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Abstract

Online knowledge distillation (KD) mutually trains a
group of student networks from scratch in a peer-teaching
manner, eliminating the need for pre-trained teacher mod-
els. However, supervision from peers can be noisy, es-
pecially in the early stage of training. In this paper, we
propose a novel method for online knowledge distillation
by temporal-spatial boosting (TSB). The proposed method
constructs superior “teachers” with two modules, temporal
accumulator and spatial integrator. Specifically, the tempo-
ral accumulator leverages the previous outputs of networks
during training and produces a representative prediction
over all classes. Instead of merely imitating the outputs of
other networks as in vanilla online KD, we further propose
the so-called spatial integrator that consolidates the knowl-
edge learned by all networks and yields a stronger instruc-
tor. The operations of these two modules are simple and
straightforward, which can be computed efficiently on the
fly during training. The proposed method can improve the
efficiency of transferring effective knowledge as well as sta-
bilize the training process. Experimental results on various
benchmark datasets and network structures validate the ef-
fectiveness of the proposed method over the state-of-the-art.

1. Introduction

Recent advances in deep neural networks [23] have pro-
moted tremendous applications in various tasks, e.g., ob-
ject classification and detection [19, 35], image synthe-
ses [8, 24, 34, 41, 47], natural language processing [52],
game playing [30, 38], and biological imaging [4, 37, 51].
However, the deployment of these pre-trained networks on
resource-limited devices is problematic [13, 2]. This is be-
cause most state-of-the-art networks contain millions of pa-
rameters, making it cumbersome and slow in real-world ap-
plications [39, 11]. To tackle this problem, network com-
pression and acceleration approaches have been investi-
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gated. These efforts can be mainly categorized into light-
weight structure design [13, 43, 16, 3, 27], network prun-
ing [26, 50, 31, 25, 49], factorization [15], quantization [10,
45], knowledge distillation (KD) [1, 36, 12, 48, 22, 46, 9],
etc. KD trains a compact network (referred to as “student”)
by imitating the soft targets generated by pre-trained large
networks [12]. By doing so, the student network achieves
better performance than being trained independently.

Classic KD [12, 36, 54], however, relies on pre-trained
networks as the teacher, which is not always available.
Online knowledge distillation, also known as deep mutual
learning (DML) [57, 22, 9, 5], fills the gap by training stu-
dent peers that learn from each other from scratch. Surpris-
ingly, the student networks trained in this online KD man-
ner even outperform those trained with stronger pre-trained
teachers available using classic KD in many scenarios [57].
Although achieving competitive performance, training net-
works using existing online KD approaches is a highly dy-
namic procedure. This is because the network peers are in-
teractive during the training process. Each student network
learns its parameters from scratch and meanwhile acts as an
instructor for other networks. However, training with devel-
oping instructors tends to involve more uncertainty [57].

To address the above issues, in this study, we propose
a novel online KD approach that can stabilize the training
process and improve the efficiency of knowledge transfer.
We hypothesize that useful information is enclosed in the
evolution of predictions generated by student networks dur-
ing the training process. We thus construct a module re-
ferred to as temporal accumulator for each network, which
tracks the softmax outputs (i.e., predictions) associated with
individual training samples at every epoch. It incorporates
previous outputs to generate more representative targets for
other networks to learn via Kullback–Leibler (KL) diver-
gence. The temporal accumulator fuses the learned knowl-
edge over a certain window size in history, generating more
robust and informative outputs as targets for peers. We fur-
ther introduce a module that integrates the predictions of all
student networks as an extra enhanced teacher at each itera-
tion during training. We refer to it as the spatial integrator,
since it incorporates information provided by different stu-
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dent networks. The proposed spatial integrator is inspired
by model ensemble [1], which trains multiple different net-
works on the same dataset and combines the predictions of
converged models to further improve the performance. Dif-
ferent from that, we integrate the predictions of student net-
works generated during the online training procedure and
provide the integrated predictions as superior targets to su-
pervise all student networks.

Our main contributions are summarized as follows.

• We propose the concept of temporal accumulation for
online KD, which incorporates previous predictions of
the networks during the training procedure to build
representative and robust targets for peer networks, so
as to stabilize the training process and improve the ef-
ficiency of transferring knowledge.

• We introduce spatial integration to the online KD train-
ing, which incorporates predictions of all student net-
works and generates superior integrated targets, taking
advantage of the diversity among student peers.

• We evaluate our method with various benchmark
datasets and network structures. Experimental results
validate the performance improvement of our method
over state-of-the-art online KD works.

2. Related work
2.1. Classic knowledge distillation

Although KD was first described back in 2006 [1], it did
not draw too much attention until the influential work by
Hinton et al. [12], where the KL divergence between the
softmax outputs of a student network and the soft targets of
a pre-trained teacher network is minimized. In addition to
imitating the outputs of the pre-trained model, researchers
have explored matching information between the teacher
and the student at various levels to further improve the per-
formance. For example, Fitnets [36] considers the teacher’s
intermediate hidden layers as hints to guide the training of
the student network. Zagoruyko and Komodakis proposed
to transfer the attention information of the teacher to the
student [54]. Contrastive representation distillation (CRD)
[42] brings the contrastive learning mechanisms to KD by
utilizing the structural knowledge of the teacher network.

2.2. Online knowledge distillation

Pre-trained teachers may not be accessible in real-world
applications due to several reasons such as business com-
petition, storage cost, and privacy protection. To fill in the
gaps, the concept of online knowledge distillation was pro-
posed. As one of the earliest studies, deep mutual learn-
ing (DML) [57] trained a group of student networks si-
multaneously for image classification from scratch. Be-
sides the common cross-entropy loss, the KL divergence

is also calculated as the knowledge distillation loss, mea-
suring the similarity of the softmax outputs of each stu-
dent network and its peers. ONE [22] re-designed several
popular networks such as ResNet [11] and ResNeXt [53]
by adding multiple auxiliary branches on shared low-level
layers. With such specific architectures and a gating mod-
ule, predictions of all branches are integrated to provide a
strong instructor for guiding the training of each branch. Al-
though achieving competitive performance, networks need
to be specially re-designed before training and pruned for
deployment. KDCL [9] proposed to add different distor-
tions to the training samples of each student network and
designed several methods for combining the outputs of the
networks via collaborative learning. AFD [5] leveraged the
knowledge hidden in the feature maps of each model to fur-
ther improve the performance of DML, with an adversarial
training framework.

2.3. Ensemble learning

Ensemble learning has been widely investigated in var-
ious machine learning problems and applications. For ex-
ample, it has been recognized as a common trick for im-
proving the performance of neural networks, which trains a
group of different models on the same data and then makes
predictions by averaging their predictions [7, 56, 40, 20].
Laine and Aila proposed an ensemble approach for semi-
supervised learning, which uses the outputs of the network
during training to provide a consensus prediction for the un-
known labels [21]. By doing so, the network can achieve
competitive performance with only a small portion of la-
beled samples. Recent studies in deep-Q network [29]
showed that the performance of the policy network can be
improved by updating its parameters with soft ensemble tar-
gets, rather than using a fixed target network that periodi-
cally updates in reinforcement learning [28, 17]. In the area
of KD, [12] showed that the knowledge learned with an en-
semble of multiple models can be compressed into a single
network. ONE [22] can be considered as an ensemble of
multiple specifically-designed branches.

Inspired by these studies, we propose two modules that
integrate information from different perspectives for online
KD. The proposed temporal accumulator incorporates tem-
poral information for each student network by combining
previous predictions and current predictions. The proposed
spatial integrator incorporates the information among dif-
ferent networks at each iteration during the training process.

3. The proposed approach
In this section, we present the proposed online KD ap-

proach with temporal-spatial boosting (TSB) in the context
of image classification. The overall framework of TSB is
illustrated in Fig. 1. For the sake of simplicity, we elaborate
the proposed method with two student networks. Gener-
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Figure 1. Framework of the proposed online KD approach with temporal-spatial boosting (TSB). Two student networks are trained simul-
taneously in a peer-teaching manner. pt represents the predictions at current epoch, and pt−1 and pt−2 represent the historical predictions
at epoch t− 1 and t− 2, respectively. The loss function for optimizing each network is composed of three components. Lce represents the
cross-entropy loss between the network’s outputs and ground-truth labels. Lta and Lsi are the KL divergence of the network’s outputs and
the results of the other peer’s temporal accumulator and the spatial integrator, respectively. Details are presented in Section 3.

alization to more networks is straightforward and will be
discussed later in this section.

Online Knowledge Distillation Denote the training set
D = {(xk, yk)}Nk=1, which consists of N image-label pairs
from C classes. Suppose there are two networks, θ1 and θ2.
It is worth noting that structures of these two networks are
not necessarily identical. In the context of online KD, both
networks are “students” that need to be trained from scratch.
With a sample x fed in, the prediction of θi (i ∈ {1, 2})
over the class c (c ∈ {1, · · · , C}) can be represented as
pi(c|x, θi) in Eq. (1).

pi(c|x, θi) = exp (zic/τ)∑C
l=1 exp(z

i
l/τ)

, i = 1, 2, c = 1, · · · , C,

(1)
where zic is the c-th logit of network θi, τ is the temper-
ature used for softening the predictions. In the rest of the
paper, we use pi(x, θi) or pi to represent the prediction of
the network θi over C classes unless stated otherwise.

Student networks are trained simultaneously in a peer-
teaching manner. Our loss function for optimizing each net-
work consists of the classification loss and the knowledge
distillation loss. The cross-entropy loss (Lce) is adopted as
the classification loss to measure the error between the pre-
dictions and the ground-truth labels for each network sep-
arately. In this case, τ is set to 1 in Eq. (1). The basic
idea of online KD is treating each other as the “teacher”.
To measure the effectiveness of distilling knowledge from a
“teacher” to a “student”, we use the Kullback–Leibler diver-
gence to quantify the alignment of their predictions, which
is represented with Eq. (2),

Lkl(p
i, pj) =

C∑
c=1

pi(c|x, θi) log pi(c|x, θi)
pj(c|x, θj) , (2)

where pi and pj represent the predictions of θi and θj over

all C classes, respectively.
Supervision from peers can be noisy during the process

of training from scratch, providing limited information to
other networks. To construct an effective “teacher” for each
network, we propose the following two novel modules.

Temporal Accumulator The first module is named the
temporal accumulator, which leverages the history infor-
mation of predictions to provide a superior “teacher”. Let
Zi ∈ RN×C contain the accumulated predictions of net-
work θi for all training samples, where each row is bun-
dled with the unique index of a training sample. It is im-
portant to notice that during the optimization with gradient
descent, training samples can be shuffled before being fed
into the networks, but the indices of the training samples
corresponding to those in Zi need to be identical. Zi can be
represented as Eq. (3).

Zi = [pta,it (x1, θ
i), pta,it (x2, θ

i), · · · , pta,it (xN , θi)]T ,
(3)

where pta,it represents the prediction yielded by the tempo-
ral accumulator, which is defined in the following Eq. (4).

pta,it (xk, θ
i) = β · pta,it−1(xk, θ

i) + (1− β) · pit(xk, θ
i), (4)

where t is the index of the current training epoch, pta,it−1 and
pta,it are the accumulated prediction results of θi at the pre-
vious epoch t−1 and current epoch t, respectively, and pit is
the prediction results at the current epoch t. The range of β
is (0, 1), which can be viewed as a momentum term that re-
flects how many history data are involved. By doing so, the
temporal accumulator smooths out stochastic noisy predic-
tions resulted from the dynamic training procedure and pro-
duces robust outputs that can represent the long-term trend
of predictions. We use a toy example as shown in the right
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Figure 2. Illustration of (a) temporal accumulator and (b) spatial integrator. The right panel of (a) shows a toy example of applying temporal
accumulator on raw noisy data. The right panel of (b) shows spatial integrator can consistently improve the performance during training.

panel of Fig. 2(a) to illustrate the effectiveness of temporal
accumulation, where the black and the pink curves depict
the raw data and the smoothed data after temporal accu-
mulation, respectively. It is observed that the output of the
temporal accumulator preserves the trends of the raw data
as well as smooths out the oscillations.

In addition, we also use Eq. (5) to correct the bias intro-
duced by initializing Zi with zeros.

Zi = Zi/(1− βt), (5)
where t is the index of the current training epoch and βt

is β to the t-th power. Besides, we use a warm-up function
w(t) to reduce the weight of temporal accumulation loss at
the very early stage of training. Hence,

Li
ta = wi(t) · Lkl(p

i
t, p

ta,j
t ), i ̸= j. (6)

When generalized to multiple networks, Li
ta can be ex-

tended by calculating the sum of pair-wise KL divergence
between pit and the output of other networks’ temporal ac-
cumulators. Zi has a constant overhead proportional to the
number of training samples, so it can be fairly large when
the dataset is large-scale. In each iteration, only a mini batch
of its elements are accessed. Hence, Zi can be stored in a
large but infrequently accessed memory in implementation.

Spatial Integrator We further propose a second boost-
ing module that utilizes the diversity of student peers at
each iteration, which we refer to as spatial integrator. Here
we use “spatial” to highlight the relationship of the student
peers. As shown in the left panel of Fig. 2(b), it takes the
predictions produced by all student networks as the input
and generates an integrated prediction as a superior soft tar-
get as in Eq. (7),

psit = g(pit, p
j
t ), (7)

where g(·) is the integration operation, and psit is the
integrated output of the spatial integrator. Here, we de-
fine the operation of the spatial integrator as averaging, i.e.,
psit = 1

2 · (pit + pjt ). It has been proved that averaging
the predictions of the large ensemble of different converged
models can outperform the individual models [12]. In this
work, we claim that averaging the predictions of the student
peers during training from scratch provides a superior soft
target for online KD. A straightforward example is shown

Algorithm 1: Online Knowledge Distillation by
Temporal-Spatial Boosting

Input: Training data D; Training epochs T ;
Warm-up function w(t); the number of
training samples N ; the number of classes
C; the number of student networks M

Output: Trained models
Initialize {θi}Mi=1; t = 0; Temporal Accumulator
{Zi

0 ← 0[N×C]}Mi=1

while t < T do
Compute the predictions of the networks, pit, by
Eq. (1), respectively;

Update Temporal Accumulators Zi
t by Eqs. (3),

(4), and (5);
Compute the spatially integrated predictions psit

from pit by Eq. (7);
Compute the total loss by Eqs. (6), (8), and (9);
Update the model parameters {θi}Mi=1;

end

in the right panel of Fig. 2(b), in which two ResNet-32 net-
works are trained on CIFAR-100 in an online KD manner.
The curves labeled with “Acc. 1”, “Acc. 2”, and “With SI”
are the test accuracy (%) of two individual networks (with
vanilla online KD) and with the proposed spatial integrator
evaluated during the training process, respectively. Our em-
pirical study shows the spatial integrator can consistently
outperform the individual networks during the entire train-
ing procedure. When the method is generalized to multi-
ple networks, we exert g(·) on the predictions of all student
networks to obtain the integrated prediction. The spatial in-
tegration loss for each network is represented in Eq. (8),

Li
si = Lkl(p

i
t, p

si
t ). (8)

In summary, the overall loss function for training net-
work θi is shown in Eq. (9).

Li = Lce(p
i, y) + λta · Li

ta + λsi · Li
si, (9)

where λta and λsi are the scaling factors. The pseudocode
is summarized in Algorithm 1.
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CIFAR-10

Networks Ind DML [57] KDCL [9] ONE [22] TSB (Ours)
Net Net 1 Net 2 Ens Net 1 Net 2 Ens Net 1 Net 2 Ens Net 1 Net 2 Ens

ResNet-20 91.89 92.06 92.02 92.63 92.78 92.64 93.18 92.54 92.72 93.21 93.30 93.32 94.01
ResNet-32 92.77 92.90 93.30 93.68 93.75 93.52 94.47 93.68 93.90 94.19 93.90 94.04 94.73
WRN-16-2 93.21 93.69 93.70 94.19 94.10 93.82 94.30 93.97 94.26 94.28 94.73 94.54 95.07
WRN-16-4 94.57 95.04 94.88 95.35 95.05 95.15 95.45 95.37 95.53 95.61 95.81 95.82 96.18
WRN-28-2 94.34 94.79 94.71 95.16 95.08 94.98 95.53 94.50 95.19 95.24 95.46 95.25 95.87
MobileNet 87.53 87.91 87.93 88.50 89.76 90.02 91.04 89.20 89.18 89.20 90.31 90.39 91.40
VGG-13 90.58 90.52 90.70 91.13 93.47 93.50 93.95 92.86 92.79 92.83 94.66 94.46 95.16

CIFAR-100

Networks Ind DML [57] KDCL [9] ONE [22] TSB (Ours)
Net Net 1 Net2 Ens Net 1 Net 2 Ens Net 1 Net 2 Ens Net 1 Net 2 Ens

ResNet-20 67.48 68.84 69.00 70.71 70.68 70.26 72.58 70.33 70.71 72.21 71.72 71.36 73.40
ResNet-32 68.99 71.20 71.15 72.98 72.61 72.77 74.42 72.46 72.93 74.41 74.01 73.67 76.15
WRN-16-2 73.26 72.77 73.11 74.54 75.49 74.81 76.87 72.75 72.52 74.63 75.96 75.65 77.51
WRN-16-4 75.38 76.11 76.16 77.66 79.08 78.84 80.51 77.58 77.25 78.40 79.81 79.32 81.08
WRN-28-2 73.50 75.23 75.50 77.23 77.34 77.17 79.52 76.81 76.48 78.42 77.89 77.71 80.24
MobileNet 64.60 63.45 63.48 65.28 66.37 65.84 68.47 63.34 63.30 63.27 66.88 67.35 69.36
VGG-13 74.64 73.96 73.28 74.99 73.83 74.08 75.34 75.11 75.88 76.11 77.19 77.07 78.53

Table 1. Top-1 test accuracy (%) comparison with state-of-the-art online KD methods on CIFAR-10/100 using two networks with the same
architectures. Ind represents the baseline when the network is trained independently with cross-entropy loss. For ONE, Net 1 and Net 2
represent two different branches. Ens represents the performance of the ensemble of Net 1 and Net 2 by averaging their predictions.

4. Experiments and Results

4.1. Setup

In this section, we evaluation our proposed approach
with a number of benchmark network structures, including
ResNet [11], Wide ResNet (WRN) [55], MobileNetV2 [13],
and VGG [39], on various widely-used image classification
datasets, including CIFAR-10/100 [18] and ImageNet [6].

For the CIFAR-10/100 experiments, we train each net-
work for 240 epochs with a batch size of 64. For Mo-
bileNetV2, the width multiplier is set to 0.5. The initial
learning rate is set to 0.01 for MobileNetV2 and 0.05 for
other structures, respectively. The learning rate is decayed
by 0.1 at the 150th, 180th, and 210th epoch, respectively.
All the models are trained with an SGD optimizer with a
momentum of 0.9 and weight decay of 0.0005. The tem-
perature for softening the softmax output is set to 4. With a
thorough parameter search, we observe that the best perfor-
mance is obtained when β = 0.8 in Eqs. (4) and (5). With
empirical study, we find that applying a smaller weight to
the KL divergence losses helps to improve the performance.
Therefore, we set both λta and λsi to 0.5 for simplicity. We
warm up the training process by zero-outing the KL diver-
gence loss for the first 20 epochs. For the ImageNet ex-
periments, we mainly follow the training procedure in [9].
Specifically, we use a batch size of 256. For ResNet, we
train the models for 200 epochs, with the learning rate start-
ing from 0.1, and decayed by 0.1 at the 60th, 120th, and
180th epoch, respectively. The weight decay factor is set to

0.0001. For MobileNetV2, the width multiplier is set to 1.0.
MobileNetV2 networks are trained for 300 epochs and the
learning rate is decayed by 0.1 at the 90th, 180th, and 270th
epoch, respectively. During the test stage, samples are re-
sized to 256 × 256 and then center-cropped to 224 × 224.
All the other hyperparameters remain the same as those in
the CIFAR-10/100 experiments.

We compare the performance of the proposed TSB with
several state-of-the-art online KD approaches, including
DML [57], ONE [22], and KDCL [9]. Besides, we adapt
several popular classic KD methods into their online ver-
sions. To achieve a fair comparison, all these approaches are
re-implemented using the above training configuration. In
each experiment, we use Ind to represent baseline when the
network is trained independently with cross-entropy loss.
In addition to the performance of each student network, we
report the performance of the ensemble of all student net-
works by averaging their predictions, denoted with Ens. Be-
sides, Avg is used to represent the average performance of
all student networks.

4.2. Main results

4.2.1 Results on CIFAR-10/100

We mainly evaluate our approach on CIFAR-10/100 with
two student networks mutually trained from scratch. The
performance with more student networks will be presented
in Section 4.3.3. Firstly, we compare the performance using
two networks with the same architectures, including various

201



CIFAR-10
Networks Ind DML [57] KDCL [9] TSB (Ours)

Net 1 Net 2 Net 1 Net 2 Net 1 Net 2 Ens Net 1 Net 2 Ens Net 1 Net 2 Ens
ResNet-20 ResNet-32 91.89 92.77 92.16 92.63 93.21 93.07 93.53 93.84 93.32 94.01 94.41
ResNet-32 WRN-16-4 92.77 94.57 93.22 94.55 94.51 93.72 95.08 94.88 94.30 95.71 95.58
WRN-16-2 WRN-16-4 93.21 94.57 93.87 94.59 94.52 94.27 95.18 95.08 94.82 95.72 95.60
WRN-16-4 WRN-28-2 94.57 94.34 94.93 94.50 95.08 95.17 94.78 95.30 95.58 95.36 96.01

MobileNetV2 WRN-16-4 87.53 94.57 88.85 93.05 91.90 90.11 94.39 93.38 90.52 95.17 94.20
VGG-13 WRN-16-2 93.58 93.21 92.88 93.06 93.66 93.71 93.41 94.33 94.74 94.39 95.36

CIFAR-100
Networks Ind DML [57] KDCL [9] TSB (Ours)

Net 1 Net 2 Net 1 Net 2 Net 1 Net 2 Ens Net 1 Net 2 Ens Net 1 Net 2 Ens
ResNet-20 ResNet-32 67.48 68.99 68.31 70.28 71.26 69.90 72.99 73.97 70.98 73.08 74.39
ResNet-32 WRN-16-4 68.99 75.38 71.90 76.61 75.93 73.28 78.70 78.79 74.12 79.32 79.45
WRN-16-2 WRN-16-4 73.26 75.38 72.43 76.26 75.85 74.36 78.63 78.02 75.70 79.41 79.44
WRN-16-4 WRN-28-2 75.38 73.50 76.94 75.33 77.96 78.64 76.76 79.98 79.23 77.93 80.64

MobileNetV2 WRN-16-4 64.60 75.38 63.84 72.87 71.37 67.33 77.50 75.92 68.12 78.77 77.55
VGG-13 WRN-16-2 74.64 73.26 71.90 71.30 74.24 76.42 74.11 74.61 77.66 74.82 78.75

Table 2. Top-1 test accuracy (%) comparison with state-of-the-art online KD methods on CIFAR-10/100 using two networks with different
architectures. Ind and Ens have the same meaning as in Table 1.

ResNets, WRNs, MobileNetV2, and VGG. We continue the
comparison with different architectures, with a number of
representative combinations of the above architectures. The
results are listed in Tables 1 and 2, respectively.

Same Architecture In this scenario, we observe that the
proposed TSB consistently outperforms the state-of-the-art
methods to different degrees. For instance, for WRN-16-2,
our method achieves an accuracy of 94.73% while the best
state-of-the-art (ONE in this case) achieves an accuracy of
94.26%. We also report the performance of the ensemble of
two networks as described in Section 4.1. With the ensem-
ble, our accuracy increases to 95.07% while the best perfor-
mance achieved by the previous study (KDCL) is 94.30%.
In addition to the improved performance, we also observe
that in most cases the two networks trained with TSB ex-
hibit less difference in terms of test accuracy. For example,
with ResNet-20, the test accuracies of the two networks are
93.30% and 93.32%, respectively, with only a 0.02% differ-
ence, while the differences with DML, KDCL, and ONE are
0.04%, 0.14%, and 0.18%, respectively. This phenomenon
indicates the effectiveness of the temporal accumulator and
spatial integrator in stabilizing the training process.

Different Architectures We also conduct experiments
in which the two networks have different architectures.
Since ONE only works for the same architectures due to
its unique configuration, we exclude it in the compari-
son in this scenario. It is observed that TSB consistently
achieves superior performance with different structure com-
binations. It is worth noting that the improvement of the
state-of-the-art methods over the baselines is quite limited
in some cases. For example, when using MobileNetV2
and WRN-16-4 on CIFAR-100, the performance of DML

is even worse than the baseline. A similar phenomenon is
also observed when training MobileNetV2 and WRN-16-4
with KDCL on CIFAR-10. It is probably caused by the sig-
nificant difference in their architecture. It is worth noting
that when the capacity difference of the two networks is too
large, for example, using MobileNetV2 and WRN-16-4, the
ensemble of these two models has a good chance of result-
ing in worse performance. In the case of both the individ-
ual networks and the ensemble, TSB consistently generates
competitive performance compared to the state-of-the-art.

4.2.2 Results on ImageNet

We further evaluate the performance of our proposed ap-
proach on the large-scale dataset (ImageNet) with ResNet-
18 and MobileNetV2. Two networks with the same struc-
ture are trained with various state-of-the-art online KD
methods. We report the average performance of two net-
works in Table 3. Our TSB achieves competitive per-
formance compared with state-of-the-art on both network
structures. Compared to the baseline where the network is
trained independently with cross-entropy loss, the perfor-
mance with our method increases by 1.5% and 1.0%, re-
spectively, while KDCL only outperforms the baseline by
0.9% and 0.6%, respectively. These results verify the effec-
tiveness of the proposed TSB on large-scale image datasets.

4.2.3 More comparisons with other approaches

Since there have been only a few studies on online KD, to
further expand the scope of performance comparison, we
adopt a number of popular classic KD approaches into their
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Network Types Ind DML [57] ONE [22] KDCL [9] TSB (Ours)
ResNet-18 69.8 70.3 70.6 70.7 71.3

MobileNetV2 71.9 72.2 72.4 72.5 72.9
Table 3. Top-1 test accuracy (%) comparison with state-of-the-art online KD methods on ImageNet. Reported are the average performance.

Networks Approach Net 1 Net 2 Ens

ResNet-32

FitNet [36] 72.86 72.90 73.58
AT [54] 72.97 73.00 75.04

CRD [42] 72.53 72.78 74.46
NST [14] 72.38 72.29 72.71
SP [44] 72.71 72.76 73.24

RKD [32] 72.54 72.61 72.72
PKT [33] 73.22 73.43 73.97

Ours 74.01 73.67 76.15

WRN-16-2

FitNet 74.73 74.82 74.83
AT 74.49 74.28 74.66

CRD 74.04 73.94 74.10
NST 74.48 74.49 74.62
SP 74.66 74.54 75.01

RKD 73.86 73.96 73.99
PKT 74.67 74.76 75.11
Ours 75.29 75.59 77.23

Table 4. Top-1 test accuracy (%) comparison with more online KD
methods modified from their classic KD versions on CIFAR-100.

online versions, built upon the scheme of DML. Hence,
DML is considered the baseline in this experiment. It is
worth noting that all of these methods transfer feature-level
information in addition to logits/predictions. Experimen-
tal results with ResNet-32 and WRN-16-2 on CIFAR-100
are shown in Table 4. It is observed that these adapted ap-
proaches outperform the baseline DML approximately by
1% to 2% in test accuracy. This is reasonable because these
methods introduce extra alignments on their feature maps in
addition to minimizing the KL divergence of the networks’
predictions. It is observed that TSB outperforms these ap-
proaches with a clear margin, although our approach only
transfers knowledge at the level of logits. These results fur-
ther confirm the effectiveness of TSB.

4.3. Ablation studies and analyses

4.3.1 Effect of different components in TSB

TSB consists of two main modules, a temporal accumu-
lator (TA) and a spatial integrator (SI), built upon vanilla
online KD (DML). In this ablation study, we evaluate the
effectiveness of each proposed component by comparing
the performance of the following configurations: (1) DML,
(2) DML+TA, (3) DML+SI, and (4) DML+TA&SI (TSB).
We use three network combinations (two with the same
architectures and one with different architectures) on both
CIFAR-10 and CIFAR-100. The results are shown in Table
5. It is observed that when introducing either TA or SI to
the vanilla online KD, the performance increases consider-

(a) ResNet-32 (b) WRN-16-2

Figure 3. Test accuracy (%) comparison using different β values
with ResNet-32 and WRN-16-2 on CIFAR-100.

ably in all six experiments. In addition, when using both TA
and SI, the performance is further improved. These results
validate the effectiveness of both components proposed for
the online KD training procedure.

4.3.2 Effect of β

As mentioned in Section 3, β can be considered as a mo-
mentum term that controls how many previous predictions
are involved in the next round. The exponentially weighted
averages in Eq. (4) is approximately equivalent to av-
eraging over 1/(1 − β) epochs. Here we evaluate how
different amounts of previous data involved to produce
the temporally-accumulated predictions will influence the
performance. We consider ResNet-32 and WRN-16-2 on
CIFAR-100. β varies from 0.1 to 0.9 with a step of 0.1.
From the results in Fig. 3, it can be observed that when
β = 0.8, the best performance is obtained for both architec-
tures. That is, approximately averaging over 1/(1− 0.8) =
5 epochs achieves the optimal performance. As β increases
or decreases, though the accuracy drops some, they are still
competitive compared to other approaches, indicating the
relative robustness of TSB against β selection. Intuitively,
larger β indicates that more previous data are involved in
the temporal accumulation and they play a more important
role in generating the soft targets than the current predic-
tions. An appropriate value of β (0.8 in our cases) is needed
to balance the weights of previous and current predictions.

4.3.3 Performance with multiple networks

In this experiment, we study the proposed online KD
method with multiple (more than 2) student networks. We
employ ResNet-32 and WRN-16-4 on CIFAR-100 and vary
the number of student networks from 1 to 4. One student
network means independent learning. The results are shown
in Fig. 4. Both average performance (Avg) and performance
of the ensemble (Ens) are reported. As expected, for all
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Datasets Networks DML [57] DML+TA DML+SI TSB (DML+TA+SI)
Net 1 Net 2 Avg Ens Avg Ens Avg Ens Avg Ens

CIFAR-10
ResNet-32 ResNet-32 93.10 93.68 93.58 94.22 93.57 94.23 93.97 94.73
WRN-16-4 WRN-16-4 94.96 95.35 95.62 96.10 95.50 95.98 95.82 96.18
ResNet-32 WRN-16-4 94.23 94.52 94.59 95.20 94.85 95.42 95.01 95.58

CIFAR-100
ResNet-32 ResNet-32 71.18 72.98 73.47 75.07 73.20 74.60 73.84 76.15
WRN-16-4 WRN-16-4 76.14 77.66 79.03 80.54 79.51 80.31 79.57 81.08
ResNet-32 WRN-16-4 74.26 75.93 76.27 79.31 76.11 78.68 76.72 79.45

Table 5. Top-1 test accuracy (%) comparison on CIFAR-10 and CIFAR-100 using different components of our proposed TSB.

(a) ResNet-32, Avg (b) ResNet-32, Ens (c) WRN-16-4, Avg (d) WRN-16-4, Ens

Figure 4. Test accuracy (%) comparison with different number of student networks trained on CIFAR-100 in the online manner.

four online KD approaches, both avg and ens increase as the
number of student networks increases since more students
provide more diversity. It is observed that our proposed
TSB approach achieves superior performance in terms of
test accuracy in all scenarios with the number of student
networks varying from 2 to 4. It is also worth mentioning
that, there is a tendency that with more students involved,
the growth rate of performance slows down, indicating the
saturation of performance improvement.

4.3.4 Stabilizing the training procedure

One of our main motivations for introducing TA and SI is
to provide superior instructors that can stabilize the online
training process. To better understand the effect of these
components, we visualize the test loss and accuracy of our
method and DML over the training epochs, with ResNet-
32 and WRN-16-4 on CIFAR-100. As shown in Fig. 5,
for both networks, the test loss and accuracy curves of TSB
are smoother, showing fewer spikes. However, the curves
of DML significantly oscillate, especially in the first 150
epochs. It is observed that approximately at the 110th epoch
in the ResNet-32 experiment, the test loss has a significant
spike, suddenly increasing from 2.5 to 4.1. Consequently,
a big drop occurs in the test accuracy curve. Similar phe-
nomena are also observed in the WRN-16-4 experiments,
where spikes occur approximately at the 45th, 80th, and
95th epochs. These results validate the effectiveness of the
proposed method in stabilizing the training procedure.

5. Conclusion

In this paper, we presented a novel method for online
knowledge distillation, which can stabilize the training pro-

(a) ResNet-32, test loss (b) ResNet-32, test accuracy

(c) WRN-16-4, test loss (d) WRN-16-4, test accuracy

Figure 5. Comparison of the proposed TSB and the baseline DML
in terms of test loss and test accuracy (%) during the training pro-
cess with ResNet-32 and WRN-16-2 on CIFAR-100.

cess and improve performance. Two novel modules, tem-
poral accumulator and spatial integrator, were proposed to
provide superior and robust instructors for student networks
during the training procedure. Extensive experiments, as
well as comprehensive ablation studies, on various bench-
mark datasets and network structures, were conducted to
validate the effectiveness of the proposed approach.
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