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Abstract

This work studies Hyperspectral image (HSI) super-
resolution (SR). HSI SR is characterized by high-
dimensional data and a limited amount of training exam-
ples. This raises challenges for training deep neural net-
works that are known to be data hungry. This work ad-
dresses this issue with two contributions. First, we observe
that HSI SR and RGB image SR are correlated and develop
a novel multi-tasking network to train them jointly so that
the auxiliary task RGB image SR can provide additional
supervision and regulate the network training. Second,
we extend the network to a semi-supervised setting so that
it can learn from datasets containing only low-resolution
HSIs. With these contributions, our method is able to learn
hyperspectral image super-resolution from heterogeneous
datasets and lifts the requirement for having a large amount
of high resolution (HR) HSI training samples. Extensive ex-
periments on three standard datasets show that our method
outperforms existing methods significantly and underpin the
relevance of our contributions. Our code can be found at
https://github.com/kli8996/HSISR.git.

1. Introduction

Hyperspectral imaging acquires images across many in-
tervals of the electromagnetic spectrum. It has been applied
to numerous areas such as medical diagnosis [37], food
quality and safety control [23], remote sensing [22] and ob-
ject detection [39]. All these applications benefit from an-
alyzing the spectral information coming with HSIs. One
obstacle in the way of further unleashing this potential is
data acquisition. Acquiring HSIs of high spatial and high
spectral resolution at a high frame rate is still a grand chal-
lenge. There is still no camera to achieve these three goals
at the same time. Cameras for a compromise setting – high
spectral but low spatial resolution – are quite common by
now, though still expensive. As a result, increasing efforts
have been made to advance HSI super-resolution (SR).

While numerous deep learning methods have been de-
veloped for improving the resolution of RGB images (RG-
BIs), methods for HSI SR are fewer. One of the main rea-
sons is the lack of large-scale HSI datasets featuring high-
resolution (HR) HSIs. As known, supervised deep learning
methods need an enormous amount of training data. This
situation, unfortunately, will not be improved in the fore-
seeable future due to the challenges hyperspectral imaging
faces. In this work, we choose a different route and propose
to learn HSI SR with an auxiliary task. We find that while it
is difficult to collect HR HSIs, it is very easy to collect HR
RGB images. It is thus appealing to have a HSI SR method
which can learn from the two heterogeneous sources – RGB
images and hyperspectral images – for hyperspectral ISR.
Our method is designed for this aim.

Although the data distribution is not the same between
RGBIs and HSIs, the two SR tasks do share some common
goals in integrating information from neighboring spatial
regions during the learning. We embrace this observation
and formulate both tasks into the same learning framework
such that the parameter distribution induced by the RGBI
SR task can serve as an effective regularization for our HSI
SR task. The challenge lies in the difference in spectral
band numbers, e.g. three in RGBIs vs. e.g. 31 or 128
in HSIs. To tackle this problem, we decompose the HSI
SR and RGBI SR into a commonly-shared spatial super-
resolution task and two specific spectral refinement tasks,
and propose a novel spatial-spectral neural network to solve
them in a multi-tasking framework. This way, the spatial
super-resolution network is shared between the two tasks to
increase the total amount of supervision. It is in a similar
spirit to other multi-tasking learning methods [46].

While the aforementioned contribution can yield state-
of-the-art performance for HSI SR already, we extend the
method further to learn from ‘unlabeled’ low-resolution
HSI images as well. Semi-supervised learning (SSL) ex-
ploits unlabeled data to reduce over-fitting to the limited
amount of labeled data [16, 32, 45, 49, 25]. While good
progress has been made, the strategies are mainly designed
for high-level recognition tasks. Their applicability to a
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low-level dense regression task such as HSI SR has yet to
be verified. In this work, we again leverage the success
of RGB image (RGBI) SR and propose a cross-model con-
sistency that favors functions giving consistent outputs be-
tween super-resolved RGBIs and super-resolved HSIs. Ba-
sically, we convert LR HSIs into LR RGB images and pass
those through the trained RGBI SR network. In the mean-
while, we pass the LR HSIs through our HSI SR network
to get the super-resolved HSIs and convert them to RG-
BIs with a standard camera response function. We enforce
the consistency between the two versions of super-resolved
RGBIs. This way, supervision is transferred from the better-
trained RGB SR network to our HSI SR network via a sec-
ond route.

To summarize, this work makes two contributions: 1)
a multi-tasking HSI SR method to learn together with an
auxiliary RGBI SR task, and 2) A SSL method to learn also
from ‘unlabeled’ LR HSIs. With these contributions, our
method sets the new state of the art for hyperspectral image
super-resolution.

2. Related Work
Hyperspectral Image Super-Resolution. HSI SR can be
grouped into three categories according to their settings:
1) HSI SR from only RGBIs or HR multispectral images
(MSIs); 2) Single HSI SR from LR HSIs; and 3) HSI SR
from both HR RGBIs (or MSIs) and LR HSIs of the same
scene. Our method belongs to the second group.

HSI SR from only RGBIs is a highly ill-posed problem.
However, it has gained great traction in recent years due
to its simple setup and the well-organized workshop chal-
lenges [8]. Similar to other computer vision topics, the trend
has shifted from ‘conventional’ methods such as radial ba-
sis functions [40] and sparse coding [7] to deep neural net-
works [21, 44, 8]. This trend highlights the need for big-
ger training datasets. Due to the challenge of reconstruct-
ing HSI from RGBIs that contain only three bands, there
emerges research applying MSIs containing 3-8 bands to
reconstruct HSIs [14].

Single image SR aims to model the relationship between
the LR images and HR ones by learning from a collection of
examples consisting of pairs of HR images and LR images.
Single RGBI SR has achieved remarkable results in the last
years. Since the first work of using neural networks for
the task [18], progress has been made in making networks
deeper and the connections denser [28, 57], using feature
pyramids [31], employing GAN losses [34], and modeling
real-world degradation effects [24]. As to single HSI SR,
there has been great early work [3, 58] as well. However,
that is also surpassed by deep learning methods. For in-
stance, Yuan et al. [54] trained a single-band SR method
on natural image datasets, and applied it to HSIs in a band-
wise manner to explore spatial information. The spectral

information is explored via matrix factorization afterwards.
In order to explore both spatial and spectral correlation at
the same time, methods based on 3D Convolutional Net-
works [38, 35] have been developed. Although 3D CNNs
sound like a perfect solution, the computational complexity
is very high. To alleviate this, Grouped Convolutions (GCs)
with shared parameters have been recently used in [36, 27].
The backbone network of our method is also based on GCs.

Fusion-based methods use HR RGBIs (or MSIs) of the
same scene as references to improve the spatial resolution of
the LR HSIs [11, 53, 51]. This stream of methods have re-
ceived more research attention than the former two. Many
learning techniques have been applied to this data fusion
task including Bayesian inference [5, 6, 56], matrix factor-
ization [33, 17], sparse representation [4, 19], and deep neu-
ral networks [41, 50]. The common goal of these methods
is to learn to propagate the detailed information in the HR
RGBIs (or MSIs) to the target HSIs and fuse them with the
fundamental spectral information from LR HSIs. Despite
the plethora of fusion algorithms developed, they all assume
that the LR HSIs and the HR RGBIs (or MSIs) are very well
co-registered [27]. This data registration is a challenge on
its own and registration errors will lead to degraded SR re-
sults [13, 59].
Learning with Auxiliary Tasks. It is quite a common prac-
tice to borrow additional supervision from related auxiliary
tasks, when there is insufficient data to learn a task. The
common strategy is to learn all the tasks together so that
the auxiliary tasks can regularize the optimization. There
are normally two assumptions: (1) we only care about
the performance of the main task and (2) the supervision
for the auxiliary tasks is easier to obtain than that of the
main task. Previous work has employed various kinds of
self-supervised methods as auxiliary tasks for the main su-
pervised task in a semi-supervised setting [30, 10, 42].
For instance, generative approaches have been explored
in [30] and predicting the orientation of image patches is
used in [10]. Another related setting is multi-task learning
(MTL) [47]. In MTL, the goal is to reach high performance
on multiple tasks simultaneously, so all tasks are main tasks
and all tasks are auxiliary tasks. While the goal is differ-
ent, many strategies in MTL such as parameter sharing [9],
task consistency [55], and loss balance [15] are useful for
learning with auxiliary tasks.

3. Approach
HSIs provide tens of narrow bands and RGB images

have three bands. In order to let them share a large part of
the overall network, we decouple both the HSI SR task and
the RGBI SR task into a spatial super-resolution task and a
spectral refinement task. The spatial super-resolution task
is designed to enhance the spatial resolution of a general
single-channel image, regardless of the spectral frequency
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Figure 1: The architecture of our network consisting of a shared encoder and two specific decoders for the two SR tasks.

of that band. This way, it can be used and shared by both of
the SR tasks. The spectral refinement networks are task spe-
cific – one to refine the spectral signals of the three channels
of RGB images and the other to refine the spectral signals
of tens of bands for HSIs.

In this work, we assume that the relationships between
low/high-resolution HSIs and low/high-resolution RGBIs
are correlated, so they should be trained together so that
RGBI SR can provide additional supervision for HSI SR.
This way, the HSI SR method can enjoy training samples
of a much more diverse set of scenes especially those that
cannot be captured well by current hyperspectral imaging
devices such as moving objects. In order to share the spec-
tral super-resolution network by all single bands from the
two tasks, we use a grouped convolutional network with
group size of 1. The grouping strategy is to divide input
HSIs and RGB images into single bands. The architecture
of the network is shown in Fig. 1.

3.1. HSI SR with an Auxiliary RGBI SR Task

Given two SR tasks THS and TRGB, we aim to help
improve the learning of a model for THS by using the
knowledge contained in TRGB. In the supervised setting,
each task is accompanied by a training dataset consisting
of N training samples, i.e., DHS = {xi

HS,X
i
HS}

NHS
i=1 and

DRGB = {xi
RGB,X

i
RGB}

NRGB
i=1 , where xHS ∈ Rh1×w1×C ,

XHS ∈ RH1×W1×C , xRGB ∈ Rh2×w2×Z , and XRGB ∈
RH2×W2×Z . We denote low-resolution (LR) images by x,
high-resolution (HR) images by X, the number of bands of

HSIs by C, the number of bands in RGB images by Z (3
here), and the size of the images by h, w, H and W . Given
a scaling factor τ , we have Hi = τhi and Wi = τwi for
both tasks.

The goal is to train a neural network ΦHS to predict the
HR HSI for a given LR HSI: XHS = ΦHS(xHS). Differ-
ent from previous methods, which have a single network
for the whole task, our method consists of three blocks: an
encoder which is shared by the two SR tasks, and two task-
specific decoders to output the final outputs. More specifi-
cally, ΦHS = (ΦEn,ΦDe

HS) and ΦRGB = (ΦEn,ΦDe
RGB).

In order to share the same encoder between the two SR
tasks to enhance the spatial resolution of all single-band im-
ages, we divide xHS into C single bands and xRGB into 3
single bands. For both tasks, the encoder network ΦEn takes
one low-resolution single-band image as input and gener-
ates one high-resolution single-band image as output, re-
gardless of the spectral frequency of that band. The out-
puts of all the bands of xHS are then concatenated according
to their original spectral band position to assemble a high-
resolution HSI X̄HS ∈ RH1×W1×C . Similarly, we can as-
semble a high-resolution RGB image X̄RGB ∈ RH1×W1×3.
There are two upsampling layers to upscale the size of the
input to the desired size in a progressive manner. This
progressive upsampling has proven useful for both RGBI
SR [31] and HSI SR [27]. The reconstructed X̄HS is then
fed into the decoder network ΦDe

HS as a whole for spectral
refinement in order to generate the final output X̂HS, which
is then compared to the ground truth XHS to compute the
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loss for HSI SR. Likewise, the spatially enhanced X̄RGB is
fed into the decoder network ΦDe

RGB to generate the final HR
RGB estimate X̂RGB, which is then compared to the ground
truth XRGB to compute the loss for RGBI SR. For the re-
finement decoders, all the bands are fed directly to learn
both short-range and long-range spectral correlations to re-
fine the results.

In order to have a modular design, the three sub-
networks have the same basic architecture. The encoder
network for spatial super-resolution is composed of a se-
quence of Spatial Block (SB) modules. The SB module
has two identical basic cells connected in a sequence, each
consists of one 3 × 3 convolutional layer, followed by a
Relu and another 3 × 3 convolutional layer. There is also
skip connection for each of this basic cell. Please see the
bottom-left panel of Fig. 1 for its structure. The two de-
coders designed for spectral refinement of the two SR tasks
have the same architecture and each consist of a sequence of
three spectral-spatial block (SSB) modules. The SSB mod-
ule was proposed in [27] as a basic building block for their
HSI SR network. Each SSB has a Spatial Residual Module
and a Spectral Attention Residual Module. Two Convolu-
tional layers (the first one followed by a ReLu layer) with
3x3 filters are used in the Spatial Residual Module to cap-
ture spatial correlations. Two Convolutional layers (the first
one again followed by a Relu layer) with 1x1 filters are used
in the Spectral Attention Residual Module to capture spec-
tral correlations. Please refer to the bottom-right panel of
Fig. 1 for the architecture of the SSB module.

We construct the whole network with standard Convo-
lutional Layers, SBs, SSBs, Upsampling Layers and Con-
catenation Operations. There are also skip connections at
multiple scales to facilitate the information flow. The input
LR images are also scaled to the desired size via Bicubic
Interpolation and fused with the network output for residual
learning. The complete network is shown in Fig. 1. We
employ the PixelShuffle [43] operator for the upsampling
layer. Given a scaling factor τ , the first upsampling layer
upscales the features τ/2 times and the second one handles
the remaining ×2 factor. The internal features of all SBB
modules are limited to 256 in this work. The filter size of
all Convolutional Layers, except for those 1 × 1 filters in
the Spectral Attention Residual Module of SBBs, are set to
3× 3.

3.2. Semi-Supervised HSI SR

While training with auxiliary RGB SR task can greatly
improve the performance, it is still interesting to investigate
whether the method can also learn from an additional col-
lection of low-resolution hyperspectral images. This setting
is interesting because capturing low-resolution hyperspec-
tral images is much easier than capturing high-resolution
hyperspectral images. This is especially true as modern

snapshot HS cameras that captures LR HSIs at high frame
rate are becoming more and more accessible. This means
that methods that can learn further with low-resolution hy-
perspectral images are practically very useful. In the liter-
ature, there has been a diverse sets of methods developed
for semi-supervised learning (SSL) based on techniques
such as entropy minimization and pseudo-labels generation.
However, they are mostly designed for high-level recogni-
tion tasks and cannot be applied to HSI SR directly.

In this work, we propose a new SSL method specifically
for HSI SR. For this purpose, we again leverage the fact that
RGBI SR is a better-addressed problem, given that it has
a large amount of training data and it predicts only three
channels. The method works as follows: given an image
xHS, we convert it to an RGB image x̃RGB with the camera
response function of a standard RGB camera:

f : x̃
(i,j)
RGB = f ∗ x(i,j)

HS , (1)

where ∗ is a convolution operation. The operation is to inte-
grate the spectra signatures into R, G, and B channels with
the response function of a standard camera. Note that this
conversion is widely used in the literature of spectral image
super-resoluton [20]. The response function of Canon 1D
Mark 3 [26] is used in this work but the method works with
the response functions of other cameras.

The original HSI xHS and the converted RGB image
x̃RGB are then fed into the HSI SR network ΦHS and
the RGBI SR network ΦRGB, respectively, to generate the
super-resolved results:

X̂HS = ΦHS(xHS), (2)

and
ˆ̃XRGB = ΦRGB(x̃RGB). (3)

X̂HS is then converted to an RGB image by using the same
camera response function:

˜̂
X

(i,j)
RGB = f ∗ X̂(i,j)

HS . (4)

Finally, a consistency loss Lssl(
ˆ̃XRGB,

˜̂
XRGB) is computed

between the two HR RGB results. This consistency makes
a good use of low-resolution HSIs and high-resolutoin RGB
images. It transfers supervision from the RGB side to the
HSI side. The diagram of this method is shown in Fig. 2.

3.3. Loss Function

The overall loss for our SR tasks is:

(5)LTotal = LHS(XHS, X̂HS) + LRGB(XRGB, X̂RGB)

+ LSSL( ˆ̃XRGB,
˜̂
XRGB).

The main loss is augmented by the two auxiliary losses
which are optional but highly beneficial.
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Figure 2: The pipeline of our semi-supervised learning.

In order to capture both spatial and spectral correlation of
the SR results, we follow [27] and combine the L1 loss and
the spatial-spectral total variation (SSTV) loss [1]. SSTV
is used to encourage smooth results in both spatial domain
and spectral domain and it is defined as:

LSSTV =
1

N

N∑
n=1

(||▽hX̂
n||1+||▽wX̂

n||1+||▽cX̂
n||1),

(6)
where ▽h, ▽w, and ▽c compute gradient along the horizon-
tal, vertical and spectral directions, resp. The loss is:

L = L1 + LSSTV. (7)

A joint training with all losses together works well in
principle by stacking multiple types of data samples in a
single mini-batch. However, that will heavily limits the size
of the training data for each loss. In this work, we adopt an
alternating training strategy; that is to train with each of the
three losses in turn in every iteration. In our implementa-
tion, the weights for all losses are set to 1. The contributions
of different terms are balanced or controlled by altering the
number of mini-batches for that loss in each iteration. The
influence of these numbers are studied in Sec. 4.2.

4. Experiments
4.1. Experimental Setup

Datasets. We evaluate our method on three public
datasets: CAVE dataset [52], Harvard dataest [12], and
NTIRE 2020 dataset [8]. Images in CAVE and NTIRE 2020
dataset have 31 bands ranging from 400 nm to 700 nm at a
step of 10 nm. Images in Harvard dataset contain 31 bands
as well but range from 420 nm to 720 nm. The CAVE
dataset contains 32 images of 512 x 512 pixels. We use 20
images for training and 10 images for testing. We evaluated
in a supervised setting and a semi-supervised setting. For
our semi-supervised setting, only 5 high-resolution training
images are used and for the remaining 15 images, only their
downsampled low-resolution images are available. For the
Harvard dataset, there are 50 images in total. We use 40
for training and 10 for test. For the semi-supervised set-
ting, 6 high-resolution images and the down-sampled low-
resolution images of the remaining 34 images are used for

training. For NTIRE 2020, there are 480 images. We use
400 images for training and 80 images for test. For the semi-
supervised case, we further split the 400 images into 100
and 300; for the former, their high-resolution images can be
used and for the latter only the downsampled low-resolution
images are available. For the auxiliary RGBI SR task, we
adopt the DIV2K Dataset [2]. Because the resolution of
DIV2K is much higher than our HSIs, we first downsample
them by a factor of ×2 and take these downsampled images
as our HR RGB images. After cropping, it leads to 137, 430
image patches of 64× 64 pixels. This is about 34, 10, and 6
times larger than CAVE, Harvard and NTIRE datasets, re-
spectively.

Methods. We compare the proposed method to four
state-of-the-art HSI SR methods: GDRRN [36], 3DFCNN
[38], SSPSR [27], and MCNet [35]. We use the same train-
ing data for all methods and use the default training settings
given by the authors of these methods. Bicubic interpola-
tion is also introduced as a baseline.

Evaluation Metrics. We follow the literature and eval-
uate the performance of all methods under three standard
metrics [27]. They are root mean squared error (RMSE), er-
reur relative globale adimensionnelle de synthese (ERGAS)
[48], and peak signal-to-noise ratio (PSNR). For PSNR of
the reconstructed HSIs, their mean values of all spectral
bands are reported as MPSNR. ERGAS are widely used in
HSI fusion task.

Parameters. In this work, we focus on scaling factor ×4
and ×8. For the case of ×4, we crop the images into patches
of 64× 64 pixels without overlapping to collect the training
data. For ×8, we use patches of 128 × 128 pixels. Those
patches are then downsampled via Bicubic interpolation to
obtain the corresponding LR HSI patches. The choice of
value for other parameters are studied in Sec. 4.2.

Training Details. We use ADAM optimizer [29] and
train all variants of our method for 20 epoches. This is a
small number compared to the ones used by the comparison
methods. For instance, GDRRN [36] trains for 30 epoches,
3DFCNN [38] trains for 200 epoches, SSPSR [27] for 40
epoches, and MCNet [35] for 200 epoches. We find that 20
epoches are sufficient to give good results for our method,
and believe a larger number probably can further push the
numbers up. The initial learning rate of all our methods is
set to 10−4 and is reduced by a factor of 0.3 after every 3
epoches. As to the batch size, 16 is used for all experiments
except for the case when the SSL loss is added. For that 8
is used due to the limit of GPU memory.

4.2. Ablation Study

We analyze the parameter choices of our method in this
section. Experiments are conducted on the CAVE dataset in
the semi-supervised setting.

Amount of RGB data. The number of mini-batches for
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#(Mini-Batches) 0 1 2 3 4 5 6 8 10

RMSE ↓ 0.01451 0.01357 0.01329 0.01309 0.01308 0.01305 0.01315 0.01315 0.01317

Table 1: Performance as a function of the number of mini-batches for RGBI SR loss.

Components CAVE Harvard NTIRE
Methods RGBSR SSL RMSE ↓ MPSNR ↑ ERGAS ↓ RMSE ↓ MPSNR↑ ERGAS ↓ RMSE ↓ MPSNR↑ ERGAS ↓

Ours 0.0144 40.8385 4.0345 0.0146 40.4666 3.1712 0.0154 38.3149 2.2069
Ours ✓ 0.0118 42.3575 3.0128 0.0134 40.7579 3.0769 0.0150 38.7229 2.1189
Ours ✓ ✓ 0.0114 42.7645 3.3346 0.0132 40.9317 3.0128 0.0150 38.9642 2.065

Bicubic - - 0.0185 38.7380 5.2719 0.0167 38.8975 3.8069 0.0235 34.7401 3.1901
GDRRN [36] - - 0.0246 36.2775 7.0043 0.0160 38.6953 4.3031 0.0197 36.0793 2.8175
3DFCNN [38] - - 0.0173 38.3928 6.7055 0.0157 39.3441 3.6172 0.0208 35.6630 2.8246
SSPSR [27] - - 0.0144 40.9131 4.0406 0.0142 40.3209 3.2274 0.01636 38.0740 2.2539
MCNet [35] - - 0.0146 40.7385 4.1659 0.01468 40.1873 3.26059 0.0168 38.0248 2.2834

Table 2: Results of all methods on the CAVE, Harvard, and NTIRE datasets in the semi-supervised setting for the ×4 case.

loss LHS(XHS, X̂HS) in each iteration is fixed to 1. The

number of mini-batches for loss LSSL( ˆ̃XRGB,
˜̂
XRGB) is set to

3. This is decided by the ratio of the size of low-resolution
hyperspectral dataset to the size of the high-resolution train-
ing set. We have studied the influence of the amount of used
RGB images on the performance, i.e. the data used for loss
LRGB(XRGB, X̂RGB). We evaluate over a large range of val-
ues. The results are shown in Table 1. The performance
increases first with the number of mini-batches and then
decreases with it. This is because at the beginning as the
amount of RGB data increases, more supervision is added to
the system and the spatial super-resolution network is better
trained. However, when too much RGB data (supervision)
is introduced, the network is more trained for the auxiliary
task RGBI SR than for the primary task HSI SR, thus the
performance of the primary task will drop. We fix the num-
ber of batches for RGB data to 3 as it is a good trade-off
between performance and computational time.

4.3. Main Results

We first present the results in the semi-supervised set-
ting. The results of all competing methods and all variants
of our method on the CAVE, Harvard, and NTRIE dataset
are shown in Table 2 and in Table 3. The results in this
table and other results in supplemental material show that
our method outperforms all other state-of-the-art methods
significantly and consistently over all datasets and under all
evaluation metrics.

The good performance of our base model is mainly due
to the use of decoupled spatial-spectral networks for this
task. Due to the design, each sub-network can just focus on
one task: spatial enhancement or spectral refinement. The
network of [38] is quite shallow, probably because 3D con-
volution based methods are computationally heavy in gen-

eral. We believe that this is the reason why their method
does not give top results. When compared to the very recent
method MCNet [35], our base model also performs better in
almost all cases.

The proposed contributions, namely training with the
auxiliary task RGBI SR and the semi-supervised learning
method based on cross-model consistency, both contribute
significantly to the final results. Learning with the auxiliary
task RGBI SR can work on its own. The SSL component
needs to be used together with the auxiliary task RGBI SR.
The results show that our SSL method can provide further
improvement on top of the auxiliary RGBI SR method, and
when the two components are combined together, we get
the best performance.

When more supervision is given such as in the fully-
supervised setting, the conclusions we drawn in the semi-
supervised setting hold as shown in Table 4. The results
show that the proposed components are very effective and
can be applied to situations with varying amount of HR
HSIs. We show visual results of our method and other com-
peting methods in Fig. 3 and Fig.4. The figure shows that
our method generate few errors than all competing methods.

4.4. Discussion

The superior performance shows that our method is able
to learn from heterogeneous datasets rather than only from
pairs of low-resolution and high-resolution HR HSIs. This
greatly increases the amount of training data that can be
used for HSI SR and can also include training samples
for scenes such as moving objects that cannot be captured
easily with the current hyperspectal imaging devices. We
would like to point out that while the general concepts of
learning with auxiliary tasks and semi-supervised learning
are well known, the challenge and novelty lie in defin-
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Components CAVE Harvard NTIRE
Methods RGBSR SSL RMSE ↓ MPSNR ↑ ERGAS ↓ RMSE ↓ MPSNR↑ ERGAS ↓ RMSE ↓ MPSNR↑ ERGAS ↓

Ours 0.0241 35.8976 7.1154 0.0221 36.6527 4.8522 0.0232 32.8287 4.0434
Ours ✓ 0.0215 37.1387 6.1442 0.0205 37.1859 4.5575 0.0269 33.3306 3.8548
Ours ✓ ✓ 0.0206 37.3532 6.0027 0.0201 37.3546 4.5448 0.0263 33.4557 3.8437

Bicubic - - 0.0304 34.2221 8.4350 0.0249 35.7409 5.4772 0.0396 29.9589 5.4594
GDRRN [36] - - 0.0347 32.9363 9.8554 0.0238 35.6441 5.7287 0.0359 30.6723 5.1265
3DFCNN [38] - - 0.0292 32.9024 16.7265 0.0237 36.0551 5.2192 0.3857 9.1753 6.1624
SSPSR [27] - - 0.0248 35.8896 7.0394 0.0228 36.4563 4.9978 0.0326 31.7896 4.4952
MCNet [35] - - 0.0280 34.3116 10.2985 0.0234 36.3921 5.0572 0.0327 31.9629 4.4169

Table 3: Results of all methods on the CAVE, Harvard, and NTIRE datasets in the semi-supervised setting for the ×8 case.

Methods RMSE MPNSR ERGAS

Bicubic 0.03568 29.89529 4.86576

3DFCNN 0.03129 30.92947 4.26353

SSPSR 0.02712 32.18152 3.69979

Ours 0.01993 34.42891 2.71569

(a) Ground Truth & Metrics (b) Bicubic Interpolation (c) 3DFCNN [38] (d) SSPSR [27] (e) Ours

Figure 3: Exemplar results of our method and two competing methods trained in the semi-supervised setting on the CAVE
dataset: top row for the super-resolved results and bottom row for the error maps.

Components CAVE Harvard
Methods RGBI SR RMSE ↓ MPSNR ↑ ERGAS ↓ RMSE ↓ MPSNR ↑ ERGAS ↓

Ours 0.0118 42.3836 3.45912 0.01356 40.91025 3.0104
Ours ✓ 0.0105 43.3242 3.1182 0.0128 41.0589 2.9649

GDRRN [36] - 0.0162 39.7470 4.5268 0.0148 39.6275 3.6793
3DFCNN [38] - 0.0158 39.2178 5.4179 0.0151 39.6627 3.4773
SSPSR [27] - 0.0124 42.1378 3.5514 0.0135 40.8149 3.0500
MCNet [35] - 0.0124 42.2597 3.5624 0.0140 40.5922 3.1052

Table 4: Results of all methods on the CAVE and Harvard datasets in the fully-supervised setting for the ×4 case.

ing proper auxiliary tasks for a new primary task devel-
oping effective SSL methods for a new task. This learn-
ing with auxiliary RGBI SR becomes possible because of
our special network design – decoupling the spatial super-
resolution task and the spectral refinement task and use
two sub-networks for them. It is also known that many

seemingly-related auxiliary tasks yield no improvement or
even degrade the performance of the main task [42]. There-
fore, developing effective methods for learning with auxil-
iary task is not always straightforward.
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(a) Ground Truth

(b) Bicubic Interpolation (c) Error of Bicubic (d) GDRRN [36] (e) Error of GDRRN

(f) 3DFCNN [38] (g) Error of 3DFCNN (h) SSPSR [27] (i) Error of SSSPSR

(j) MCNet [35] (k) Error of MCNet (l) Ours (m) Error of Ours

Figure 4: Exemplar results of ×8 by our method and all comparison methods. The error is L2 distance to the ground-truth
pixel values, averaged over the three bands.

5. Conclusion

In this paper, we have proposed a new method for
hypserspectral image (HSI) super-resolution (SR). We build
a deep convolutional network that decouple the task HSI SR
into two sub-tasks: spatial super-resolution of single spec-
tral band and joint spectral refinement over all bands. The
method yields the state-of-the-art results. To further im-

prove it, we have proposed two more contributions. First,
we extend the network such that the HSI SR task can be
trained together with an auxiliary RGB image SR task to
gain more supervision. Second, the network is extended to
also learn from datasets with LR HSIs only. The contribu-
tions greatly increase the amount of training data that HSI
SR methods can use. Extensive experiments show that all
the contributions are useful for the performance.
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