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Abstract

Single image deraining is typically addressed as residual
learning to predict the rain layer from an input rainy im-
age. For this purpose, an encoder-decoder network draws
wide attention, where the encoder is required to encode
a high-quality rain embedding which determines the per-
formance of the subsequent decoding stage to reconstruct
the rain layer. However, most of existing studies ignore
the significance of rain embedding quality, thus leading
to limited performance with over/under-deraining. In this
paper, with our observation of the high rain layer recon-
struction performance by an rain-to-rain autoencoder, we
introduce the idea of “Rain Embedding Consistency” by
regarding the encoded embedding by the autoencoder as
an ideal rain embedding and aim at enhancing the derain-
ing performance by improving the consistency between the
ideal rain embedding and the rain embedding derived by
the encoder of the deraining network. To achieve this, a
Rain Embedding Loss is applied to directly supervise the
encoding process, with a Rectified Local Contrast Normal-
ization (RLCN) as the guide that effectively extracts the can-
didate rain pixels. We also propose Layered LSTM for re-
current deraining and fine-grained encoder feature refine-
ment considering different scales. Qualitative and quanti-
tative experiments demonstrate that our proposed method
outperforms previous state-of-the-art methods particularly
on a real-world dataset. Our source code is available at
http://www.ok.sc.e.titech.ac.jp/res/SIR/.

1. Introduction

Single image deraining is the task to remove the rain
from a single rainy image and has been treated as a signif-
icant process, since the images captured under rainy condi-
tions are heavily degraded, which may disturb many high-
level computer vision tasks, such as object detection [20],
video surveillance [22], and autonomous driving [2]. Sin-
gle image deraining is very challenging since it is a highly
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Figure 1. An overview of the proposed network. St denotes cross-
stage states for LSTM with hidden states H and cell states C.

ill-posed problem to decompose an observed rainy image
into the rain layer and the rain-free background image.

Various deraining methods based on a physical or a
subjective prior on rain streaks or background have been
proposed [4, 19, 44]. However, these prior-based meth-
ods have limited applicability for the images captured un-
der complex rainy situations. On the other hand, data-
driven learning-based deraining methods based on a Convo-
lutional Neural Network (CNN) have recently demonstrated
their superior performance on different benchmark datasets
(see [16, 17, 40] for reviews).

An encoder-decoder model is one of widely applied net-
work architectures for single image deraining [15, 25, 31,
41], where the typical target of the encoder-decoder is to
predict the residuals R = I − B between the input rainy
image I and the rain-free background image B [9]. Since
the residuals correspond to the rain layer, the predicted rain-
free image B̂ is derived by subtracting the predicted resid-
uals R̂ from the input rainy image I as B̂ = I − R̂. In
this residual deraining encoder-decoder, the encoder is re-
quired to encode a latent high-quality rain embedding well
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representing the rain layer information, which is a base for
high-performance rain layer generation by the subsequent
decoding process by the decoder [1]. However, the derain-
ing performance is often limited due to the learned low-
quality rain embedding as the encoder fails to decompose
the rain features with the input rainy image where the rain
and the background are tightly coupled. This may cause in-
sufficient rain removal (under-deraining) or lacked textures
(over-deraining).

In this paper, we introduce the idea of “Rain Embedding
Consistency.” To explain this, we consider a rain-to-rain au-
toencoder as shown in the bottom part of Fig. 1, whose tar-
get is to reconstruct a rain layer R̂AE to be as close as its
input Ground-truth (GT) rain layer R. Our observation is
that the autoencoder derives a superior reconstruction per-
formance with Peak Signal-to-noise Ratio (PSNR) larger
than 50 by comparing the GT background image B and pre-
dicted background image B̂AE = I − R̂AE , implying that
the autoencoder succeeds to encode an ideal rain embedding
sufficiently representing the rain layer. This motivates us to
improve the consistency between the ideal rain embedding
by the autoencoder and the rain embedding predicted by the
encoder of the deraining network.

To incorporate the Rain Embedding Consistency, we first
propose to simply take a L1 loss function between the two
embeddings, where we name it as Rain Embedding Loss
as shown in Fig. 1, to supervise and constraint the encod-
ing process of the deraining network. We also propose to
apply a Rectified Local Contrast Normalization (RLCN) as
an encoder input (as shown in Fig. 1) to guide the encod-
ing process, which extracts the pixels having a higher pixel
intensity than the average pixel intensity of its neighbor-
hood pixels. We find that, since rain streaks usually show a
higher pixel intensity, the extracted pixels by RLCN cover
almost all the rain candidates including weak rain streaks.
Thus, RLCN can be used as a rain location prior to guide the
encoder to learn better convolutional filters focusing on ex-
tracting rain features. We also propose a Mask Guided At-
tention Module (Mask-GAM) to replace general skip con-
nection from encoder to decoder [28], which further aug-
ments the decoding phase by intensifying rain-related part
of encoder features with an accurate learned rain location
map before feeding to decoder.

With the above proposed components, we construct our
proposed deraining network with Rain Embedding Con-
sistency, as illustrated in Fig. 1. To further improve
the performance, we also propose a Recurrent Neural
Network (RNN) framework with Long Short-term Mem-
ory (LSTM), which have shown great potential in single
image deraining task [18, 26, 27]. Different from previous
methods that apply LSTM on a single scale [26, 27] of the
network, we propose Layered LSTM that applies LSTM to
every scale of the encoder, and let the encoded features at

each scale flow to the subsequent stages as shown in Fig. 1,
where the later stages can selectively compensate the fea-
tures that effectively represent the rain layer, and forget the
non-related features not representing the rain layer. With
this stage-by-stage and scale-by-scale fine-grained rain fea-
ture refinement using Layered LSTM, our proposed net-
work can approach the Rain Embedding Consistency better.

Through experiments, we demonstrate that our proposed
deraining network with Rain Embedding Consistency and
Layered LSTM outperform state-of-the-art deraining meth-
ods by a large margin for a real-world benchmark dataset,
while keeping computational efficiency. We also show the
experiments on several synthetic datasets, further showing
the superiority of the proposed methods, which has good re-
sistance to over/under-deraining issues with its robust rain
embedding encoding.

2. Related Work
We here briefly review existing single image deraining

methods. Please refer to the survey papers [16, 17, 40] for
other classes of the methods, such as video-based methods
and raindrop removal methods.

2.1. Prior-based Methods

Many traditional approaches treat the single image de-
raining as an image decomposition problem, where a rainy
image is commonly modeled as an addition of a rain layer
and a rain-free background layer [4, 13, 19, 35, 44]. To
regularize the decomposition problem, various priors have
been proposed to model rain streaks with different direc-
tions and scales, such as Gaussian mixture model-based
prior [19], sparsity-based prior [4, 13, 21, 44], and high-
frequency component-based prior [13, 35]. A more com-
plex and realistic image formation model, such as a screen-
blend model [21], has also been studied.

Although these traditional methods based on a physical
or subjective prior demonstrate favorable performance on
specific situations, they fail to remove complex rain patterns
of real-world scenes where the prior does not hold.

2.2. Learning-based Methods

Because of the strong representation capability of CNN,
CNN-based deraining methods have been extensively stud-
ied in recent years. Residual learning is commonly applied,
where the network is trained to predict the residuals be-
tween the rainy and the rain-free background images, which
correspond to the rain layer [9]. Based on the residual learn-
ing, different kinds of network architecture, such as multi-
scale fusion modules [5, 12, 29, 30, 38, 39, 42], a density-
label-guide network [42], a residual-guide network [8], a
confidence-measure-guided network [41], a non-locally en-
hanced network [15], have been proposed to boost the ca-
pacity of the network. Generative adversarial networks [43]
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Figure 2. The overall architecture of proposed ECNet. It includes four scales where the number of channels for each scale is 32, 64, 128,
and 256, respectively. For simplicity of illustration, we here show the three scales version of the network architecture.

and variational auto-encoders [6, 7] have also been in-
troduced to capture the visual characteristics of the rain
streaks. These methods have achieved convincing perfor-
mance with their carefully designed network architectures.
However, the complex deraining process is supervised with
only the image-level loss function in terms of deraining out-
put, which is difficult for the model to learn optimal latent
rain features and thus limiting the deraining performance.

The methods based on an RNN is becoming a new trend
to progressively remove the rain by dividing the whole de-
raining process into multiple stages, where LSTM [37] or
GRU [3] is applied to selectively forget noise features and
refine task-related features stage-by-stage. The study [18]
proposes to apply an RNN with GRU [3] and channel-wise
attention to predict the rain layer and share the information
across recurrent stages in feature levels. The study [27] ap-
plies recursive residual blocks with LSTM [37] to build a
simple and fast baseline for the deraining. The study [26]
proposes the bilateral LSTM for the information sharing be-
tween the rain layer and the background layer. However,
these methods apply the LSTM or GRU to a single scale
of the whole deraining pipeline, without considering the
potential of addressing the feature refinement on different
scales separately, thus showing limited refinement perfor-
mance.

3. Proposed Method

3.1. Overall Architecture

As shown in Fig. 1, we use a rain-to-rain autoencoder
for rain embedding supervision and our main deraining net-
work, for both of which we adopt the same encoder-decoder
architecture as shown in the encoder-decoder part of Fig. 2,
where Residual Blocks (RBs) [11] are used as feature ex-
tractors for both the encoder and the decoder.

To train the autoencoder, the ground-truth rain layer is
generated as R = I − B, where I and B are a pair of
rainy image I and ground-truth background image B sam-

pled from training data. The autoencoder takes the ground-
truth rain layer as the input and encodes ideal rain embed-
ding as Ẑideal = EAE(R;θAE

E ), where EAE represents
the encoder of the autoencoder with input R and parame-
ters θAE

E . The decoder then reconstructs the rain layer form
the rain embedding as R̂AE = DAE(Ẑideal;θ

AE
D ), where

DAE represents the decoder of the autoencoder with input
Ẑideal and parameters θAE

D . As the purpose of the autoen-
coder is to make reconstructed rain layer R̂AE to be as close
as its ground-truth input R, we simply pre-train the autoen-
coder using a self-supervision loss Lself = ||R− R̂AE ||2.

Fig. 2 illustrates the overall architecture of our pro-
posed deraining network with Rain Embedding Consis-
tency, which we call Embedding Consistency Network (EC-
Net). Our target is to learn the encoder-decoder network to
make the predicted rain layer R̂ that is as close as ground-
truth rain layer R, such that an accurate rain-free back-
ground prediction B̂ = I− R̂ can be derived.

The architecture of our network is explained as follows.
We first calculate the RLCN image L from the input rainy
image I to extract the candidate pixels suggesting rain re-
gions. The calculation of the RLCN image will be detailed
in Sec. 3.2. Then, the channel-wise concatenation of I and
L is used as the network input, such that J = concat(I,L).
The network encodes and derives a predicted rain embed-
ding by Ẑ = E(J;θE), where E represents the encoder
with input J and parameters θE . Then, the rain layer is re-
constructed from the rain embedding Ẑ by the decoder D
with parameters θD as R̂ = D(Ẑ;θD). Instead of apply-
ing the skip connection directly passing the encoder feature
F to the decoder, we propose Mask-GAM to generate an
accurate rain attention map M̂ to derive rain-attentive fea-
tures F′ = M̂ ◦ F, which is passed to the decoder. The
details of Mask-GAM will be introduced in Sec. 3.3.

The loss function to training the network will be the
weighted summation of three terms as

L = λembedLembed + λattLatt + λimageLimage, (1)
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where λembed, λatt and λimage are coefficients to balance
each loss term. The first loss Lembed is our proposed Rain
Embedding Loss that uses the encoded ideal rain embed-
ding Ẑideal = EAE(R) by the autoencoder to train the en-
coder with Rain Embedding Consistency. The second loss
Latt is Attention Loss to supervise the learning of the at-
tention map in our proposed Mask-GAM. The third loss is
an Image Loss, for which we use negative SSIM loss [26],
which can be represented by Limage = −SSIM(B, B̂) to
evaluate the difference between the ground-truth and recon-
structed background images.

We detail each proposed component in Sec 3.2 and
Sec 3.3 which is utilized to construct the proposed ECNet.
Furthermore, we introduce our proposed Layered LSTM to
further improve the performance in Sec 3.4, where we call
the resultant network ECNet+LL.

3.2. Rain Embedding Consistency with RLCN

As we introduced in Section 1, the observation of high
rain layer reconstruction performance by the rain-to-rain au-
toencoder implies that the autoencoder can derive an ideal
rain embedding Ẑideal = EAE(R) by its encoder, where
its decoder is able to decode and derive the rain layer R̂AE

which is very close to its input R̂. This motivates us to reuse
the pretrained weights θAE

D from DAE to initialize the de-
coder D’s weights θD, which enables us to focus on training
the encoder E to improve the Rain Embedding Consistency
between the autoencoder’s ideal rain embedding Ẑideal and
predicted rain embedding by the encoder of the proposed
deraining network Ẑ = E(J). To approach the Rain Em-
bedding Consistency, we propose to use a feature-level Rain
Embedding Loss expressed as

Lembed = ||Ẑideal − Ẑ||1, (2)

to directly supervise the encoder in terms of the feature
space and force the encoder’s output embedding Ẑ to ap-
proach the ideal rain bmbedding Ẑideal.

To further regularize the rain embedding learning, we
proposed to apply RLCN to the input rainy image as

L(i, j, c) =
ϕrec (Ic(i, j)− µIc(i, j))

σIc(i, j) + ϵ
, (3)

where L is the output RLCN image, (i, j) denotes the pixel
coordinate, c ∈ (R,G,B) represents the color channel, Ic
is c-th channel of the input rainy image, µI(i, j) denotes the
mean pixel intensity within a local square window centered
at the pixel (i, j), σI(i, j) denotes the standard deviation of
the pixel intensities within the local window, ϵ is a small
value for numerical stability, and ϕrec(·) = max(·, 0) is the
rectification function that outputs the max value compared
with zero.

In Eq. (3), the subtracted value, I(i, j)−µI(i, j), takes a
high absolute value if the pixel intensity of the pixel (i, j) is
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significantly higher or lower than the intensities of the other
pixels within the local window. Because we focus on the
rain, which usually shows a higher pixel intensity, the max
function is applied to perform the rectification and filter out
negative values. The positive value after the rectification is
further normalized by the local standard deviation σI(i, j),
which corresponds to local contrast, to enable the extrac-
tion of the pixels for weak rain regions as well as strong
rain regions. As show in Fig. 4, the derived RLCN image
can cover most of the rain regions and thus can be used as
a guide for the rain embedding encoding, which helps the
encoder to learn rain-focus convolutional filters, thus im-
proving the Rain Embedding Consistency performance by
the encoder.

3.3. Mask Guided Attention Module (Mask-GAM)

Skip connection is widely applied in the encoder-
decoder to reuse the encoder features to prevent the over-
smoothing of the decoding. However, as RLCN image con-
tains some additional edges regarding the non-rain regions
as shown in Fig. 4, there exist unexpected features non-
related to rain included in the encoder features. Therefore,
passing the features directly from the encoder to the decoder
could disturb the decoding phase. To address this issue,
Mask-GAM of Fig. 3 is proposed to generate a pixel-level
attention map to more accurately regard the rain location
as shown in Fig. 4. The attention map is used to reweight
the encoder features to remove the unexpected features and
highlight the rain-related features.

Following the mathematical symbol notations in Fig. 3,
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Mask-GAM is expressed as

M̂s = ϕ2(W
A
s ∗ (ϕ1(Ws ∗ Fs +WD

s ∗ FD
s ))), (4)

where M̂s is the attention map for scale s of the encoder-
decoder and Fs and FD

s represent the features from the
encoder and the decoder, respectively. Ws and WD

s de-
note the weights for 1 × 1 convolutional layers with n
filters, where we set n as the half of the channel num-
ber of Fs, which is equal to the channel number of FD

s .
The convolution operation, which is expressed as ∗, is per-
formed to Fs and FD

s , respectively, and the resultant fea-
tures are combined by the element-wise summation. Then,
the Rectified Linear Unit (ReLU) [10] function ϕ1 is ap-
plied to the combined features, which followed by a one-
channel 1 × 1 convolutional layer with the weight WA

s

to sum up the n-channel feature maps. The sigmoid ac-
tivation function σ2 is then applied to derive the attention
map within the range of [0, 1]. Finally, using the obtained
attention map, the re-weighted features F′

s is derived by
F′

s = M̂s ◦ Fs as rain-attentive features and then sent to
the decoder, where ◦ denotes the channel and pixel-wise
multiplication. Then, to supervise the learning of the at-
tention map, we use the ground-truth rain mask M derived
by thresholding the ground-truth rain layer R to construct a
loss function as

Latt =

∑S
s=1 ||M̂s −M||2

S
, (5)

where S is the scale number of the encoder-decoder and
s is the scale index. This attention module not only ex-
cludes the non-related features from the encoded features,
but also can be seen as a tiny additional branch of the pro-
posed encoder-decoder network whose output target is the
rain regions, thus forcing the network to derive features that
can represent the information inside rain regions.

3.4. Recurrent Framework with Layered LSTM

In this section, we introduce the proposed ECNet+LL
network which is built based on the proposed ECNet.

Firstly, we reformulate the ECNet network of Fig. 5(a) into
a recurrent style as shown in Fig. 5(c), where the output of
the decoder corresponds to the rain layer R̂t of current stage
t. Then, the current output R̂t is used as the input of the next
stage t+1 and the overall network flow is repeated until the
iteration reaches the maximum recurrent time N . Here we
set R̂0 = 0. For every recurrent stage, the network param-
eters are shared and optimized during the training phase.

Then, we introduce a Residual Recurrent Block (RRB)
with LSTM to each scale of the encoder as shown in
Fig. 5(c). As they let the features flow across successive
recurrent stages with a scale-by-scale style, we name this
architecture as Layered LSTM (LL). As shown in Fig. 5(d),
a convolutional LSTM layer is added inside RB of Fig. 5(b)
to construct the RRB. As the information flow of LSTM,
the hidden and cell state output of stage t − 1, which are
denoted as Ht−1

s and Ct−1
s respectively with s describing

the scale index, and the features from the last ReLU layer
are sent to the LSTM layer, where the gating signal inside
LSTM decides which part of the information is preserved
or thrown away. Then, the LSTM outputs the hidden and
cell state of current stage t, which is denoted as Ht

s and Ct
s,

where Ht
s is used as the input of the second convolutional

layer and both of Ht
s and Ct

s are sent to the RRB of the next
stage t+1. By applying the recurrent framework with Lay-
ered LSTM, the network is able to conduct a scale-by-scale
fine-grained feature refinement for encoding, where the sub-
sequent stages of encoding are able to retain and refine the
rain-related features in terms of each scale separately, and
forget the features non-related to rain, thus boosting the net-
work to improve Rain Embedding Consistency.

As for the loss function after introducing the recurrent
framework, we calculate the loss L for each stage t sepa-
rately, which is denoted as Lt, and recursive supervision is
introduced by adding them together as the final loss func-
tion. This can be represented as

Lrecur =

N∑
t=1

λtLt (6)
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where λt is used to balance the loss of each stage t.

4. Experimental Results
4.1. Implementation Details

Our ECNet and ECNet+LL networks were implemented
using Pytorch [24] and trained using one NVIDIA Tesla
P100 GPU. For all the experiments, the networks share the
same training settings. The size of the local window for
the RLCN image calculation is set to 9×9 and the recur-
rent time N of the proposed network is set to 6. We set
λembed = 0.02, λatt = 0.1, λimage = 1 to balance the in-
fluence of each loss, and the λt is set to 0.5 for t ≤ 5, and
1.5 for final stage t = 6. The patch size of 96×96 is used
for the training, with the batch size set to 16. ReLU [10] is
used as the activation function and the gradient clipping of
5 is applied to stabilize the network training. Adam opti-
mizer [14] is used to train the network with an initial learn-
ing rate 1e−3. We trained the network for 100 epochs while
decaying the learning rate when reaching 25, 50, 75 epochs
by multiplying 0.2.

4.2. Study of Proposed Components

The studies to confirm the effectiveness of each pro-
posed component was conducted using real-world SPA-
Data dataset [33]. SPA-Data contains high-quality 638,492
training images and 1,000 test images generated using video
redundancy and human supervision. For time efficiency,
we randomly selected 6,385 images (1%) from the origi-
nal training data to train the networks and tested on the full
1,000 test images.
Effects of Rain Embedding Consistency with RLCN: To
explore the effectiveness of the proposed method with Rain
Embedding Consistency with the guide of the RLCN image,
the following four networks are evaluated in Table 1. ED
is the basic encoder-decoder that applies only the encoder-
decoder part of the proposed network and uses only a rainy
image as the network input, and it is trained using only Im-
age Loss Limage. ED + EmbedLoss means Rain Embed-
ding Consistency is considered by training the network with
Rain Embedding Loss Lembed. ED + RLCN means that the
RLCN image is used as the input for the encoder. ED +
EmbedLoss + RLCN means that both the Rain Embedding
Loss and the RLCN guide are applied. Table 1 shows that
the training with Lembed actually benefit the network per-
formance and also the RLCN guide remarkably improves
the network performance. When combining Lembed and the
RLCN guide, the network achieves the best results. Here-
after, we use ED + EmbedLoss + RLCN as the base of the
proposed method (Proposed-Base) for the next experiment.
Effects of Mask-GAM: To explore the effectiveness of the
proposed Mask-GAM, Proposed-Base and and the follow-
ing three networks are evaluated in Table 2. Proposed-

Table 1. Effects of Rain Embedding Consistency with RLCN.

Methods PSNR SSIM
ED 40.01 0.978
ED + EmbedLoss 40.38 0.979
ED + RLCN 40.73 0.980
ED + EmbedLoss + RLCN (Proposed-Base) 40.85 0.980

Table 2. Effects of Mask Guided Attention Module.
Methods PSNR SSIM
Proposed-Base 40.85 0.980
Proposed-Base + Skip 41.35 0.986
Proposed-Base + Self-attention 41.58 0.987
Proposed-Base + Mask-GAM (ECNet) 41.83 0.987

Table 3. Effects of Recurrent Framework with Layered LSTM.
Methods PSNR SSIM
ECNet 41.83 0.987
ECNet + LSTM 41.90 0.987
ECNet + LayeredLSTM (ECNet+LL) 42.49 0.988

Base + Skip applies the direct skip connection between the
encoder and the decoder. Proposed-Base + Self-attention
means that self-attention [23] is utilized to reweight the en-
coder features before feeding to the decoder. Proposed-
Base + Mask-GAM means that our proposed Mask-GAM
with the Attention Loss Latt is applied to supervise the at-
tention learning and this method corresponds to the pro-
posed ECNet. Table 2 shows that the direct skip connec-
tion provides limited improvements as it may introduce the
features non-related to rain from the encoder to the de-
coder. With self-attention, this phenomenon is relieved to
some extent. And with the proposed Mask-GAM, the net-
work achieves the best performance as it explicitly guides
the learning of the attention and leaves rain-related features
only.

Effects of Recurrent Framework with Layered LSTM:
To explore the effectiveness of the proposed Layered
LSTM, proposed ECNet and the following two networks
are evaluated in Table 3. ECNet + LSTM denotes that the
network is first formulated to a recurrent style, and only the
RB of the last scale of the encoder is changed to RRB, as
performed in [34]. ECNet + LayeredLSTM further replaces
the RBs in every scale of the encoder with RRBs, denot-
ing the proposed Layered LSTM. This method corresponds
to the full version of our method, i.e., ECNet+LL. As we
can see in Table 3, only applying LSTM to the last scale
of the encoder almost does not benefit the network perfor-
mance, while the proposed Layered LSTM shows substan-
tial performance boost as LSTM is applied to every scale of
the encoder to conduct fine-grained rain feature refinement
scale-by-scale.
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Figure 6. Qualitative comparison on real-world SPA-Data

Table 4. Quantitative comparison on real-world SPA-Data (Red:
rank 1st; Blue: rank 2nd) with different amount of training data
from SPA-Data.

Methods SPANet [33] RCDNet [32] ECNet (ours) ECNet+LL (ours)

Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

6385 (1%) 36.37 0.971 39.75 0.982 41.83 0.987 42.49 0.988
Full 40.04 0.984 41.05 0.985 43.62 0.990 44.32 0.991

4.3. Comparison on Real-world Dataset

Compared methods: We evaluate the deraining perfor-
mance of proposed ECNet and ECNet+LL for real-world
images of SPA-Data [33]. We trained the proposed net-
works twice using the full training set (638,492 images) and
1% of the training set (6,385 images, to show the learn-
ing performance with a small amount of data), respectively.
Since the full dataset is very large and retraining takes a
huge amount of time, we chose two previous state-of-the-
art methods, SPANet [33] and RCDNet [32], for compar-
ison, which provide a public pretrained model on the full
training set. SPANet is the method that proposes SPA-Data
and RCDNet is a recent state-of-the-art method. For the 1%
training set, we retrained the models for SPANet and RCD-
Net as no pretrained model is provided for the 1% set and
retraining can be done with reasonable training time.
Results: Table 4 shows the PSNR and the SSIM results.
We can see that proposed ECNet and ECNet+LL provide
remarkably better results for real-world rainy images, show-
ing the strong applicability to real-world situations. Also,
both of proposed methods derives better performance even
when they are trained on only 1% of the training data, com-
pared with SPANet and RCDNet trained on the full training
data, showing that the proposed methods considering Rain
Embedding Consistency can achieve high performance with
only a small amount of training data. Fig. 6 shows the qual-
itative results of each method trained on the full training
set. For samples on the first and the third rows, both of

proposed ECNet and ECNet+LL can remove the rain more
completely compared with the other methods. For samples
on the second row, our methods remove the rain effectively
and succeed to maintain the background textures of a black
board, while SPANet and RCDNet fails to reproduce them.
These results validate that proposed ECNet and ECNet+LL
are able to better deal with varied rain conditions contain-
ing different intensities and shapes that generally appear in
real-world scenarios, and can address under/over-deraining
issues more robustly. More deraining samples are shown in
supplementary material.

4.4. Comparison on Synthetic Datasets

Compared methods: We evaluate proposed ECNet
and ECNet+LL on five synthetic benchmark datasets,
Rain100H [39], Rain200H [39], Rain100L [39],
Rain200L [39], Rain800 [43]. Rain100H/200H synthesize
the heavy rain conditions, Rain100L/200L synthesize the
light rain conditions, and Rain800 synthesizes both heavy
and light rainy images. We compare the proposed networks
with state-of-the-art methods including semi-supervised
SIRR [36], rain-mask-based JORDER-E [38], model-
driven RCDNet [32], and RNN-based RESCAN [18],
PReNet [27], and BRN [26]. RCDNet and BRN are
recent state-of-the-art methods. We used the pretrained
models of the above methods for Rain100H, Rain200H and
Rain100L, and retrain models for Rain200L and Rain800
under the original settings of each method as no pretrained
model is provided except BRN for Rain200L.

Results: Table 5 reports the PSNR and the SSIM results,
where proposed ECNet+LL provides the best average per-
formance compared with the other methods, showing its
strong adaptability under different rain conditions. Pro-
posed ECNet also derives fairly good performance con-
sidering its light-weightness as will be discussed in Sec-
tion 4.5. Fig. 7 shows two qualitative samples on the
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Table 5. Quantitative comparison on synthetic datasets (Red: rank 1st; Blue: rank 2nd)
Datasets Rain100H Rain200H Rain100L Rain200L Rain800 Average
Metrics PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

RESCAN [18] 28.82 0.867 27.95 0.862 38.09 0.980 38.43 0.982 28.36 0.872 32.33 0.913
SIRR [36] 22.03 0.714 22.17 0.726 32.31 0.926 32.21 0.931 22.73 0.762 26.29 0.812

PReNet [27] 30.31 0.910 29.47 0.907 37.21 0.978 37.93 0.983 26.82 0.888 32.35 0.933
JORDER-E [38] 30.22 0.898 29.23 0.894 39.36 0.985 39.13 0.985 27.92 0.883 33.17 0.929

RCDNet [32] 31.26 0.912 30.18 0.909 39.76 0.986 39.49 0.986 28.66 0.893 33.87 0.937
BRN [26] 31.32 0.924 30.27 0.919 38.16 0.982 38.86 0.985 28.31 0.896 33.38 0.941

ECNet (ours) 29.80 0.903 28.54 0.893 38.21 0.981 38.37 0.983 28.80 0.901 32.74 0.932
ECNet+LL (ours) 31.43 0.921 30.22 0.912 39.66 0.986 39.72 0.987 29.26 0.905 34.06 0.942
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Figure 7. Qualitative comparison on synthetic datasets
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Figure 8. Computational time vs. PSNR plot for average PSNR on
all the five synthetic datasets

Rain100L dataset and the Rain100H dataset. For the sam-
ples on the first row, we can see that both of ECNet and
ECNet+LL can maintain the window frames of the build-
ing that have similar appearance to the rain streaks, while
other methods show apparent over-deraining as they also
remove background textures. Similarly, for the heavy rain
samples on the second row, both of our methods reproduce
the bridge textures more effectively. These results show the
strength of our methods to deal with under/over-deraining
issues.

4.5. Computational Time

Figure 8 shows the computational time versus PSNR plot
for average PSNR on all the five synthetic datasets (ex-
cept SIRR because of its lower PSNR). The running time
is recorded with one NVIDIA P100 GPU for the image
whose resolution is 480×320. As shown in Fig. 8, proposed
ECNet+LL achieves the best PSNR result with almost the
same computation time as BRN and JORDER-E and much
less computational time than RCDNet, showing the better
performance-speed balance compared with other compet-
ing methods. Also, proposed ECNet shows the best perfor-
mance among the methods with computation time that is no
more than 0.1s. Proposed ECNet can achieve a real-time
inference with 37FPS (0.027s per inference) on a NVIDIA
P100 GPU, which could be meaningful to real-world appli-
cations where computational time is an important factor.

5. Conclusion
In this paper, we have proposed a single image derain-

ing network considering Rain Embedding Consistency with
an ideal rain embedding encoded by the rain-to-rain autoen-
coder to address the difficulty to learn a better rain embed-
ding. First, we have introduced the idea of Rain Embedding
Consistency and train the network with a Rain Embedding
Loss to incorporate the Rain Embedding Consistency, with
an RLCN image as the guide for the encoder to learn bet-
ter rain-focused convolutional filters. Next, we have pro-
posed Mask-GAM with ground-truth rain mask supervision
to reweight the encoder features to leave only rain-attentive
features which are passed to the decoder. Finally, we have
proposed a recurrent framework with Layered LSTM to
form the encoding into a recurrent process with LSTM on
each scale of the encoder to iteratively refine the encoded
rain features with a fine-grained scale-by-scale style. The
quantitative and qualitative evaluations using representative
deraining benchmark datasets have demonstrated that our
proposed method outperforms existing state-of-the-art de-
raining methods, where it is particularly noteworthy that
our method clearly achieves the best performance on a real-
world dataset.
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