self-supervised learning task efficiently, we deliberately design overlapping trajectories and drive an embodied agent in round trips as shown in Figure 2. The round trip is easily generated by executing any navigational task for a designated number of steps, turning around 180°, and executing the previous action sequence in reverse. The global map is first generated during the forward path, then the agent resets and generates another map from scratch during the backward path. In a noiseless setting, the agent observes the same area at each one-way trip. Therefore, the global map from its forward path should be equal to the global map generated during its backward path. When the actuation noise is present, the agent may not step on the same waypoints it has traversed during its forward path. Nonetheless, our proposed formulation is still valid as the agent generates maps from the overlapping area.

To summarize, during the forward path, the agent generates a reference global map \(M_F \)

\[f_\theta(o_{1:t_r}, s_{1:t_r}) = M_F, \hat{p}_F, \]

where \(t_r \) is the step when the robot turns around. On its way back, the agent generates a new map. However, the same global coordinate is shared across all global maps and the agent continues incremental pose estimation using the full odometry \(s_{1:t} \). At each reverse step, a new global map, \(M_{B,t} \), is predicted,

\[f_\theta(o_{t_r+1:t}, s_{1:t}) = M_{B,t}, \hat{p}_{B,t}, \]

Lastly, our self-supervised task imposes the consistency between the predicted \(M_F \) and \(M_{B,t} \) to fine-tune the mapping module \(f_\theta \) under the new environment. In the equation below, \(T \) denotes the ending time of the trajectory and \text{stopgrad} indicates that no backpropagation should happen through \(M_F \)

\[\mathcal{L} = \sum_{t=t_r+1}^{T} \| \text{stopgrad}(M_F) - M_{B,t} \|^2. \]

Therefore we compare the estimated map at every step during the backward path, providing a rich set for loss computations per acquired trajectory. While there are several ways of finding the difference between the two occupancy grid maps, we incorporated the mean squared error (MSE) loss. The choice of losses is further discussed in the experiment section.

![Figure 2. Global Map Consistency from a Round Trip.](image)

The forward path from the time 1 to \(t_r \) builds a reference map \(M_F \). At \(t_r + 1 \), the agent resets the map and generates another map \(M_{B,1} \) from \(t_r + 1 \) to \(T \). At each step during the backward path, we impose the consistency between \(M_F \) and \(M_{B,1} \).
We analyze the effectiveness of the proposed data augmentation method in the experiment section.

4. Experiments

We extensively evaluate the performance of a pre-trained embodied agent when adapted to a new environment with our self-supervised learning task. In all our experiments we report the results using the agent from Active Neural SLAM [7], as it is a widely used baseline agent for visual navigation [8, 9, 38]. Nonetheless, our proposed self-supervised learning task is generic as it is easily applicable to most navigation models or agents based on spatial representation. For navigation task analysis, we follow the task setup proposed by [15]. We evaluate the navigation agent by the area coverage within a fixed number of steps, which is 1000 steps in all of our experiments. We show our result for exploration since it is the fundamental task for most navigation agents [7].

<table>
<thead>
<tr>
<th>Method</th>
<th>NA</th>
<th>GT</th>
<th>DR</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localization</td>
<td>-</td>
<td>-</td>
<td>65</td>
<td>5</td>
</tr>
<tr>
<td>Mapping</td>
<td>0.25</td>
<td>0.17</td>
<td>0.23</td>
<td>0.17</td>
</tr>
<tr>
<td>Exploration</td>
<td>82.02</td>
<td>93.75</td>
<td>89.06</td>
<td>91.79</td>
</tr>
<tr>
<td>Ratio (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area (m²)</td>
<td>26.36</td>
<td>31.83</td>
<td>29.19</td>
<td>30.79</td>
</tr>
</tbody>
</table>

Table 1. Generalization to noisy environment evaluated on localization, mapping and exploration. Note that ‘MSE’ denotes ‘mean squared error’.

We use Habitat [40] simulator in the scenes from Gibson dataset [48] and analyze on the standard train/val split [40] comparing against the ground truth poses and maps. For our self-supervised learning approach, we adapt the original model [7] implemented using PyTorch [36] to allow learning from global map consistency. The fine-tuning time of the self-supervised learning, accelerated with an RTX 2080 GPU, completes within 5 minutes, and the test-time adaptation finishes in 2.5 minutes. Additional details about the experimental setup are available in the supplementary material.

4.1. Task Adaptation to Noisy Environments

We first investigate if our proposed self-supervised learning task helps agents to transfer to a new, noisy environment. We pre-train an agent in a noiseless environment where the mapping and localization module \(f_\theta \) is trained with the ground-truth pose and egocentric map. We then observe if our self-supervision can help the agent to generalize across various unseen noisy environments without ground-truth supervision. For unseen noisy environment, we apply the odometry noise and actuation noise models based on real data of LoCoBot [1] collected from the previous work [7, 27]. For each episode, we first report the median localization error in terms of translation \((x, y)\) and rotation \(\phi\), following [4, 5]. We additionally report the mean squared error (MSE) of the generated occupancy grid maps with respect to the ground-truth maps. To quantify exploration performance, we report two metrics, namely the absolute coverage area in \(m^2\) and the ratio of area coverage, similar to [7].

As seen in Table 1, performance enhancement occurs in all evaluations. Our agent learns to better perceive the surroundings and explores 91.79% of its environment when tested for exploration. “No Adaptation (NA)” is the pre-trained model in a noiseless environment with ground-truth information, deployed in a new, noisy environment without any adaptation. Thus, the errors in NA reflect the performance degradation due to the domain gap and sets the lower bound of adaption. Our agent distinctively outperforms the baseline agent and compensates for the unknown
noise. In contrast, “GT Train (GT)” is the model fine-tuned with the ground-truth supervision in the new environment. While the ground-truth pose information is not available in the real world, GT serves as the upper bound of the performance for our adaptation model. In addition to the enhancement in pose estimation, the self-supervised agent successfully generates occupancy representation as accurately as the GT does. We also compare our method to the “Domain Randomization (DR)” [10], which exposes the model randomly to the various combinations of actuation and odometry noise and train with ground-truth supervision. To expose the agent with sufficient variations of unknown noise, DR needs a significant amount of training data (~1.5k trajectories) for fine-tuning. Nonetheless, our model trained with the self-supervised learning method outperforms in all performance metrics by successfully compensating for the unknown noise within a faster training time.

The result exhibits that the global map consistency is a powerful self-supervision task for adapting a pre-trained agent to an unseen environment. Figure 4 shows the visualization of the global maps and pose trajectories from all agents executing the same sequence of actions. The reconstructed map and the trajectory better align with the ground truth and therefore visually confirm that our model outperforms the pre-trained model and the domain randomization model. More qualitative results are available in the supplementary material. Below we also provide the analysis on various conditions of our proposed method.

<table>
<thead>
<tr>
<th>Method</th>
<th>NA</th>
<th>GT</th>
<th>DR</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x, y (m)</td>
<td>0.16</td>
<td>0.03</td>
<td>0.14</td>
<td>0.04</td>
</tr>
<tr>
<td>ϕ (°)</td>
<td>2.69</td>
<td>0.28</td>
<td>1.93</td>
<td>0.3</td>
</tr>
<tr>
<td>Stochastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x, y (m)</td>
<td>0.16</td>
<td>0.04</td>
<td>0.14</td>
<td>0.05</td>
</tr>
<tr>
<td>ϕ (°)</td>
<td>2.77</td>
<td>0.32</td>
<td>2.06</td>
<td>0.34</td>
</tr>
<tr>
<td>Motion Drift</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x, y (m)</td>
<td>0.18</td>
<td>0.05</td>
<td>0.16</td>
<td>0.06</td>
</tr>
<tr>
<td>ϕ (°)</td>
<td>3.91</td>
<td>0.49</td>
<td>2.39</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table 2. Localization error with respect to various types of actuation noise.

Analysis on Various Noise Conditions We additionally demonstrate the performance of environment transfer under various noise conditions. We first set up six environments where the sensor noise severity k in Equation 5 ranges from 0 to 5. Our agent is separately trained in each environment with the self-supervised learning task and compared against the original pre-trained model and the agent trained with ground-truth supervision. Figure 5(a) shows that our self-supervised agent consistently reports superior performance against the agent which is not fine-tuned. The result guarantees that the proposed self-supervised learning task can be utilized for various agents regardless of its odometry sensor noise level.

Our self-supervision task does not assume any noise model and can be applied in various other types of noise. To test the stability of the performance of our fine-tuned agent, we further set up three environments where the three types of actuation noise introduced in Section 3.1 are present, namely constant / stochastic motion bias and motion drift.
The outlined noise corruption reflects the actuation noise model from LoCoBot [26, 40] and it creates a more challenging environment for agents. The result is reported in Table 2. In all cases, our transferred agent shows superior performance against the pre-trained model and exhibits high performance on a par with the GT Train model with the simple self-supervision regardless of unknown variations of noise models.

Forward vs. Backward Error Our formulation in Equation 8 treats the map generated during the forward step M_F as the supervision signal to backward map $M_{B,t}$. However, M_F is also error-prone, and one may question whether it is a valid assumption to treat the forward and backward path separately. To answer the question, we analyze the accumulated pose errors in agent time steps during the round-trip trajectories. In Figure 5(b), we observe that both position and orientation errors increase for all agents as they progress in a trajectory. The motion of turning steps induces significant movement compared to ordinary progression, and introduces a large amount of variation in both position and orientation, especially for the agent trained in a noiseless environment. Although a similar trend is shown in our agent, the self-supervised learning task optimizes the agent to experience less variation. As shown in the graph, our agent consistently accumulates the pose estimation error within a similar extent during its forward and backward path. Therefore the backward path indeed suffers from comparably severe pose errors after the turning point, which could greatly be alleviated from the self-supervision.

Task Robustness to Path Length For our proposed self-supervision task, the only constraint we impose on the set of trajectories collected for training is round-trip. We report that agents trained on a set of fixed-length round-trip trajectories can further generalize to longer trajectories. In the

<table>
<thead>
<tr>
<th>Number of Trajectories</th>
<th>NA</th>
<th>40</th>
<th>80</th>
<th>120</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localization x, y (m)</td>
<td>0.15</td>
<td>0.11</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>ϕ (°)</td>
<td>2.67</td>
<td>1.47</td>
<td>0.4</td>
<td>0.38</td>
<td>0.36</td>
</tr>
<tr>
<td>Mapping MSE</td>
<td>0.25</td>
<td>0.23</td>
<td>0.18</td>
<td>0.18</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Table 3. Robustness to training data size evaluated on localization and mapping. Note that ‘MSE’ denotes ‘mean squared error’.

standard setup presented in Table 1, our proposed task finetunes the agent using short trajectories of 100 agent steps. We show the adaptation performance when an agent is evaluated on trajectories of different lengths, varying from 50 steps up to 600. As the step length increases, we observe diminishing enhancement as shown in Figure 5(c). However, our proposed method still noticeably exceeds the lower bound performance across various trajectory lengths.

Task Robustness to Training Data Size We observe if the self-supervised learning task is trainable from a smaller set of collected trajectories. Our standard experiment uses 160 trajectories for training. In Table 3, we show the result of our self-supervised agent trained on a different amount of trajectory data; 40, 80, 120, and 160. It demonstrates the correlation that more number of trajectories leads to higher pose estimation and mapping performance. Nonetheless, an agent fine-tuned with 40 trajectories still achieves performance enhancement over the pre-trained agent. Furthermore, we suggest an offline data augmentation method in Section 3.2 which increases the number of trainable trajectories size under a limited set of conditions.

4.2. Test-Time Adaptation

In the previous experiments, we followed the conventional train/val split in the Gibson dataset [48] and observed that the self-supervised learning task can adapt an agent to unknown actuation and odometry noise. The training tra-
Table 4. Performance analysis on test-time adaptation.

<table>
<thead>
<tr>
<th>Method</th>
<th>NA</th>
<th>GT</th>
<th>Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Localization x, y (m)</td>
<td>0.15</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>2.73</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Mapping MSE</td>
<td>0.16</td>
<td>0.11</td>
<td>0.12</td>
</tr>
<tr>
<td>Exploration Ratio (%)</td>
<td>82.02</td>
<td>91.06</td>
<td>92.25</td>
</tr>
<tr>
<td>Area (m²)</td>
<td>26.36</td>
<td>30.65</td>
<td>31.27</td>
</tr>
</tbody>
</table>

Table 5. Ablation Study

<table>
<thead>
<tr>
<th>Task</th>
<th>Localization</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>x, y (m)</td>
<td>ϕ (°)</td>
</tr>
<tr>
<td>Ours</td>
<td>0.03</td>
<td>0.36</td>
</tr>
<tr>
<td>Ours w/o data augmentation</td>
<td>0.06</td>
<td>0.41</td>
</tr>
<tr>
<td>Ours w/ last step update</td>
<td>0.15</td>
<td>2.57</td>
</tr>
<tr>
<td>Ours w/ BCE Loss</td>
<td>0.16</td>
<td>2.78</td>
</tr>
</tbody>
</table>

Data Augmentation Given 160 trajectories collected with the pre-trained agent, we augment the data with the proposed random cropping method from Section 3.2. In Table 5, we compare our agent against the agent trained without data augmentation. Our agent estimates the pose more accurately, showing that data augmentation helps agents to generalize across environments.

Step-wise Supervision Our agent back-propagates the global map consistency loss at every step during the backward path. We examine if the step-wise supervision is necessary by comparing against the agent learns from the self-supervised learning only at its last step. The result presented in Table 5 shows that training the self-supervised learning task at every step indeed is helpful and exhibits more accurate pose estimation and mapping compared to the ablated agent which trains only at the last step.

MSE vs. BCE Loss Another possible loss to compare the binary occupancy map is binary cross entropy (BCE) loss, which is used in many existing approaches for map prediction [7, 28]. When used in our self-supervised task, BCE loss shows inferior performance in pose estimation than MSE. We empirically observe that BCE loss incurs noisy gradients compared to MSE loss, with higher variance in magnitude. Such instability in gradients leads to poor convergence and deteriorates fine-tuning. Further analysis on gradients of the two losses is in the supplementary material.

5. Conclusion

In this paper, we presented a light-weight and simple, self-supervised learning task for agents transferring to new, noisy environments. We demonstrated the quick and robust adaptation performance of the self-supervised agent to various actuation and odometry sensor noise on a par with the agent trained with ground-truth data. Our result presents an insight that the global map consistency provides a better understanding of the agent’s pose and its surroundings. We also observe that improvement in observation space leads to the enhancement in action space for embodied visual navigation tasks. We expect our proposed method to be easily applicable to most visual navigation agents due to its simplicity. Furthermore, our optimistic test-time adaptation result points at the real-world deployment as the future research direction.

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No. NRF-2020R1C1C1008195), Samsung Electronics Co., Ltd, and the BK21 FOUR program of the Education and Research Program for Future ICT Pioneers, Seoul National University in 2021.
References

