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Abstract

Recent results have revealed an interesting observation
in a trained convolutional neural network (CNN), namely,
the rank of a feature map channel matrix remains surpris-
ingly constant despite the input images. This has led to an
effective rank-based channel pruning algorithm [23], yet
the constant rank phenomenon remains mysterious and un-
explained. This work aims at demystifying and interpret-
ing such rank behavior from a frequency-domain perspec-
tive, which as a bonus suggests an extremely efficient Fast
Fourier Transform (FFT)-based metric for measuring chan-
nel importance without explicitly computing its rank. We
achieve remarkable CNN channel pruning based on this an-
alytically sound and computationally efficient metric, and
adopt it for repetitive pruning to demonstrate robustness
via our scheme named Energy-Zoned Channels for Robust
Output Pruning (EZCrop), which shows consistently better
results than other state-of-the-art channel pruning meth-
ods. The codes and Appendix are publicly available at:
https://github.com/ruilin0212/EZCrop.

1. Introduction

Convolutional neural networks (CNNs) are among the
most popular models for deep learning which have achieved
breakthroughs in vision applications including classifica-
tion [41], object detection [28], semantic segmentation [34],
etc. However, deeper and larger CNNs render them challeng-
ing to deploy on edge devices with constrained hardware
resources. This dilemma has motivated the research on com-
pressing CNNs for lower storage and faster inference. Nu-
merous neural network compression techniques have been
proposed, including optimized implementation [16], quan-
tization [2, 5], network pruning [10], low-rank decomposi-
tion [25, 17] and knowledge distillation [12, 33], etc. Among
the categories mentioned above, this work focuses on chan-
nel pruning, a subclass of structured network pruning.

*RL, JR contributed equally to this work.

Figure 1. The spectral of output is obtained by applying 2D-FFT
and fftshift(·) on the output in the spatial domain. (Upper) The
output of an important filter in the frequency domain has a dispersed
energy distribution. (Lower) The output of a trivial filter has a
concentrated energy distribution in the frequency domain.

Due to its outstanding performance in model size reduc-
tion and network acceleration, network pruning has been
a popular compression strategy. Generally, it can be di-
vided into two subclasses: weight pruning and filter pruning.
Weight pruning [7, 8] tends to eliminate small weights in the
kernel tensors, leading to a sparse architecture with fewer
nonzero connections. However, it is not easy to achieve in-
ference acceleration via the existing efficient BLAS libraries
due to the unstructured sparsity pattern, whose utilization
requires specialized software or hardware. On the other
hand, channel pruning [20, 29, 23] removes entire filters in
the kernel tensor. Compared with weight pruning, eliminat-
ing entire filters results in structured sparsity and generic
speedup irrespective of the software/hardware, which pro-
motes the usefulness of filter pruning.

The key challenge in channel pruning is to evaluate the
importance of filters and select trivial or unimportant can-
didates for pruning. For instance, in [35], the authors pro-
pose a novel criterion based on Taylor expansion to evaluate
the filters’ importance and discard the less important ones.
In [31], the authors use 2D discrete cosine transform (DCT)
on the filters to exploit the spatial correlations in frequency
domain and prune filters containing less low-frequency com-
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ponents dynamically. In [10] “smaller-norm-less-important”
filter pruning is proposed, which removes filters with smaller
norms. Recently, Lin et al. [23] observe that the average rank
of feature maps generated by a fixed filter remains surpris-
ingly constant irrespective of the input images. They then
propose a scheme called HRank to prune channels with small
corresponding ranks and thereby less information content.

Noticeably, most existing pruning schemes operate in the
spatial domain, with only a few of them utilizing informa-
tion from the frequency or spectral domain. Inspired by the
work of Sedghi et al. [39] that studies the singular values
in a convolution layer from a Fast Fourier Transformation
(FFT) viewpoint, we take FFT as a tool for deciphering the
constant rank behavior [23], and develop a filter pruning
scheme with a novel, analytical, energy-based explanation.
Our key insight is that the energy distributions of feature
maps generated by a fixed filter can reflect the filter’s impor-
tance (Figure 1). Alongside this observation, we propose a
novel frequency-domain channel pruning approach called
Energy-Zoned Channel for robust output pruning (EZCrop) ,
which entails a natural, accurate, and more robust selection
of important filters at a lower computational cost than the
singular value decomposition (SVD) needed for evaluating
ranks in HRank [23].

In order to make a comprehensive comparison versus
HRank [23] and other state-of-the-art algorithms [20, 13,
29, 32, 45, 15, 27, 10, 44, 19, 3, 42, 22, 30, 6, 24, 21] , we
benchmark EZCrop for image classification tasks on CIFAR-
10 [18] and ImageNet [4], using VGGNet [40], ResNet [9],
and DenseNet [14]. The experimental results demonstrate
the consistent superiority of EZCrop in both model reduction
and acceleration. Moreover, we conduct repetitive pruning
with HRank and EZCrop, which further illustrates the high
robustness of EZCrop. Our main contributions are:

• We analytically bridge the rank-based channel impor-
tance metric in the spatial domain to an energy per-
spective in the frequency domain, and for the first time
explain the interesting constant-rank phenomenon in a
channel matrix.

• We propose a computationally efficient FFT-based met-
ric for channel importance, which reduces the computa-
tional complexity from O(n3) to O(n2logn).

• The proposed EZCrop algorithm for channel pruning
is simple, intuitive and robust. It outperforms other
state-of-the-art pruning schemes and consistently deliv-
ers good performance, which is not a result of normal
variations as confirmed through extensive experiments.

2. Related Work
2.1. Filter Pruning

In contrast to weight pruning that results in unstructured
sparsity, channel or filter pruning belongs to the class of struc-

tured pruning and can readily leverage the efficient BLAS
library without specific software or hardware requirements.
Generally, there are two categories of CNN filter pruning
schemes, namely, by utilizing post-training properties of the
CNN itself or by adaptive pruning during training. The first
category employs algebraic metrics. For example, in [20],
the authors use l1-norm of the filters or the corresponding fea-
ture maps to evaluate the importance, where smaller norms
mean less informative channels. In HRank [23], filters with
small corresponding average ranks calculated by a batch of
feature map slices are pruned. For the second category, adap-
tive pruning approaches make decisions through retraining
with a specialized loss function taking pruning into account.
For example, Liu et al. [29] impose sparsity-induced regular-
ization on scaling factors in the batch normalization layers,
where channels with zero-valued scaling factors are pruned.
By reformulating the batch normalization layer, the authors
of [46] propose a new parameter called saliency, and only
channels with saliency beyond a threshold during training
can remain.

2.2. Application of Frequency Information in the
Convolutional Neural Networks

In recent years, the properties of CNNs in the frequency
domain have attracted increasing attention due to the acceler-
ation of CONV calculations and the additional information
arising from the frequency domain. In [38], the authors pro-
pose spectral pooling that preserves more information and
complex-coefficient spectral parameterization of filters that
improves training convergence. Pratt et al. [37] propose a
frequency-domain CNN, whose training can be done entirely
in the frequency-domain without alternating between spatial
and spectral domains. In [39], by using FFT properties, the
authors design a regularizer to constrain the range of CONV
kernels’ singular values during model training, which im-
proves the model performance. Including [31], there are
other works using spectral information for network com-
pression. For example, in [1], the model is compressed in
a frequency-sensitive fashion which preserves parameters
of low-frequency components better. The filters are treated
as images in [43], where the authors compress the model
by discarding the low-energy coefficients of filters in the
frequency domain.

Summarizing over the above works on filter pruning and
frequency-domain CNN design, we notice the research on
filter pruning through exploiting frequency-domain infor-
mation is insufficient. The method in [31], though doing
dynamic pruning in the frequency domain, belongs to un-
structured and adaptive pruning, and suffers from machine
and labor costs. Therefore, further exploring the use of
spectral information for filter pruning is desirable.
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Figure 2. The first column shows the three input channels in the frequency domain with center shifting, namely, fftshift(F(X [i, :, :]))
for i = 1, 2, 3. On the left of the second column are expended kernel slices fftshift(F(K̂[:, :, i, j])), where i = 1, 2, 3 and j is fixed
but different in three rows. The corresponding outputs slices fftshift(F(K̂[:, :, i, j]) ⊙ F(X [i, :, :])) are shown on the right part, and
F(Y[j, :, :]) are the sum of three element-wise product, respectively. The selected filters generate feature maps with increasing average
ranks from top to bottom. Note the spectral energy distribution of the feature map becomes more dispersed for higher rank spatial filters.

3. Constant Ranks in Feature Map: From a
Perspective in the Frequency Domain

The idea proposed in [39] by using FFT to constrain the
singular values of kernels inspires us to use FFT to relate
the rank-based metric in the spatial domain to an energy
perspective in the frequency domain.

3.1. Notation

For a trained CNN model, we use Yi ∈ RB×Ti×Hi×Wi

to denote the output1 of the i-th CONV layer (i =
1, 2, · · · , N), where B is the batch size, Ti is the number
of channels, Hi and Wi are the height and width, respec-
tively. We denote the kernels of the i-th CONV layer as
Ki ∈ RDi×Di×Si×Ti , where Di represents the kernel size,
Si and Ti are the number of input and output channels. We
use Y j

i [b, :, :] ∈ RHi×Wi to denote the feature map gener-
ated by the b-th sample in the batch passing through the j-th
filter in the i-th CONV layer. The set Ii = {I1i , I2i , · · · , I

Ti
i }

is used to record the importance of filters in the i-th CONV
layer. Every element in the set Ii records the index of one fil-
ter. We use F(·) and F−1(·) to denote FFT and inverse FFT.
The notation fftshift(·) stands for the operation swapping
four quadrants to center the DC component, abs(·) means
element-wise magnitude, and ceil(·) means rounding up.

3.2. Convolution in the Frequency Domain

It is well-known that convolution in the time/spatial do-
main is equivalent to multiplication in the frequency domain.

1The output selected here is after the operations like ReLU, batch nor-
malization, and max pooling, etc. In other words, the output we extract for
the i-th CONV layer is the input for the (i+ 1)-th CONV layer.

In [36], the author illustrates how to transform a general
2D convolution into a Fourier-based one. In brief, there are
three steps: 1) for the given convolution kernel and input
data, we apply 2D FFT on them respectively, 2) then we
do point-wise multiplication between the newly obtained
kernel and input, 3) lastly, we perform inverse 2D FFT on
the multiplied result. Theorem 1 formalizes the convolution
process in the frequency domain, and the detailed proof is
provided in Appendix 1.

Theorem 1 For a single 3-D input X ∈ RS×H×W and
a given filter K ∈ RD×D×S×T , their convolution result
Y ∈ RT×H×W can be formalized as:

Y [j, :, :] =

S∑
i=1

F−1(F(K̂[:, :, i, j])⊙F(X [i, :, :])), (1)

where ⊙ stands for the point-wise multiplication (also called
Hadamard product), and K̂ ∈ RH×W×S×T is the expanded
filter, whose slices K̂[:, :, i, j] are the torus form of the corre-
sponding slices K[:, :, i, j] in the original filter.

By writing Eq. 1 alternatively as

F(Y [j, :, :]) =

S∑
i=1

F(K̂[:, :, i, j])⊙F(X [i, :, :]), (2)

the input, filter, and the corresponding output are all in the
frequency domain. The equivalence between spatial convo-
lution and spectral point-wise product establishes the cred-
ibility of using frequency-domain information. Taking a
sample image from CIFAR-10 and three filters from the first
CONV layer in a pre-trained VGGNet, Figure 2 visualizes
convolution in the frequency domain. More visualization
results are available in Appendix 2.1.
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3.3. Energy Zoning

According to the rightmost column row of Figure 2, the
concentration of low-frequency components of the generated
feature map is inversely proportional to the average rank
of the feature maps. Specifically, the average rank of the
feature maps generated by the filter selected in the first row
is the smallest, its low-frequency components of the feature
map are the most concentrated. In the third row, the selected
filter generates feature maps with high average ranks, and
it is obvious that the frequency components of its feature
map are much more dispersed. This phenomenon shows
that a filter generating feature maps with high average ranks
in the spatial domain is expected to generate feature maps
with dispersed frequency components. Figure 3 uses a toy
example to conceptually depict a low-rank channel matrix
and a high-rank one. We use zero-valued and nonzero-valued
elements to represent high-frequency and low-frequency
components, respectively. It is obvious that the right matrix
with a high rank has more dispersed nonzero elements2.

To precisely quantify, we define a new metric called en-
ergy zone due to its underlying nature of summing spectral
components related to power. The energy zone here refers
to an area obtained by expanding outward from the DC
center. Due to the conjugate symmetry after applying F(·)
and fftshift(·) on the feature map, we define the energy
zone with a symmetrical shape. For best visualization, we
choose circle as the energy-zone shape, and choose a feature
map with a large spatial size.

Figure 4 shows the results taking the first CONV in VG-
GNet having 64 filters as an example, the energy in each
circle takes up 70% of the total feature map. The details
of how to draw the circles are provided in Appendix 2.1.
The 64 subfigures are arranged in an ascending order of
the rank-based HRank scheme in [23] from left to right
and top to bottom. In general, we can see that the radius
of the circle increases as the average rank of the feature
maps increases, which shows the high consistency between
the rank-based scheme in the spatial domain and the dis-
persion of the feature maps’ low-frequency components in
the frequency domain. However, the circle radii are not
monotonically increasing, which means there are still subtle
differences in the evaluation of certain filters based on in-
formation in the spatial and frequency domains. We remark
that analyzing the low-frequency components’ concentration
brings in higher resolution in channels’ importance eval-
uation since every element in Hi × Wi is considered. In
contrast, the rank of each feature map slice is only an integer
in [0,min(Hi,Wi)]. This is the reason why HRank and en-
ergy metric may produce subtle discrepancy in their channel
importance measure. More discussions on the rank-based

2We remark that the rank of a channel matrix is invariant in the spatial
and spectral domains as 2D FFT is a bijective linear mapping.

Figure 3. Connection between ranks and energy dispersion. When
transforming the matrix to the frequency domain, the fftshift(·)
operation is employed, which is essentially a block permutation
and is rank-preserving. Here it is apparent the left matrix is only
of rank 3 while the right is full-rank, and such spectral ranks also
translate to spatial ranks due to rank-invariant domain transforms.

Figure 4. The outputs are generated by 64 filters from the first
CONV layer of a pretrained VGGNet. The 64 subfigures are ar-
ranged in an ascending order of the rank-based HRank scheme from
left to right and top to bottom. We determine the radii of the circles
to measure and visualize the concentration of the low-frequency
components of the feature map in the frequency domain.

and energy-based metrics are in Appendix 3.
To further benchmark the difference in filter importance

evaluation, we propose a pruning metric based on the energy
zone in Section 4 and evaluate it through various experiments
in Section 5.

4. EZCrop
Recall from Section 3.3 that the radius can be used to

evaluate the concentration of the feature map’s frequency
components. In particular, filters with a large average cor-
responding radius are treated as important ones. However,
this method loses resolution when Hi and Wi of the feature
maps Yi are small. For example, it is difficult to determine
a proper radius when the feature map slice is of size 4× 4
or smaller, such as 2 × 2. Subsequently, a simple metric
based on the concept of energy zone regardless of the feature
maps’ size is desired. Here, we set the shape of an energy
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Figure 5. An example to illustrate how to find the square center,
and determine the selected energy area.

Figure 6. The two curves indicate the importance of the 64 filters
using HRank and our energy-based metrics (Eq. 5) in the spatial
and spectral domains, respectively. The dashed lines joining the
points are only for the ease of visualization wherein the points are
discrete in nature.

zone to be square and evaluate the importance of filters by
four steps:1) find the square center, 2) decide the size of the
square, 3) calculate the energy-zone ratios, and 4) sort the
filters according to the ratios. These steps are detailed below
and the pseudocode can be found in Appendix 4.2.

Step 1: Find the Square Center. For a given feature
map Yi, as long as Hi and Wi are known, we can determine
the coordinate of the DC center by

xi =

{
Hi
2

+ 1, Hi is even
Hi+1

2
, Hi is odd

, (3a)

yi =

{
Wi
2

+ 1, Wi is even
Wi+1

2
, Wi is odd

, (3b)

regardless of the parity of Hi and Wi or whether Hi and Wi

are equal. Figure 5 visualize the square center when Hi and
Wi are equal and are both even, and the schematic diagrams
for other scenarios are available in Appendix 4.1.

Step 2: Decide the Expanding Distance. The size of a
energy-zoned square is constrained by limiting the distance
away from the center, accordingly:

lih = Hi − xi, liw = Wi − yi,

di =

{
0, xi − 1 = 0 or yi − 1 = 0

ceil(β ·min(lih, liw)), else
,

(4)

where β ∈ (0, 1) is a hyper-parameter to limit the area. It
is worth noting that, di = 0 means only the DC component
itself is contained in the energy-zoned square. Figure 5
shows the examples when di = 0, 1, 2.

Step 3: Calculate the Energy Zone Ratios. Different
from Section 3.3, we determine the size of the energy zone
first instead of the ratio of the sum of the elements in the
energy zone. In this case, we evaluate the concentration of
feature map’s low-frequency components by the proportion
of the sum of elements outside the energy-zoned square:

ηj
i =

1

B
·

(
1−

B∑
b=1

S(di[b])

S(Ej
i [b, :, :])

)
, (5)

where S(di[b]) and S(Ej
i [b, :, :]) denote the sum of elements

in the energy-zoned square with di as the extended length
and the sum of elements in the whole square, respectively,
for the b-th sample in a batch, and ηji is the energy zone
ratio of j-th filter in the i-th CONV layer, where larger value
means more important the filter is. In Figure 6, we com-
pare the results of the evaluation of the filters’ importance
through HRank [23] and EZCrop. Consistent with the con-
clusion of Section 3.3, the two metrics generally track each
other, especially for particularly important or unimportant
channels/filters. For filters between the two poles, the eval-
uation results are slightly different. In Section 5, we use
sufficient experiments to show EZCrop indeed provides a
better scrutiny of important filters.

Step 4: Sort the Filters. After finishing the above steps,
for each CONV layer, we can obtain a set of energy zone ra-
tios ηi = {η1i , η2i , · · · , η

Ti
i }. The set Ii = {I1i , I2i , · · · , I

Ti
i }

records the channel index of the elements in ηi after sorting
them in a descending order. For example, if η12i ranks first
in ηi, then I1i = 12. Figure 7 shows an example how we sort
the filters according to the energy ratios.

Complexity Analysis. For a given feature map slice
Y j
i [b, :, :] ∈ RHi×Wi , we compare the complexity of HRank

and EZCrop to generate the pruning metrics in spatial
and frequency domains, respectively. HRank [23] em-
ploys the function torch.matrix rank(·) in PyTorch, which
uses SVD to compute the matrix rank at a complexity of
O(max(Hi,Wi)

3). For EZCrop, applying 2D FFT to trans-
form Y j

i [b, :, :] to the frequency domain is the most time-
consuming step, which we implemented by np.fft.fft2(·) in
NumPy with a complexity of O(HiWi log(HiWi)). For a
simpler expression, we rewrite it as O(n2 log n) which indi-
cates the high efficiency of EZCrop versus that of HRank.

5. Experimental Results
We conduct extensive experiments on image classification

tasks, using CIFAR-10 [18] and ImageNet [4] datasets, to
demonstrate the superiority of the proposed EZCrop channel
pruning scheme. Popular CNN models are used, including
VGGNet [40], ResNet [9], and DenseNet [14]. We present
the performance of state-of-the-art algorithms for a compre-
hensive overview, and we mainly compare EZCrop against
its closest scheme HRank which uses channel matrix rank in
the spatial domain to measure channel importance.
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Figure 7. By assuming the pictures as the outputs generated by four filters, we give an example to show intuitively how energy-zone ratios
reflect the importance of the corresponding filters using the frequency information. (Left) The first row contains four feature map slices, the
quality of which decreases from left to right. The second row shows the corresponding selected energy areas. It is worth noting that the
concentration of the energy distribution increases as the feature maps become less informative. (Right) The more information the feature
map contains, the larger the energy-zone ratio, and the more important the corresponding filter is.

The pruning results shown in Tables 2 to 5 are directly ac-
quired from the corresponding papers or their official GitHub
repositories. We obtained the result of multi-pass HRank in
Table 6 ourselves by generalizing the single-pass scheme,
since the authors of [23] did not report the results of apply-
ing HRank repetitively. For simplicity, we fix β = 0.25 in
Eq. 4 in all experiments when generating the energy zone
ratios, more training details can be found in Appendix 5.
All experiments are run on a computer equipped with four
NVIDIA GeForce GTX1080Ti Graphics Cards, each with
11GB frame buffer.

Time Comparison. In Table 1, we further show the ac-
tual runtimes of EZCrop and HRank to generate the required
pruning metrics for those CIFAR-10/ImageNet networks
on one GTX1080Ti GPU. Apparently, the time required
by EZCrop to generate the pruning metric is much shorter
in all models. Noticeably, the larger the dataset, the more
pronounced the efficiency of EZCrop is.

Dataset Model HRrank [23] EZCrop (↓)

CIFAR-10
VGGNet 1505.54s 356.94s (76.29%)
ResNet-56 1247.51s 381.97s (69.38%)
DenseNet-40 473.17s 171.50s (63.76%)

ImageNet ResNet-50 7.96h 3.45h (56.66%)

Table 1. Runtimes of HRank and EZCrop to compute pruning
metrics on CIFAR-10 / ImageNet for different models.

5.1. CIFAR-10

VGGNet. The VGG-16 used in the experiments is a vari-
ation of the original VGGNet for CIFAR-10 dataset taken
from [20]. In Table 2, the upper part is the performance of
state-of-the-art pruning approaches excluding HRank, while
the lower part focuses on the comparison between HRank
and EZCrop (such convention also applies to subsequent
tables). First, we compare EZCrop with the upper-part ap-
proaches. Compared with FPGM, though both can reach the
accuracy of around 94%, EZCrop has higher computational

Model Top-1% FLOPs (↓) Params (↓)

VGGNet 93.96 313.73M(0.0%) 14.98M(0.0%)
L1 [20] 93.40 206.00M(34.3%) 5.40M(64.0%)
SSS [15] 93.02 183.13M(41.6%) 3.93M(73.8%)
Zhao et al. [46] 93.18 190.00M(39.1%) 3.92M(73.3%)
GAL-0.05 [27] 92.03 189.49M(39.6%) 3.36M(77.6%)
GAL-0.1 [27] 90.78 171.89M(45.2%) 2.67M(82.2%)
FPGM [10] 94.00 201.10M(35.9%) −
PScratch [44] 93.63 156.86M(50.0%) −

HRank [23] 93.73 131.17M(58.1%) 2.76M(81.6%)
EZCrop 94.01 131.17M(58.1%) 2.76M(81.6%)
HRank [23] 93.56 104.78M(66.6%) 2.50M(83.3%)
EZCrop 93.70 104.78M(66.6%) 2.50M(83.3%)

Table 2. Pruning results of VGGNet on CIFAR-10.

efficiency with more significant FLOPs reduction (58.1%
vs. 35.9%). When compared with L1, SSS, Zhao et al. ,
GAL, and PScratch, EZCrop excels in all aspects wherein it
obtains the fastest and most compact model with the best per-
formance. Furthermore, when compared with HRank under
the same settings, namely, same FLOPs and Params reduc-
tions, EZCrop outperforms HRank in both cases (94.01%
vs. 93.73% / 93.70% vs. 93.56%). This reveals that though
HRank can evaluate the filters well using the information in
the spatial domain, EZCrop offers more accurate evaluation
benefiting from the additional frequency information.

ResNet-56. Table 3 shows the results of different prun-
ing schemes on ResNet-56. When the FLOPs reductions are
around 30%, EZCrop outperforms L1, LeGR, and HRank.
Compared with L1 and HRank (first row in the lower part),
EZCrop discards more parameters (34.1%) than L1 (14.1%)
and HRank (22.3%), while reaches the highest accuracy
(94.18%). As for LeGR, EZCrop squeezes out more ac-
curacy (94.18%) than it (94.08%) under the same FLOPs
reduction (30%). Compared with He et al., FPGM and
PScratch, when their FLOPs reductions are both around
50%, EZCrop has the highest accuracy of 93.80%. When
compared with GAL and NISP, EZCrop excels in all aspects.
EZCrop also outperforms DHP, as the gap between their
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Model Top-1% FLOPs (↓) Params (↓)

ResNet-56 93.26 125.49M(0.0%) 0.85M(0.0%)
L1 [20] 93.06 90.90M(27.6%) 0.73M(14.1%)
He et al. [11] 90.80 62.00M(50.6%) −
NISP [45] 93.01 81.00M(35.5%) 0.49M(42.4%)
GAL-0.6 [27] 92.98 78.30M(37.6%) 0.75M(11.8%)
GAL-0.8 [27] 90.36 49.44M(60.2%) 0.29M(65.9%)
FPGM [10] 93.49 59.44M(52.6%) −
PScratch [44] 93.05 62.75M(50.0%) −
LeGR [3] 94.10 87.84M(30.0%) −
SCOP [42] 93.64 55.22M(56.0%) 0.37M(56.3%)
DHP [22] 92.94 49.07M(60.9%) 0.35M(58.9%)
Hinge [24] 93.72 66.40M(47.1%) −

HRank [23] 93.85 90.35M(28.0%) 0.66M(22.3%)
EZCrop 94.18 87.84M(30.0%) 0.56M(34.1%)
HRank [23] 93.57 65.94M(47.4%) 0.48M(42.8%)
EZCrop 93.80 65.94M(47.4%) 0.48M(42.8%)
HRank [23] 92.32 34.78M(74.1%) 0.24M(70.0%)
EZCrop 92.52 34.78M(74.1%) 0.24M(70.0%)

Table 3. Pruning results of ResNet-56 on CIFAR-10.

Model Top-1% FLOPs (↓) Params (↓)

DenseNet-40 94.82 282.00M(0.0%) 1.04M(0.0%)
Liu et al.-40% [29] 94.81 190.00M(32.8%) 0.66M(36.5%)
GAL-0.01 [27] 94.29 182.92M(35.3%) 0.67M(35.6%)
GAL-0.05 [27] 93.53 128.11M(54.7%) 0.45M(56.7%)
Zhao et al. [46] 93.16 156.00M(44.8%) 0.42M(59.7%)

HRank [23] 94.51 173.39M(38.5%) 0.62M(40.1%)
EZCrop 94.72 173.39M(38.5%) 0.62M(40.1%)
HRank [23] 93.66 113.08M(59.9%) 0.39M(61.9%)
EZCrop 93.76 113.08M(59.9%) 0.39M(61.9%)

Table 4. Pruning results of DenseNet-40 on CIFAR-10.

accuracy is only around 0.4% at FLOPs reduction > 14%.
Besides, EZCrop and SCOP show comparable performance
under similar FLOPs reduction. When the FLOPs reduction
is around 47%, EZCrop outperforms Hinge. For the com-
parative experiments between EZCrop and HRank, EZCrop
can achieve higher accuracy under all settings. This shows
EZCrop not only outperforms HRank on networks with plain
structures but also residual blocks.

DenseNet-40. The results of DenseNet-40 are given in
Table 4. Compared with Liu et al., EZCrop achieves higher
compression rate (Params: 0.62M vs. 0.66M) and faster
speed (FLOPs: 173.39M vs. 190.00M) with only 0.09%
lower accuracy. This shows EZCrop is more promising to
achieve better performance when highly compact models are
required. Compared with GAL-0.01, EZCrop has advantages
in all aspects. As for GAL-0.05 and Zhao et al., when the
Params reductions are all around 60%, EZCrop obtains the
best performance (Top-1%: 93.76%) with the highest FLOPs
reduction (59.9%). In the two comparative experiments
with HRank, EZCrop achieves higher Top-1 accuracy in
both cases. This verifies that EZCrop beats HRank also on
networks with inception modules.

5.2. ImageNet

ResNet-50. The results on ImageNet, which is a more
complicated dataset than CIFAR-10, are shown in Table 5.
When the number of parameters is around 15M, EZCrop

(75.68%) has higher accuracy than SSS-26 (71.82%) and
GAL-1 (69.31%). Though GAL-1 can reduce the FLOPs
more than EZCrop (FLOPs: 1.58B vs. 2.26B), its accu-
racy drop of 6.37% is drastic. When the number of pa-
rameters is around 10M, EZCrop outperforms ThiNet-50
and GAL-1-joint with obvious advantages on the perfor-
mance (74.33% vs. 66.42% / 69.31%). Compared with
MetaPruning, EZCrop has better performance (75.68% vs.
75.40%) with higher FLOPs reduction. For DMCP and
EagleEye, though they obtain more compact models with
higher accuracy, they require dramatically more GPU re-
sources. DMCP needs 8∼15h for training to find the possible
structure, using 16 32GB 1080Ti cards. EagleEye comprises
three stages, namely, strategy proposal, candidate selection
and fine-tuning. Excluding the fine-tuning stage, EagleEye
takes more than 1 GPU day (an Nvidia 2080Ti card) to
search for acceptable candidates with no guarantee that the
best one can be selected. As depicted in Table 1, EZCrop
costs only 3.45h (a single 11GB 1080Ti card) to obtain the
pruning metric. In other words, EagleEye requires > 10×
more GPU resources than EZCrop, which leads to a mere
0.7% accuracy improvement after fine-tuning. For other up-
per part approaches, EZCrop excels in all aspects. For the
comparative experiments with HRank, EZCrop boosts the
accuracy in all cases. This indicates that EZCrop can deal
with large and complicated datasets as well.

Model Top-1% Top-5% FLOPs Params

ResNet-50 [32] 76.15 92.87 4.09B 25.50M
He et al. [11] 72.30 90.80 2.73B −
ThiNet-50 [32] 68.42 88.30 1.10B 8.66M
SSS-26 [15] 71.82 90.79 2.33B 15.60M
SSS-32 [15] 74.18 91.91 2.82B 18.60M
GDP-0.5 [26] 69.58 90.14 1.57B −
GDP-0.6 [26] 71.19 90.71 1.88B −
GAL-0.5 [27] 71.95 90.94 2.33B 21.20M
GAL-1 [27] 69.88 89.75 1.58B 14.67M
GAL-0.5-joint [27] 71.80 90.82 1.84B 19.31M
GAL-1-joint [27] 69.31 89.12 1.11B 10.21M
FPGM [10] 75.91 92.63 2.36B −
MetaPruning [30] 75.40 − 2.29B −
DMCP [6] 76.20 − 2.20B −
EagleEye [19] 76.40 92.89 2.00B −
ABCPrunner-80% [21] 73.86 91.69 1.89B 11.75M

HRank [23] 75.56 92.63 2.26B 15.09M
EZCrop 75.68 92.70 2.26B 15.09M
HRank [23] 74.19 91.94 1.52B 11.05M
EZCrop 74.33 92.00 1.52B 11.05M

Table 5. Pruning Results of ResNet-50 on ImageNet.

5.3. Robustness Under Repetitive Pruning

We further test HRank and EZCrop in a multi-pass man-
ner, i.e., pruning models repetitively. Repetitive pruning re-
quires multiple evaluations of channels’ importance, which
amplifies the difference between the two schemes. We con-
duct the experiments using ResNet-56 on CIFAR-10, and
keep adopting HRank and EZCrop to get a more compact
model without a fixed compression rate, then compare their
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performance. For fairness, all settings of HRank and EZCrop
for every single-pass are the same. Table 6 shows that
when getting more compact models, the gap of EZCrop
over HRank is enlarged after each single-pass. When we
reduce the #Params from 0.85M to 0.63M, the gap between
the accuracy of HRank (93.76%) and EZCrop (93.95%) is
0.19%. After the second pass, the gap is enlarged to 0.27%
with 0.17M more parameters discarded. In the final pass,
the gap is further expanded to 0.6% while more than 50%
parameters are reduced. This obviously shows that EZCrop
enjoys higher robustness under repetitive pruning, and is able
to evaluate the filters more accurately in each single-pass.

#Passes (#epochs) FLOPs Params HRank [23] EZCrop

1 (300) 90.86M 0.63M 93.76% 93.95%
2 (300) 66.25M 0.46M 93.15% 93.42%
3 (300) 36.03M 0.22M 91.58% 92.18%

Table 6. Repetitive pruning of ResNet-56 on CIFAR-10.

5.4. Standard Deviation (STD) Analysis

To further show the effectiveness and robustness of
EZCrop while dispelling the worries that the improvements
compared with HRank are due to standard variations, we
conduct the first comparative experiments in Tables 2-4 for
20 times and compute the average and STD of the accuracy,
respectively. The results in Table 7 prove that the improve-
ments are not accidental, and EZCrop actually makes more
accurate and robust evaluations of the importance of filters.

Mean Acc. (%) / STD VGGNet ResNet-56 DenseNet-40

EZCrop 93.98/0.073 93.99/0.097 94.63/0.066
HRank [23] 93.75/0.140 93.76/0.168 94.26/0.165

Table 7. The mean and STD of the accuracy by repeating each
selected experimental setting for 20 times.

5.5. Ablation Study

Excluding the pruning metrics, the compression rate and
training settings for VGGNet / ResNet-56 / DenseNet-40 in
this section are the same as the first comparative experiments
in Tables 2-4, respectively.

5.5.1 Effectiveness of Energy-zone Rate

To show that EZCrop makes reliable filter importance eval-
uation, we compare the results by pruning the models: 1)
using EZCrop, 2) randomly, 3) using inverse EZCrop (fil-
ters with high energy-zone ratio will be removed). For each
network in Figure 8, we observe that EZCrop outperforms
random pruning, while the inverse EZCrop has the worst per-
formance. The gaps in the accuracy confirm the effectiveness
of our energy-zone metric in the frequency domain.

Figure 8. Performances of different pruning approaches when prun-
ing VGGNet / ResNet-56 / DenseNet-40 on CIFAR-10.

Figure 9. Relations between accuracy and β, which decides the
expanding distance. The larger β, the larger the energy zone.

5.5.2 Appropriate Expending Distance

There is a hyper-parameter β in EZCrop when we decide the
expanding distance. In this paper, we set β = 0.25 for all
experiments for the sake of simplicity. However, this general
setting may not be an optimal setting for all. In Figure 9, we
explore the relations between the accuracy and β. It is worth
noting that the three curves have similar trends, the curve
shows an “M” shape when β is between 0.2 and 0.6. Based
on this observation, we suggest to manually set β around 0.3
or 0.5, namely, two peaks of the curve.

6. Conclusion
This work has connected the previously mysterious

constant-rank phenomenon in a CNN feature map channel
to a novel, analytical view in the frequency domain. Via
a spectral perspective, an efficient FFT-based energy-zone
metric has been proposed for evaluating the importance of a
channel and its corresponding filter. This leads to a channel
pruning scheme named EZCrop (energy-zoned channels for
robust output pruning) which readily outperforms existing
state-of-the-art in terms of compression rates, runtimes and
FLOPs. EZCrop also constitutes a robust way for repetitive
channel pruning to stretch the limit of CNN compression,
while maintaining high output accuracy.
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